Search Results

Search found 3797 results on 152 pages for 'talk'.

Page 26/152 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • A better way to do concurrent programming

    - by Alex.Davies
    Programming to take advantage of multicore processors is hard. If you let multiple threads access the same memory, bad things happen. To avoid this, you use the lock keyword, but if you use that in the wrong way, your code deadlocks. It's all a nightmare. Luckily, there's a better way - Actors. They're really easy to think about. They're really safe (if you follow a couple of simple rules). And high-performance, type-safe actors are now available for .NET by using this open-source library: http://code.google.com/p/n-act/ Have a look at the site for details. I'll blog with more reasons to use actors and tips and tricks to get the best parallelism from them soon.

    Read the article

  • SharePoint Web Part Constructor Fires Twice When Adding it to the Page (and has a different security

    - by Damon
    We had some exciting times debugging an interesting issue with SharePoint 2007 Web Parts.  We had some code in staging that had been running just fine for weeks and had not been touched or changed in about the same amount of time.  However, when we tried to move the web part into a different staging environment, the part started throwing a security exception when we tried to add it to a page.  After a bit of debugging, we determined that the web part was throwing the exception while trying to access the SPGroups property on the SharePoint site.  This was pretty strange because we were logged in as an admin and the code was working perfectly fine before.  During the debugging process, however, we found out that the web part constructor was being fired twice.  On one request, the security context did not seem to have everything it needed in order to run.  On the other request, the security context was populated with the user context with the user making the request (like it normally is).  Moving the security code outside of the constructor seems to have fixed the issue. Why the discrepancy between the two staging environments?  Turns out we deployed the part originally, then deployed an update with the security code.  Since the part was never "added" to the page after the code updates were made (we just deployed a new assembly to make the updates), we never saw the problem.  It seems as though the constructor fires twice when you are adding the web part to the page, and when you run the web part from the web part gallery.  My only thought on why this would occur is that SharePoint is instantiating an instance to get some information from it - which is odd because you would think that would happen with reflection without requiring a new object.  Anyway, the work around is to just not put anything security related inside the constructor, or to do a good job accounting for the possibility of the security context not being present if you are adding the item to the page. Technorati Tags: SharePoint,.NET,Microsoft,ASP.NET

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • Overload Avoidance

    - by mikef
    A little under a year ago, Matt Simmons wrote a rather reflective article about his terrifying brush with stress-induced ill health. SysAdmins and DBAs have always been prime victims of work-related stress, but I wonder if that predilection is perhaps getting worse, despite the best efforts of Matt and his trusty side-kick, HR. The constant pressure from share-holders and CFOs to 'streamline' the workforce is partially to blame, but the more recent culprit is technology itself. I can't deny that the rise of technologies like virtualization, PowerCLI, PowerShell, and a host of others has been a tremendous boon. As a result, individual IT professionals are now able to handle more and more tasks and manage increasingly large and complex environments. But, without a doubt, this is a two-edged sword; The reward for competence is invariably more work. Unfortunately, SysAdmins play such a pivotal role in modern business that it's easy to see how they can very quickly become swamped in conflicting demands coming from different directions. However, that doesn't justify the ridiculous hours many are asked (or volunteer) to devote to their work. Admirably though their commitment is, it isn't healthy for them, it sets a dangerous expectation, and eventually something will snap. There are times when everyone needs to step up to the plate outside of 'normal' work hours, but that time isn't all the time. Naturally, with all that lovely technology, you can automate more and more of those tricky tasks to keep on top of the workload, but you are still only human. Clever though you may be, there is a very real limit to how far technology can take you. I'm not suggesting that you avoid these technologies, or deliberately aim for mediocrity; I'm just saying that you need to be more than just technically skilled (and Wesley Nonapeptide riffs on and around this topic in his excellent 'Telepathic Robot Drones' blog post). You need to be able to manage expectations, not just Exchange. Specifically, that means your own expectations of what you are capable of, because those come before everyone else's. After all, how can you keep your work-life balance under control, if you're the one setting the bar way too high? Talking to your manager, or discussing issues with your users, is only going to be productive if you have some facts to work with. "Know Thyself" is the first law of managing work overload, and this is obviously a skill which people develop over time; the fact that veteran Sysadmins exist at all is testament to this. I'd just love to know how you get to that point. Personally, I'm using RescueTime to keep myself honest, but I'm open to recommendations for better methods. Do you track your own time, do you have an intuitive sense of what is possible, or do you just rely on someone else to handle that all for you? Cheers, Michael

    Read the article

  • What Counts For a DBA – Decisions

    - by Louis Davidson
    It’s Friday afternoon, and the lead DBA, a very talented guy, is getting ready to head out for two well-earned weeks of vacation, with his family, when this error message pops up in his inbox: Msg 211, Level 23, State 51, Line 1. Possible schema corruption. Run DBCC CHECKCATALOG. His heart sinks. It’s ten…no eight…minutes till it’s time to walk out the door. He glances around at his coworkers, competent to handle many problems, but probably not up to the challenge of fixing possible database corruption. What does he do? After a few agonizing moments of indecision, he clicks shut his laptop. He’ll just wait and see. It was unlikely to come to anything; after all, it did say “possible” schema corruption, not definite. In that moment, his fate was sealed. The start of the solution to the problem (run DBCC CHECKCATALOG) had been right there in the error message. Had he done this, or at least took two of those eight minutes to delegate the task to a coworker, then he wouldn’t have ended up spending two-thirds of an idyllic vacation (for the rest of the family, at least) dealing with a problem that got consistently worse as the weekend progressed until the entire system was down. When I told this story to a friend of mine, an opera fan, he smiled and said it described the basic plotline of almost every opera or ‘Greek Tragedy’ ever written. The particular joy in opera, he told me, isn’t the warbly voiced leading ladies, or the plump middle-aged romantic leads, or even the music. No, what packs the opera houses in Italy is the drama of characters who, by the very nature of their life-experiences and emotional baggage, make all sorts of bad choices when faced with ordinary decisions, and so move inexorably to their fate. The audience is gripped by the spectacle of exotic characters doomed by their inability to see the obvious. I confess, my personal experience with opera is limited to Bugs Bunny in “What’s Opera, Doc?” (Elmer Fudd is a great example of a bad decision maker, if ever one existed), but I was struck by my friend’s analogy. If all the DBA cubicles were a stage, I think we would hear many similarly tragic tales, played out to music: “Error handling? We write our code to never experience errors, so nah…“ “Backups failed today, but it’s okay, we’ll back up tomorrow (we’ll back up tomorrow)“ And similarly, they would leave their audience gasping, not necessarily at the beauty of the music, or poetry of the lyrics, but at the inevitable, grisly fate of the protagonists. If you choose not to use proper error handling, or if you choose to skip a backup because, hey, you haven’t had a server crash in 10 years, then inevitably, in that moment you expected to be enjoying a vacation, or a football game, with your family and friends, you will instead be sitting in front of a computer screen, paying for your poor choices. Tragedies are very much part of IT. Most of a DBA’s day to day work has limited potential to wreak havoc; paperwork, timesheets, random anonymous threats to developers, routine maintenance and whatnot. However, just occasionally, you, as a DBA, will face one of those decisions that really matter, and which has the possibility to greatly affect your future and the future of your user’s data. Make those decisions count, and you’ll avoid the tragic fate of many an operatic hero or villain.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Automating deployments with the SQL Compare command line

    - by Jonathan Hickford
    In my previous article, “Five Tips to Get Your Organisation Releasing Software Frequently” I looked at how teams can automate processes to speed up release frequency. In this post, I’m looking specifically at automating deployments using the SQL Compare command line. SQL Compare compares SQL Server schemas and deploys the differences. It works very effectively in scenarios where only one deployment target is required – source and target databases are specified, compared, and a change script is automatically generated and applied. But if multiple targets exist, and pressure to increase the frequency of releases builds, this solution quickly becomes unwieldy.   This is where SQL Compare’s command line comes into its own. I’ve put together a PowerShell script that loops through the Servers table and pulls out the server and database, these are then passed to sqlcompare.exe to be used as target parameters. In the example the source database is a scripts folder, a folder structure of scripted-out database objects used by both SQL Source Control and SQL Compare. The script can easily be adapted to use schema snapshots.     -- Create a DeploymentTargets database and a Servers table CREATE DATABASE DeploymentTargets GO USE DeploymentTargets GO CREATE TABLE [dbo].[Servers]( [id] [int] IDENTITY(1,1) NOT NULL, [serverName] [nvarchar](50) NULL, [environment] [nvarchar](50) NULL, [databaseName] [nvarchar](50) NULL, CONSTRAINT [PK_Servers] PRIMARY KEY CLUSTERED ([id] ASC) ) GO -- Now insert your target server and database details INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment1' , N'mydb1') INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment2' , N'mydb2') Here’s the PowerShell script you can adapt for yourself as well. # We're holding the server names and database names that we want to deploy to in a database table. # We need to connect to that server to read these details $serverName = "" $databaseName = "DeploymentTargets" $authentication = "Integrated Security=SSPI" #$authentication = "User Id=xxx;PWD=xxx" # If you are using database authentication instead of Windows authentication. # Path to the scripts folder we want to deploy to the databases $scriptsPath = "SimpleTalk" # Path to SQLCompare.exe $SQLComparePath = "C:\Program Files (x86)\Red Gate\SQL Compare 10\sqlcompare.exe" # Create SQL connection string, and connection $ServerConnectionString = "Data Source=$serverName;Initial Catalog=$databaseName;$authentication" $ServerConnection = new-object system.data.SqlClient.SqlConnection($ServerConnectionString); # Create a Dataset to hold the DataTable $dataSet = new-object "System.Data.DataSet" "ServerList" # Create a query $query = "SET NOCOUNT ON;" $query += "SELECT serverName, environment, databaseName " $query += "FROM dbo.Servers; " # Create a DataAdapter to populate the DataSet with the results $dataAdapter = new-object "System.Data.SqlClient.SqlDataAdapter" ($query, $ServerConnection) $dataAdapter.Fill($dataSet) | Out-Null # Close the connection $ServerConnection.Close() # Populate the DataTable $dataTable = new-object "System.Data.DataTable" "Servers" $dataTable = $dataSet.Tables[0] #For every row in the DataTable $dataTable | FOREACH-OBJECT { "Server Name: $($_.serverName)" "Database Name: $($_.databaseName)" "Environment: $($_.environment)" # Compare the scripts folder to the database and synchronize the database to match # NB. Have set SQL Compare to abort on medium level warnings. $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/AbortOnWarnings:Medium") # + @("/sync" ) # Commented out the 'sync' parameter for safety, write-host $arguments & $SQLComparePath $arguments "Exit Code: $LASTEXITCODE" # Some interesting variations # Check that every database matches a folder. # For example this might be a pre-deployment step to validate everything is at the same baseline state. # Or a post deployment script to validate the deployment worked. # An exit code of 0 means the databases are identical. # # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") # Generate a report of the difference between the folder and each database. Generate a SQL update script for each database. # For example use this after the above to generate upgrade scripts for each database # Examine the warnings and the HTML diff report to understand how the script will change objects # #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") } It’s worth noting that the above example generates the deployment scripts dynamically. This approach should be problem-free for the vast majority of changes, but it is still good practice to review and test a pre-generated deployment script prior to deployment. An alternative approach would be to pre-generate a single deployment script using SQL Compare, and run this en masse to multiple targets programmatically using sqlcmd, or using a tool like SQL Multi Script.  You can use the /ScriptFile, /report, and /showWarnings flags to generate change scripts, difference reports and any warnings.  See the commented out example in the PowerShell: #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") There is a drawback of running a pre-generated deployment script; it assumes that a given database target hasn’t drifted from its expected state. Often there are (rightly or wrongly) many individuals within an organization who have permissions to alter the production database, and changes can therefore be made outside of the prescribed development processes. The consequence is that at deployment time, the applied script has been validated against a target that no longer represents reality. The solution here would be to add a check for drift prior to running the deployment script. This is achieved by using sqlcompare.exe to compare the target against the expected schema snapshot using the /Assertidentical flag. Should this return any differences (sqlcompare.exe Exit Code 79), a drift report is outputted instead of executing the deployment script.  See the commented out example. # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") Any checks and processes that should be undertaken prior to a manual deployment, should also be happen during an automated deployment. You might think about triggering backups prior to deployment – even better, automate the verification of the backup too.   You can use SQL Compare’s command line interface along with PowerShell to automate multiple actions and checks that you need in your deployment process. Automation is a practical solution where multiple targets and a higher release cadence come into play. As we know, with great power comes great responsibility – responsibility to ensure that the necessary checks are made so deployments remain trouble-free.  (The code sample supplied in this post automates the simple dynamic deployment case – if you are considering more advanced automation, e.g. the drift checks, script generation, deploying to large numbers of targets and backup/verification, please email me at [email protected] for further script samples or if you have further questions)

    Read the article

  • An update process that is even worse than Windows updates

    - by fatherjack
    I'm sorry EA but your game update process stinks. I am not a hardcore gamer but I own a Playstation3 and have been playing Battlefield Bad Company 2 (BFBC2) a bit since I got it for my birthday and there have been two recent updates to the game. Now I like the idea of games getting updates via downloadable content. You can buy a game and if there are changes that are needed (service packs if you will) then they can be distributed over the games console network. Great. Sometimes it fixes problems,...(read more)

    Read the article

  • Operator of the Week - Spools, Eager Spool

    For the fifth part of Fabiano's mission to describe the major Showplan Operators used by SQL Server's Query Optimiser, he introduces the spool operators and particularly the Eager Spool, explains blocking and non-blocking and then describes how the Halloween Problem is avoided.

    Read the article

  • Subterranean IL: Exception handler semantics

    - by Simon Cooper
    In my blog posts on fault and filter exception handlers, I said that the same behaviour could be replicated using normal catch blocks. Well, that isn't entirely true... Changing the handler semantics Consider the following: .try { .try { .try { newobj instance void [mscorlib]System.Exception::.ctor() // IL for: // e.Data.Add("DictKey", true) throw } fault { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } } filter { ldstr "2a: Filter logic" call void [mscorlib]System.Console::WriteLine(string) // IL for: // (bool)((Exception)e).Data["DictKey"] endfilter }{ ldstr "2b: Filter handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } } catch object { ldstr "3: Catch handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } Return: // rest of method If the filter handler is engaged (true is inserted into the exception dictionary) then the filter handler gets engaged, and the following gets printed to the console: 2a: Filter logic 1: Fault handler 2b: Filter handler and if the filter handler isn't engaged, then the following is printed: 2a:Filter logic 1: Fault handler 3: Catch handler Filter handler execution The filter handler is executed first. Hmm, ok. Well, what happens if we replaced the fault block with the C# equivalent (with the exception dictionary value set to false)? .try { // throw exception } catch object { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) rethrow } we get this: 1: Fault handler 2a: Filter logic 3: Catch handler The fault handler is executed first, instead of the filter block. Eh? This change in behaviour is due to the way the CLR searches for exception handlers. When an exception is thrown, the CLR stops execution of the thread, and searches up the stack for an exception handler that can handle the exception and stop it propagating further - catch or filter handlers. It checks the type clause of catch clauses, and executes the code in filter blocks to see if the filter can handle the exception. When the CLR finds a valid handler, it saves the handler's location, then goes back to where the exception was thrown and executes fault and finally blocks between there and the handler location, discarding stack frames in the process, until it reaches the handler. So? By replacing a fault with a catch, we have changed the semantics of when the filter code is executed; by using a rethrow instruction, we've split up the exception handler search into two - one search to find the first catch, then a second when the rethrow instruction is encountered. This is only really obvious when mixing C# exception handlers with fault or filter handlers, so this doesn't affect code written only in C#. However it could cause some subtle and hard-to-debug effects with object initialization and ordering when using and calling code written in a language that can compile fault and filter handlers.

    Read the article

  • Such thing as a free lunch

    - by red@work
    There is a lot of hard work goes on in Red Gate, no doubt. And then there are things we're asked to get involved with, that aren't hard and don't feel much like work. What? Give up our free lunch at Red Gate for. a free lunch in a pub? Within an hour, myself and a colleague are at the Railway Vue pub in nearby Impington. This is all part of Red Gate's aim to hire more Software Engineers and Test Engineers, to help Red Gate grow into one of the greatest software companies in the world (it's already the best small software development company in the UK). Phase one then - buy lunch for Cambridge. Seriously, not just the targeted engineers, but for anyone who could print the voucher and make it to the nearest of the venues, two of which happen to be pubs. We're here to watch people happily eat a free pub lunch at Red Gate's expense. We also get involved and I swear I didn't order a beer with the food but the landlord says I clearly did and I'm not one to argue. Red Gate are offering a free iPad to anyone that comes to interview for a Software Engineer or Test Engineer role. We speak to a few engineers who are genuinely interested. We speak to a couple of DBA's too, and encourage them to make speculative applications - no free iPad on offer for them, but that's not really the point. The point is, everyone should apply to work here! It's that good. We overhear someone ask if 'these vouchers really work?' They do. There's no catch. The free IPad? Again, no catch. If that's what it takes to get talented engineers through our doors for an interview, then that's all good. Once they see where we work and how we work, we think they'll want to come and work with us. The following day, Red Gate decides to repeat the offer, and that means more hard work, this time at The Castle pub. Another landlord that mishears 'mineral water' and serves me a beer. There are many more people clutching the printed vouchers and they all seem very happy to be getting a free lunch from Red Gate. "Come and work for us" we suggest, "lunch is always free!" So if you're a talented engineer, like free lunches and want a free iPad, you know what to do.

    Read the article

  • SQL Server CTE Basics

    The CTE was introduced into standard SQL in order to simplify various classes of SQL Queries for which a derived table just wasn't suitable. For some reason, it can be difficult to grasp the techniques of using it. Well, that's before Rob Sheldon explained it all so clearly for us.

    Read the article

  • Reflector Pro has now been released!

    - by CliveT
    After moving into the .NET division in May , and having a great time working on Reflector, I'm pleased to say that the results of that work are now available. Reflector Pro has now been released! The old Reflector as you know and love it is still available free of charge, and as part of this project we've fixed a number of bugs in the de-compilation that have been around for a long time. The Pro version comes as an add-in for Visual Studio - this offers dynamic de-compilation and generation of pdb files which allow you to step into the de-compiled code. Alex has some good pictures of this functionality on his beta post from around a month ago. Thanks to the other guys who've worked on this for taking me along for the ride - Alex, Andrew, Bart and Jason. Stephen did some great usability work, Chris Alford did some great technical authoring and Laila handled the launch publicity. Like all projects, there's always more I'd like to have done, but what we have looks like a pretty powerful addition to the developer's set of tools to me. Please try it and give us feedback on the forum.

    Read the article

  • From WinForm to WPF: A Quick Reference Guide

    Michael Sorens provides a handy wallchart to help migration between WinForm / WPF, VS 2008 / 2010, and .NET 3.5 / 4.0. this can be downloaded for free from the speech-bubble at the head of the article. He also describes the current weaknesses in WPF, and the most obvious differences between the two.

    Read the article

  • Subterranean IL: Fault exception handlers

    - by Simon Cooper
    Fault event handlers are one of the two handler types that aren't available in C#. It behaves exactly like a finally, except it is only run if control flow exits the block due to an exception being thrown. As an example, take the following method: .method public static void FaultExample(bool throwException) { .try { ldstr "Entering try block" call void [mscorlib]System.Console::WriteLine(string) ldarg.0 brfalse.s NormalReturn ThrowException: ldstr "Throwing exception" call void [mscorlib]System.Console::WriteLine(string) newobj void [mscorlib]System.Exception::.ctor() throw NormalReturn: ldstr "Leaving try block" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } fault { ldstr "Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } Return: ldstr "Returning from method" call void [mscorlib]System.Console::WriteLine(string) ret } If we pass true to this method the following gets printed: Entering try block Throwing exception Fault handler and the exception gets passed up the call stack. So, the exception gets thrown, the fault handler gets run, and the exception propagates up the stack afterwards in the normal way. If we pass false, we get the following: Entering try block Leaving try block Returning from method Because we are leaving the .try using a leave.s instruction, and not throwing an exception, the fault handler does not get called. Fault handlers and C# So why were these not included in C#? It seems a pretty simple feature; one extra keyword that compiles in exactly the same way, and with the same semantics, as a finally handler. If you think about it, the same behaviour can be replicated using a normal catch block: try { throw new Exception(); } catch { // fault code goes here throw; } The catch block only gets run if an exception is thrown, and the exception gets rethrown and propagates up the call stack afterwards; exactly like a fault block. The only complications that occur is when you want to add a fault handler to a try block with existing catch handlers. Then, you either have to wrap the try in another try: try { try { // ... } catch (DirectoryNotFoundException) { // ... // leave.s as normal... } catch (IOException) { // ... throw; } } catch { // fault logic throw; } or separate out the fault logic into another method and call that from the appropriate handlers: try { // ... } catch (DirectoryNotFoundException ) { // ... } catch (IOException ioe) { // ... HandleFaultLogic(); throw; } catch (Exception e) { HandleFaultLogic(); throw; } To be fair, the number of times that I would have found a fault handler useful is minimal. Still, it's quite annoying knowing such functionality exists, but you're not able to access it from C#. Fortunately, there are some easy workarounds one can use instead. Next time: filter handlers.

    Read the article

  • Automated Error Reporting in .NET Reflector - harnessing the most powerful test rig in existence

    - by Alex.Davies
    I know a testing system that will find more bugs than all the unit testing, integration testing, and QA you could possibly do. And the chances are you're not using it. It's called your users. It's a cliché that you should test so that you find your bugs rather than your users. Of course you should. But it's also a cliché that no software is ever shipped bug-free. Lost cause? No, opportunity! I think .NET Reflector 6 is pretty stable. In fact I know exactly how stable it is, because some (surprisingly high) proportion of its users tell me every time it crashes: If they press "Send Error Report", I get: And then I fix it. As a rough guess, while a standard stack trace is enough to fix a problem 30% of the time, having all those local variables in the stack trace means I can fix it about 80% of the time. How does this all happen? Did it take ages to code this swish system? Nope, it was one checkbox in SmartAssembly. It adds some clever code to your assembly to capture local variables every time an exception is thrown, and to ask your user to report it to you, with a variety of other useful information. Of course not all bugs show up as exceptions. But if you get used to knowing that SmartAssembly will tell you when an exception happens, you begin to change your coding style. Now, as long as an exception gets thrown in any situation you don't expect, you'll fix it if it ever happens. You'll start throwing exceptions liberally, and stop having to think about whether tiny edge cases are possible, as long as they throw an exception if they happen.

    Read the article

  • DAC pack up all your troubles

    - by Tony Davis
    Visual Studio 2010, or perhaps its apparently-forthcoming sister, "SQL Studio", is being geared up to become the natural way for developers to create databases. Central to this drive is the introduction of 'data-tier application components', or DACs. Applications are developed as normal but when it comes to deployment, instead of supplying the DBA with a bunch of scripts to create the required database objects, the developer creates a single DAC Package ("DAC Pack"); a zipped XML file containing all the database objects needed by the application, along with versioning information, policies for deployment, and so on. It's an intriguing prospect. Developers can work on their development database using their existing tools and source control, and then package up the changes into a single DACPAC for deployment and management. DBAs get an "application level view" of how their instances are being used and the ability to collectively, rather than individually, manage the objects. The DBA needing to manage a large number of relatively small databases can use "DAC snapshots" to get a quick overview of what has changed across all the databases they manage. The reason that DAC packs haven't caused more excitement is that they can only be pushed to SQL Server 2008 R2, and they must be developed or inspected using Visual Studio 2010. Furthermore, what we see right now in VS2010 is more of a 'work-in-progress' or 'vision of the future', with serious shortcomings and restrictions that render it unsuitable for anything but small 'non-critical' departmental databases. The first problem is that DAC packs support a limited set of schema objects (corresponding closely to the features available on 'Azure'). This means that Service Broker queues, CLR Objects, and perhaps most critically security (permissions, certificates etc.), are off-limits. Applications that require these objects will need to add them via a post-deployment TSQL script, rather defeating the whole idea. More worrying still is the process for altering a database with a DAC pack. The grand 'collective' philosophy, whereby a single XML file can be used for deploying and managing builds and changes, extends, unfortunately, to database upgrades. Any change to a database object will result in the creation of a new database, copying the data from the old version, nuking the previous one, and then renaming the new one. Simple eh? The problem is that even something as trivial as adding a comment to a stored procedure in a 5GB database will require the server to find at least twice as much space, as well sufficient elbow-room in the transaction log for copying the largest table. Of course, you'll need to take the database offline for the full course of the deployment, which is likely to take a long time if there is a lot of data. This upgrade/rename process breaks the log chain, makes any subsequent full restore operation highly complicated, and will also break log shipping. As with any grand vision, the devil is always in the detail. It's hard to fathom why Microsoft hasn't used a SQL Compare-style approach to the upgrade process, altering a database with a change script, and this will surely be adopted in the near future. Something had to be in place for VS2010, but right now DAC packs only make sense for Azure. For this, they're cute, but hardly compelling. Nevertheless, DBAs would do well to get familiar with VS 2010 and DAC packs. Like it or not, they're both coming. Cheers, Tony.

    Read the article

  • Creating a simple RSS reader using ListView,XMLDatasource,DataPager web server controls

    - by nikolaosk
    In my last ASP.Net seminar someone noticed that we did not talk at all about the XmlDataSource,ListView,DataPager web server controls. It is rather impossible to investigate/talk about all issues regarding ASP.Net in a seminar but I promised to write a blog post. I thought that I could combine all those three web server controls to create a RSS reader. 1) Launch Visual Studio 2008/2010. Express editions will work fine. 2) Create an empty asp.net web site. Choose an appropriate name. We will not write...(read more)

    Read the article

  • Procedural, Semi-Procedural and Declarative Programming in SQL

    A lot of the time, the key to making SQL databases perform well is to take a break from the keyboard and rethink the way of approaching the problem; and rethinking in terms of a set-based declarative approach. Joe takes a simple discussion abut a problem with a UDF to illustrate the point that ingrained procedural reflexes can often prevent us from seeing simpler set-based techniques.

    Read the article

  • Hands-on Entity Framework

    People keep saying that Entity Framework is simple to learn. Simple? Well, finally, we're going to be forced to agree, thanks to James Johnson's new series on learning EF the hands-on way.

    Read the article

  • Adding Actions to a Cube in SQL Server Analysis Services 2008

    Actions are powerful way of extending the value of SSAS cubes for the end user. They can click on a cube or portion of a cube to start an application with the selected item as a parameter, or to retrieve information about the selected item. Actions haven't been well-documented until now; Robert Sheldon once more makes everything clear.

    Read the article

  • Hype and LINQ

    - by Tony Davis
    "Tired of querying in antiquated SQL?" I blinked in astonishment when I saw this headline on the LinqPad site. Warming to its theme, the site suggests that what we need is to "kiss goodbye to SSMS", and instead use LINQ, a modern query language! Elsewhere, there is an article entitled "Why LINQ beats SQL". The designers of LINQ, along with many DBAs, would, I'm sure, cringe with embarrassment at the suggestion that LINQ and SQL are, in any sense, competitive ways of doing the same thing. In fact what LINQ really is, at last, is an efficient, declarative language for C# and VB programmers to access or manipulate data in objects, local data stores, ORMs, web services, data repositories, and, yes, even relational databases. The fact is that LINQ is essentially declarative programming in a .NET language, and so in many ways encourages developers into a "SQL-like" mindset, even though they are not directly writing SQL. In place of imperative logic and loops, it uses various expressions, operators and declarative logic to build up an "expression tree" describing only what data is required, not the operations to be performed to get it. This expression tree is then parsed by the language compiler, and the result, when used against a relational database, is a SQL string that, while perhaps not always perfect, is often correctly parameterized and certainly no less "optimal" than what is achieved when a developer applies blunt, imperative logic to the SQL language. From a developer standpoint, it is a mistake to consider LINQ simply as a substitute means of querying SQL Server. The strength of LINQ is that that can be used to access any data source, for which a LINQ provider exists. Microsoft supplies built-in providers to access not just SQL Server, but also XML documents, .NET objects, ADO.NET datasets, and Entity Framework elements. LINQ-to-Objects is particularly interesting in that it allows a declarative means to access and manipulate arrays, collections and so on. Furthermore, as Michael Sorens points out in his excellent article on LINQ, there a whole host of third-party LINQ providers, that offers a simple way to get at data in Excel, Google, Flickr and much more, without having to learn a new interface or language. Of course, the need to be generic enough to deal with a range of data sources, from something as mundane as a text file to as esoteric as a relational database, means that LINQ is a compromise and so has inherent limitations. However, it is a powerful and beautifully compact language and one that, at least in its "query syntax" guise, is accessible to developers and DBAs alike. Perhaps there is still hope that LINQ can fulfill Phil Factor's lobster-induced fantasy of a language that will allow us to "treat all data objects, whether Word files, Excel files, XML, relational databases, text files, HTML files, registry files, LDAPs, Outlook and so on, in the same logical way, as linked databases, and extract the metadata, create the entities and relationships in the same way, and use the same SQL syntax to interrogate, create, read, write and update them." Cheers, Tony.

    Read the article

  • Anatomy of a .NET Assembly - Signature encodings

    - by Simon Cooper
    If you've just joined this series, I highly recommend you read the previous posts in this series, starting here, or at least these posts, covering the CLR metadata tables. Before we look at custom attribute encoding, we first need to have a brief look at how signatures are encoded in an assembly in general. Signature types There are several types of signatures in an assembly, all of which share a common base representation, and are all stored as binary blobs in the #Blob heap, referenced by an offset from various metadata tables. The types of signatures are: Method definition and method reference signatures. Field signatures Property signatures Method local variables. These are referenced from the StandAloneSig table, which is then referenced by method body headers. Generic type specifications. These represent a particular instantiation of a generic type. Generic method specifications. Similarly, these represent a particular instantiation of a generic method. All these signatures share the same underlying mechanism to represent a type Representing a type All metadata signatures are based around the ELEMENT_TYPE structure. This assigns a number to each 'built-in' type in the framework; for example, Uint16 is 0x07, String is 0x0e, and Object is 0x1c. Byte codes are also used to indicate SzArrays, multi-dimensional arrays, custom types, and generic type and method variables. However, these require some further information. Firstly, custom types (ie not one of the built-in types). These require you to specify the 4-byte TypeDefOrRef coded token after the CLASS (0x12) or VALUETYPE (0x11) element type. This 4-byte value is stored in a compressed format before being written out to disk (for more excruciating details, you can refer to the CLI specification). SzArrays simply have the array item type after the SZARRAY byte (0x1d). Multidimensional arrays follow the ARRAY element type with a series of compressed integers indicating the number of dimensions, and the size and lower bound of each dimension. Generic variables are simply followed by the index of the generic variable they refer to. There are other additions as well, for example, a specific byte value indicates a method parameter passed by reference (BYREF), and other values indicating custom modifiers. Some examples... To demonstrate, here's a few examples and what the resulting blobs in the #Blob heap will look like. Each name in capitals corresponds to a particular byte value in the ELEMENT_TYPE or CALLCONV structure, and coded tokens to custom types are represented by the type name in curly brackets. A simple field: int intField; FIELD I4 A field of an array of a generic type parameter (assuming T is the first generic parameter of the containing type): T[] genArrayField FIELD SZARRAY VAR 0 An instance method signature (note how the number of parameters does not include the return type): instance string MyMethod(MyType, int&, bool[][]); HASTHIS DEFAULT 3 STRING CLASS {MyType} BYREF I4 SZARRAY SZARRAY BOOLEAN A generic type instantiation: MyGenericType<MyType, MyStruct> GENERICINST CLASS {MyGenericType} 2 CLASS {MyType} VALUETYPE {MyStruct} For more complicated examples, in the following C# type declaration: GenericType<T> : GenericBaseType<object[], T, GenericType<T>> { ... } the Extends field of the TypeDef for GenericType will point to a TypeSpec with the following blob: GENERICINST CLASS {GenericBaseType} 3 SZARRAY OBJECT VAR 0 GENERICINST CLASS {GenericType} 1 VAR 0 And a static generic method signature (generic parameters on types are referenced using VAR, generic parameters on methods using MVAR): TResult[] GenericMethod<TInput, TResult>( TInput, System.Converter<TInput, TOutput>); GENERIC 2 2 SZARRAY MVAR 1 MVAR 0 GENERICINST CLASS {System.Converter} 2 MVAR 0 MVAR 1 As you can see, complicated signatures are recursively built up out of quite simple building blocks to represent all the possible variations in a .NET assembly. Now we've looked at the basics of normal method signatures, in my next post I'll look at custom attribute application signatures, and how they are different to normal signatures.

    Read the article

  • If unexpected database changes cause you problems – we can help!

    - by Chris Smith
    Have you ever been surprised by an unexpected difference between you database environments? Have you ever found that your Staging database is not the same as your Production database, even though it was the week before? Has an emergency hotfix suddenly appeared in Production over the weekend without your knowledge? Has your client secretly added a couple of indices to their local version of the database to aid performance? Worse still, has a developer ever accidently run a SQL script against the wrong database without noticing their mistake? If you’ve answered “Yes” to any of the above questions then you’ve suffered from ‘drift’. Database drift is where the state of a database (schema, particularly) has moved away from its expected or official state over time. The upshot is that the database is in an unknown or poorly-understood state. Even if these unexpected changes are not destructive, drift can be a big problem when it’s time to release a new version of the database. A deployment to a target database in an unexpected state can error and fail, potentially delaying a vital, time-sensitive update. A big issue with drift is that it can be hard to spot and it can be even harder to determine its provenance. So, before you can deal with an issue caused by drift, you’ll need to know exactly what change has been made, who made it, when they made it and why they made it. Those questions can take a lot of effort to answer. Then you actually need to decide what to do. Do you rollback the change because it was bad? Retrospectively apply it to the Staging environment because it is a required change? Or script the change into version control to get it back in line with your process? Red Gate’s Database Delivery Team have been talking to DBAs, database consultants and database developers to explore the problem of drift. We’ve started to get a really good idea of how big a problem it can be and what database professionals need to know and do, in order to deal with it.  It’s fair to say, we’re pretty excited at the prospect of creating a tool that will really help and we’ve got some great feedback on our initial ideas (see image below).   We’re now well underway with the development of our new drift-spotting product – SQL Lighthouse – and we hope to have a beta release out towards the end of July. What we really need is your help to shape the product into a great tool. So, if database drift is a problem that you’d like help solving and are interested in finding out more about our product, join our mailing list to register your interest in trying out the beta release. Subscribe to our mailing list

    Read the article

  • What Counts For A DBA: Foresight

    - by drsql
    Of all the valuable attributes of a DBA covered so far in this series, ranging from passion to humility to practicality, perhaps one of the most important attributes may turn out to be the most seemingly-nebulous: foresight. According to Free Dictionary foresight is the "perception of the significance and nature of events before they have occurred". Foresight does not come naturally to most people, as the parent of any teenager will attest. No matter how clearly you see their problems coming they won't listen, and have to fail before eventually (hopefully) learning for themselves. Having graduated from the school of hard knocks, the DBA, the naive teenager no longer, acquires the ability to foretell how events will unfold in response to certain actions or attitudes with the unerring accuracy of a doom-laden prophet. Like Simba in the Lion King, after a few blows to the head, we foretell that a sore head that will be the inevitable consequence of a swing of Rafiki's stick, and we take evasive action. However, foresight is about more than simply learning when to duck. It's about taking the time to understand and prevent the habits that caused the stick to swing in the first place. And based on this definition, I often think there is a lot less foresight on display in my industry than there ought to be. Most DBAs reading this blog will spot a line such as the following in a piece of "working" code, understand immediately why it is less than optimimum, and take evasive action. …WHERE CAST (columnName as int) = 1 However, the programmers who regularly write this sort of code clearly lack that foresight, and this and numerous other examples of similarly-malodorous code prevail throughout our industry (and provide premium-grade fertilizer for the healthy growth of many a consultant's bank account). Sometimes, perhaps harried by impatient managers and painfully tight deadlines, everyone makes mistakes. Yes, I too occasionally write code that "works", but basically stinks. When the problems manifest, it is sometimes accompanied by a sense of grim recognition that somewhere in me existed the foresight to know that that approach would lead to this problem. However, in the headlong rush, warning signs got overlooked, lessons learned previously, which could supply the foresight to the current project, were lost and not applied.   Of course, the problem often is a simple lack of skills, training and knowledge in the relevant technology and/or business space; programmers and DBAs forced to do their best in the face of inadequate training, or to apply their skills in areas where they lack experience. However, often the problem goes deeper than this; I detect in some DBAs and programmers a certain laziness of attitude.   They veer from one project to the next, going with "whatever works", unwilling or unable to take the time to understand where their actions are leading them. Of course, the whole "Agile" mindset is often interpreted to favor flexibility and rapid production over aiming to get things right the first time. The faster you try to travel in the dark, frequently changing direction, the more important it is to have someone who has the foresight to know at least roughly where you are heading. This is doubly true for the data tier which, no matter how you try to deny it, simply cannot be "redone" every month as you learn aspects of the world you are trying to model that, with a little bit of foresight, you would have seen coming.   Sometimes, when as a DBA you can glance briefly at 200 lines of working SQL code and know instinctively why it will cause problems, foresight can feel like magic, but it isn't; it's more like muscle memory. It is acquired as the consequence of good experience, useful communication with those around you, and a willingness to learn continually, through continued education as well as from failure. Foresight can be deployed only by finding time to understand how the lessons learned from other DBAs, and other projects, can help steer the current project in the right direction.   C.S. Lewis once said "The future is something which everyone reaches at the rate of sixty minutes an hour, whatever he does, whoever he is." It cannot be avoided; the quality of what you build now is going to affect you, and others, at some point in the future. Take the time to acquire foresight; it is a love letter to your future self, to say you cared.

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >