Search Results

Search found 14816 results on 593 pages for 'logical model'.

Page 250/593 | < Previous Page | 246 247 248 249 250 251 252 253 254 255 256 257  | Next Page >

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Using Oracle BPM to Extend Oracle Applications

    - by Michelle Kimihira
    Author: Srikant Subramaniam, Senior Principal Product Manager, Oracle Fusion Middleware Customers often modify applications to meet their specific business needs - varying regulatory requirements, unique business processes, product mix transition, etc. Traditional implementation practices for such modifications are typically invasive in nature and introduce risk into projects, affect time-to-market and ease of use, and ultimately increase the costs of running and maintaining the applications. Another downside of these traditional implementation practices is that they literally cast the application in stone, making it difficult for end-users to tailor their individual work environments to meet specific needs, without getting IT involved. For many businesses, however, IT lacks the capacity to support such rapid business changes. As a result, adopting innovative solutions to change the economics of customization becomes an imperative rather than a choice. Let's look at a banking process in Siebel Financial Services and Oracle Policy Automation (OPA) using Oracle Business Process Management. This approach makes modifications simple, quick to implement and easy to maintain/upgrade. The process model is based on the Loan Origination Process Accelerator, i.e., a set of ready to deploy business solutions developed by Oracle using Business Process Management (BPM) 11g, containing customizable and extensible pre-built processes to fit specific customer requirements. This use case is a branch-based loan origination process. Origination includes a number of steps ranging from accepting a loan application, applicant identity and background verification (Know Your Customer), credit assessment, risk evaluation and the eventual disbursal of funds (or rejection of the application). We use BPM to model all of these individual tasks and integrate (via web services) with: Siebel Financial Services and (simulated) backend applications: FLEXCUBE for loan management, Background Verification and Credit Rating. The process flow starts in Siebel when a customer applies for loan, switches to OPA for eligibility verification and product recommendations, before handing it off to BPM for approvals. OPA Connector for Siebel simplifies integration with Siebel’s web services framework by saving directly into Siebel the results from the self-service interview. This combination of user input and product recommendation invokes the BPM process for loan origination. At the end of the approval process, we update Siebel and the financial app to complete the loop. We use BPM Process Spaces to display role-specific data via dashboards, including the ability to track the status of a given process (flow trace). Loan Underwriters have visibility into the product mix (loan categories), status of loan applications (count of approved/rejected/pending), volume and values of loans approved per processing center, processing times, requested vs. approved amount and other relevant business metrics. Summary Oracle recommends the use of Fusion Middleware as an extensions platform for applications. This approach makes modifications simple, quick to implement and easy to maintain/upgrade applications (by moving customizations away from applications to the process layer). It is also easier to manage processes that span multiple applications by using Oracle BPM. Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Understanding Data Science: Recent Studies

    - by Joe Lamantia
    If you need such a deeper understanding of data science than Drew Conway's popular venn diagram model, or Josh Wills' tongue in cheek characterization, "Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician." two relatively recent studies are worth reading.   'Analyzing the Analyzers,' an O'Reilly e-book by Harlan Harris, Sean Patrick Murphy, and Marck Vaisman, suggests four distinct types of data scientists -- effectively personas, in a design sense -- based on analysis of self-identified skills among practitioners.  The scenario format dramatizes the different personas, making what could be a dry statistical readout of survey data more engaging.  The survey-only nature of the data,  the restriction of scope to just skills, and the suggested models of skill-profiles makes this feel like the sort of exercise that data scientists undertake as an every day task; collecting data, analyzing it using a mix of statistical techniques, and sharing the model that emerges from the data mining exercise.  That's not an indictment, simply an observation about the consistent feel of the effort as a product of data scientists, about data science.  And the paper 'Enterprise Data Analysis and Visualization: An Interview Study' by researchers Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffery Heer considers data science within the larger context of industrial data analysis, examining analytical workflows, skills, and the challenges common to enterprise analysis efforts, and identifying three archetypes of data scientist.  As an interview-based study, the data the researchers collected is richer, and there's correspondingly greater depth in the synthesis.  The scope of the study included a broader set of roles than data scientist (enterprise analysts) and involved questions of workflow and organizational context for analytical efforts in general.  I'd suggest this is useful as a primer on analytical work and workers in enterprise settings for those who need a baseline understanding; it also offers some genuinely interesting nuggets for those already familiar with discovery work. We've undertaken a considerable amount of research into discovery, analytical work/ers, and data science over the past three years -- part of our programmatic approach to laying a foundation for product strategy and highlighting innovation opportunities -- and both studies complement and confirm much of the direct research into data science that we conducted. There were a few important differences in our findings, which I'll share and discuss in upcoming posts.

    Read the article

  • Congratulations to the 2012 Oracle Spatial Award Winners!

    - by Mandy Ho
    I just returned from the 2012 Location Intelligence and Oracle Spatial User conference in Washington, DC, held by Directions Magazine. It was a great conference with presentations from across the country and globe, networking with Oracle Spatial users and meeting new customers and partners. As part of the yearly event, Oracle recognizes special customers and partners for their contributions to advancing mainstream solutions using geospatial technology. This was the 8th year that Oracle has recognized innovative, industry leaders.   The awards were given in three categories: Education/Research, Innovator and Partnership. Here's a little on each of the award winners. Education and Research Award Winner: Technical University of Berlin The Institute for Geodesy and Geoinformation Science of the Technical University of Berlin (TU Berlin) was selected for its leading research work in mapping of urban and regional space onto virtual 3D-city and landscape models, and use of Oracle Spatial, including 3D Vector and Georaster type support, as the data management platform. Innovator Award Winner:  Istanbul Metropolitan Municipality Istanbul is the 3rd largest metropolitan area in Europe. One of their greatest challenges is organizing efficient public transportation for citizens and visitors. There are 15 types of transportations organized by 8 different agencies. To solve this problem, the Directorate of GIS of Istanbul Metropolitan Municipality has created a multi-model itinerary system to help citizens in their decision process for using public transport or their private cars. They choose to use Oracle Spatial Network Model as the solution in our system together with Java and SOAP web services.  Partnership Award Winners: CSoft Group and OSCARS. The Partnership award is given to the ISV or integrator who have demonstrated outstanding achievements in partnering with Oracle on the development side, in taking solutions to market.  CSoft Group- the largest Russion integrator and consultancy provider in CAD and GIS. CSoft was selected by the Oracle Spatial product development organization for the key role in delivering geospatial solutions based on Oracle Database and Fusion Middleware to the Russian market. OSCARS - Provides consulting/training in France, Belgium and Luxembourg. With only 3 full time staff, they have achieved significant success with leading edge customer implementations leveraging the latest Oracle Spatial/MapViewer technologies, and delivering training throughout Europe.  Finally, we also awarded two Special Recognition awards for two partners that helped contribute to the Oracle Partner Network Spatial Specialization. These two partners provided insight and technical expertise from a partner perspective to help launch the new certification program for Oracle Spatial Technologies. Award Winners: ThinkHuddle and OSCARS  For more pictures on the conference and the awards, visit our facebook page: http://www.facebook.com/OracleDatabase

    Read the article

  • ASP.NET 4.0 and the Entity Framework 4 - Part 5 - Using the GridView and the EntityDataSource

    In this article, Vince demonstrates the usage of the GridView control to view, add, update, and delete records using the Entity Framework 4. After providing a short introduction, he provides the steps required to create a web site, entity data model, web form and template fields with the help of relevant source code and screenshots.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How to mount a hidden NTFS WinRE which are on an external HDD

    - by annabinna
    A friend have given me her external hard drive which contains a backup of his Windows data. The disk has two NTFS partitions, once of them tagged as WinRe. When I do fdisk -lu I get Disk /dev/sdc: 120.0 GB, 120034123776 bytes 255 heads, 63 sectors/track, 14593 cylinders, total 234441648 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x59725972 Dispositiu Arrenc. Inici Final Blocs Id Sistema /dev/sdc1 2048 3074047 1536000 27 Hidden NTFS WinRE /dev/sdc2 * 3074048 234438655 115682304 7 HPFS/NTFS/exFAT I never fought against this type of partitions and I haven't any idea of how to mount this and recover the data. Can someone help me?

    Read the article

  • Web and Flex developer career question [closed]

    - by abhilashm86
    Possible Duplicate: should i concentrate on logical and puzzles part in programming, i want to be a web (flex)developer? I'm a computer science student and have been learning Flex and Actionscript 3.0 for 4 months. I know it's easy to program in MXML, and Actionscript 3.0 is pretty easy with bunch of classes, but when I try to code in C++ or C, I struggle, I feel I'm being inefficient and it scares me. Since I'm a student, I've no experience in developing algorithms and tough program solving? I'd like to be a web developer. Does a web developer need strong fundamentals when it comes to things such as complex algorithms and high end coding?

    Read the article

  • Immutable Method in Java

    - by Chris Okyen
    In Java, there is the final keyword in lieu of the const keyword in C and C++. In the latter languages there are mutable and immutable methods such as stated in the answer by Johannes Schaub - litb to the question How many and which are the uses of “const” in C++? Use const to tell others methods won't change the logical state of this object. struct SmartPtr { int getCopies() const { return mCopiesMade; } }ptr1; ... int var = ptr.getCopies(); // returns mCopiesMade and is specified that to not modify objects state. How is this performed in Java?

    Read the article

  • Unable to install on a Samsung 305v5a

    - by Antony
    Have used Ubuntu for years now. Bought a Samsung 305v5a-so2 laptop yesterday. It runs an AMD A8 quadcore. I have a CD of 10.04 and as I am not clear about whether to install 32 or 64 bit I thought I would run the trial of ubuntu from the cd to see it. After about 30m started getting Authentification Failure messages. Squashfs-error Unable to read fragment cash entry Then a zillion Buffer Logical error messages like 17,000+ Should I go download 11.10, in 32bit or go and try the 64bit. Really don't want to screw the new laptop already but aint gonna wanna work with w7 either. Thanks for any help

    Read the article

  • How to improve wireless network speed?

    - by Toby
    I am running 10.04 LTS on a desktop PC with a Belkin G-Plus MIMO Wireless network card. Ever since running Ubuntu on the machine I have noticed fairly slow network speeds (about half the speed I get when running the same card through Windows) I did some research I found out that by and large wireless network cards aren't that well supported on most Linux distros. I was wondering though if there is anything I could be tweaking on the system that could help squeeze a little more out of the card? Here is some more information *-network:1 description: Wireless interface physical id: 2 logical name: wlan0 serial: 00:1c:df:24:5e:54 capabilities: ethernet physical wireless configuration: broadcast=yes ip=192.168.1.5 multicast=yes wireless=IEEE 802.11bg

    Read the article

  • Wireless not working on Dell XPS 17 after installing 12.04

    - by user60622
    I (linux newbie) have a Dell XPS 17 and tried to install Ubuntu 12.04. After installation all WLAN accesspoints near are detected. But I can not connect (but I am able to connect with other computers as well as with Dell XPS 17 under windows). Outputs: iwconfig lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:"LerchenPoint" Mode:Managed Frequency:2.412 GHz Access Point: 58:6D:8F:A0:2D:58 Bit Rate=1 Mb/s Tx-Power=14 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=70/70 Signal level=-37 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:19 Missed beacon:0 eth0 no wireless extensions. sudo lshw -class network *-network description: Wireless interface product: Centrino Wireless-N 1000 vendor: Intel Corporation physical id: 0 bus info: pci@0000:04:00.0 logical name: wlan0 version: 00 serial: 00:26:c7:99:98:28 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-24-generic firmware=39.31.5.1 build 35138 latency=0 link=no multicast=yes wireless=IEEE 802.11bg resources: irq:50 memory:f0400000-f0401fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:0a:00.0 logical name: eth0 version: 06 serial: f0:4d:a2:56:e3:94 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=192.168.0.123 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:47 ioport:6000(size=256) memory:f0a04000-f0a04fff memory:f0a00000-f0a03fff dmesg | grep iwl [ 10.157531] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 10.157561] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 10.157598] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 10.157599] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 10.157601] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 10.157731] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 10.157834] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 10.157976] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 10.179772] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 10.179775] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 10.179777] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 10.179796] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 10.574728] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 10.726409] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 19.714132] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 19.777862] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2251.603089] iwlwifi 0000:04:00.0: PCI INT A disabled [ 2266.578350] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 2266.578399] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 2266.578435] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 2266.578437] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 2266.578439] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 2266.578704] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 2266.578808] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 2266.578916] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.600709] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 2266.600712] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 2266.600713] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 2266.600727] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 2266.605978] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 2266.606331] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 2266.614179] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.681541] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S Solutions I tried: rfkill list all 0: dell-wifi: Wireless LAN Soft blocked: no Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. rmmod /lib/modules/3.2.0-24-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/wireless/cfg80211.ko sudo modprobe iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. replacing iwlwifi-1000-5.ucode (current driver) against iwlwifi-1000-3.ucode sudo jockey-gtk: (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed nothing is listet in "Additional drivers" (german: "Zusätzliche Treiber"). gksudo gedit /etc/modprobe.d/blacklist.conf add "blacklist acer_wmi" Any help would be appreciated very much. Thanks!!

    Read the article

  • dependency injection example project suggestion

    - by TokenMacGuy
    I'm exploring dependency injection and trying to make the exercise as pythonic as possible; existing dependency injection frameworks seem very java-like. I've made some pretty good progress building my own framework, but I could really use a model project to validate the framework against. An ideal suggestion would be something that is hard without dependency injection, but is otherwise conceptually trivial.

    Read the article

  • ntfsresize volume and size information

    - by antonio
    I am going to resize my sda2 NTFS partition. When gathering info with ntfsresize, I get: ntfsresize --info /dev/sda2 ntfsresize v2013.1.13 (libntfs-3g) Device name : /dev/sda2 NTFS volume version: 3.1 Cluster size : 4096 bytes Current volume size: 21999993344 bytes (22000 MB) Current device size: 23622320128 bytes (23623 MB) Checking filesystem consistency ... Accounting clusters ... Space in use : 10673 MB (48.5%) Collecting resizing constraints ... You might resize at 10672590848 bytes or 10673 MB (freeing 11327 MB). Please make a test run using both the -n and -s options before real resizing! Can you tell me what is the difference between volume and device size? As for device size, 23622320128 bytes / 1000^2 = 23622.3 MB. Why is 23623 MB reported instead of 23622? Note that parted confirms this value: parted /dev/sda2 unit MB p Model: Unknown (unknown) Disk /dev/sda2: 23622MB Sector size (logical/physical): 512B/512B Partition Table: loop Disk Flags: Number Start End Size File system Flags 1 0.00MB 23622MB 23622MB ntfs

    Read the article

  • SCORM and the Learning Management System (LMS)

    What actually is SCORM? SCORM, Shareable Content Object Reference Model, is a standard for web-based e-learning that has been developed to define communication between client-side content and a runti... [Author: Stuart Campbell - Computers and Internet - October 05, 2009]

    Read the article

  • How to list missing partitions?

    - by celebrimbor
    I have installed Ubuntu on one of my partition and Crunchbang on the other partition. As I wanted to make some continuous space, I moved Crunchbang partition and then checked fdisk output which looks like this Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xc7996dfa Device Boot Start End Blocks Id System /dev/sda1 * 63 80324 40131 de Dell Utility /dev/sda4 81918 625139711 312528897 f W95 Ext'd (LBA) /dev/sda5 81920 211816447 105867264 83 Linux /dev/sda6 299100160 341043199 20971520 83 Linux /dev/sda7 341045248 625139711 142047232 7 HPFS/NTFS/exFAT I cannot see sda2 and sda3 partition. How to find them?

    Read the article

  • Ajaxy

    - by Chris Skardon
    Today is the big day, the day I attempt to use Ajax in the app… I’ve never done this (well, tell a lie, I’ve done it in a ‘tutorial’ site, but that was a while ago now), so it’s going to be interesting.. OK, basics first, let’s start with the @Ajax.ActionLink Right, first stab: @Ajax.ActionLink("Click to get latest", "LatestEntry", new AjaxOptions { UpdateTargetId = "ajaxEntrant", InsertionMode = InsertionMode.Replace, HttpMethod = "GET" }) As far as I’m aware, I’m asking to get the ‘LatestEntry’ from the current controller, and in doing so, I will replace the #ajaxEntrant DOM bit with the result. So. I guess I’d better get the result working… To the controller! public PartialResult LatestEntry() { var entrant =_db.Entrants.OrderByDescending(e => e.Id).Single(); return PartialView("_Entrant", entrant); } Pretty simple, just returns the last entry in a PartialView… but! I have yet to make my partial view, so onto that! @model Webby.Entrant <div class="entrant"> <h4>@Model.Name</h4> </div> Again, super simple, (I’m really just testing at this point)… All the code is now there (as far as I know), so F5 and in… And once again, in the traditionally disappointing way of the norm, it doesn’t work, sure… it opens the right view, but it doesn’t replace the #ajaxEntry DOM element, rather it replaces the whole page… The source code (again, as far as I know) looks ok: <a data-ajax="true" data-ajax-method="GET" data-ajax-mode="replace" data-ajax-update="#ajaxEntrants" href="/Entrants/LatestEntrant">Click to get latest</a> Changing the InsertionMode to any of the other modes has the same effect.. It’s not the DOM name either, changing that has the same effect.. i.e. none. It’s not the partial view either, just making that a <p> has (again) no effect… Ahhhhh --- what a schoolboy error… I had neglected (ahem) to actually put the script bit into the calling page (another save from stackoverflow): <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.js")" type="text/javascript"></script> I’ve now stuck that into the _Layout.cshtml view temporarily to aid the development process… :) Onwards and upwards! Chris

    Read the article

  • Generic log analyzer that produces reports

    - by Eugene
    About 600 customers use our application. We have very detailed logs for everything that happens in the application, from changes in the data model, memory and CPU/GPU usage to clicks on the UI elements. We want to be able to parse the logs coming from these customers and analyze them to understand how users use our application and what happens internally in the application. Is there a log analyzer that can produce such reports automatically?

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Adobe Air turn based multiplayer Game, sockets vs http bandwidth

    - by Arin Aivazian
    I am developing an Adobe Air multiplayer game for iPad. It is turn based and not realtime. It is like checkers game. I want to use a client server model. I have found 2 options to connect to server so far: socket connection and http requests My question is: Is the bandwidth requirement for socket connection vs http requests different? I need the game to work with very low speed internet connections

    Read the article

  • Tutoriel JavaScript : Présentation des événements du DOM, par Philippe Beaucart

    L'objectif de cet article, relativement exhaustif, est de permettre de comprendre comment manipuler les évènements DOM en JavaScript. Avant d'aborder les évènements du DOM (Document Object Model), vous devez comprendre la construction arborescente d'un document HTML, avec les notions inhérentes de n%u0153uds, de n%u0153ud parent et de n%u0153ud enfant. Idéalement, vous pouvez acquérir préalablement la notion d'arbre XML qui est le fondement de la construction arborescente des documents HTML.

    Read the article

  • Stairway to PowerPivot and DAX - Level 4: The DAX BLANK() Function

    Business Intelligence architect and author Bill Pearson exposes the DAX BLANK() function, and then provides some hands-on exposure to its use in managing empty values underlying our PowerPivot model designs. Save 45% on our top SQL Server database administration tools. Together they make up the SQL DBA Bundle, which supports your core tasks and helps your day run smoothly. Download a free trial now.

    Read the article

  • How To Force Windows Applications to Use a Specific CPU

    - by Taylor Gibb
    Channing a process’s affinity means that you limit the application to only run on certain logical processors, which can come in terribly handy if you have an application that is hogging all the CPU. Here’s how to choose the processor for a running application. We’ve previously written about how to create a shortcut that forces an application to use a specific CPU, but this is a way to change it on the fly. Note: For the most part we do not recommend you changing these settings, and to rather let Windows manage them. How To Switch Webmail Providers Without Losing All Your Email How To Force Windows Applications to Use a Specific CPU HTG Explains: Is UPnP a Security Risk?

    Read the article

< Previous Page | 246 247 248 249 250 251 252 253 254 255 256 257  | Next Page >