Search Results

Search found 13727 results on 550 pages for 'game industry'.

Page 261/550 | < Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >

  • Collision filtering techniques

    - by Griffin
    I was wondering what efficient techniques are out there for mapping collision filtering between various bodies, sub-bodies, and so forth. I'm familiar with the simple idea of having different layers of 2D bodies, but this is not sufficient for more complex mapping: (Think of having sub-bodies of a body, such as limbs, collide with each other by placing them on the same layer, and then wanting to only have the legs collide with the ground while the arms would not) This can be solved with a multidimensional layer setup, but I would probably end up just creating more and more layers to the point where the simplicity and efficiency of layer filtering would be gone. Are there any more complex ways to solve even more complex situations than this?

    Read the article

  • Platform for DS/Gameboy Dev - Managed Memory, Tools, and Unit Testing

    - by ashes999
    I'm interested in dabbling in Nintendo DS, 3DS, or GBA development. I would like to know what my (legal) options for development tools and IDEs are. In particular, I would not consider moving in this direction unless I can find: A programming language that has managed memory (garbage collection) A unit testing tool akin to JUnit, NUnit, etc. for unit tests I would also prefer if other tools exist, like code-coverage, etc. for that platform. But the main thing is managed memory and unit testing. What options are out there?

    Read the article

  • Algorithmically generating neon layers on pixel grid

    - by user190929
    In an attempt at a screensaver I am making, I am a fan of neo-like graphics, which, of course, look great against a black background. As I understand it, neon, graphically speaking, is essentially a gradient of a color, brightest in the center, and gets darker proceeding outward. Although, more accurate is similar, but separating it into tubes and glow. The tubes are mostly white, while the glow is where most of the color is seen. Well... the tubes could also be a light variant of the color, you could say. The glow is darker. Anyhow, my question is, how could you generate such things given an initial pattern of pixels that would be the tubes? For example, let's say I want to make a neon 'H'. I, via the libraries, can attain the rectangles of pixels which represent it, but I want to make it look neonized. How could I algorithmically achieve such an effect given a base tube shape and base color? EDIT: ok, I mistated that. Got a bit distracted. My purpose for this was similar to a neon effect, but not. Sorry about that. What I am looking for is something like this: Start with a pattern of pixels: [!][!][!][!][!][!][!][!] [!][!][O][!][!][!][!][!] [!][!][O][O][!][!][!][!] [!][!][!][!][O][!][!][!] [!][!][!][!][!][!][!][!] How to I find the U pixels? [!][E][E][E][!][!][!][!] [!][E][O][E][E][!][!][!] [!][E][O][O][E][E][!][!] [!][E][E][E][O][E][!][!] [!][!][!][E][E][E][!][!] Sorry if that looks bad.

    Read the article

  • Frame Interpolation issues for skeletal animation

    - by sebby_man
    I'm trying to animate in-between keyframes for skeletal animation but having some issues. Each joint is represented by a quaternion and there is no translation component. When I try to slerp between the orientations at the two key frames, I got a very wacky animation. I know my skinning equation is right because the animation is perfectly fine when the animation is directly on a keyframe rather than in-between two. I'm using glm's built in mix function to do the slerp, so I don't think there are any problems with the actual slerp implementation. There's really one thing left that could be wrong here. I must not be in the correct space to do slerp. Right now the orientations are in joint local space. Do I have to be in world space? In some other space along the way? I have the bind pose matrix and world-space transformation matrix at my disposal if those are needed.

    Read the article

  • How to flip a BC6/BC7 texture?

    - by postgoodism
    I have some code to load DDS image files into OpenGL textures, and I'd like to extend it to support the BC6 and BC7 compressed formats introduced in D3D11. Since DirectX and OpenGL disagree about whether a texture's origin is in the upper-left or lower-left corner, my DDS loader flips each image's pixels along the Y axis before passing the pixels to OpenGL. Flipping compressed textures presents an additional wrinkle: in addition to flipping each row of 4x4-pixel blocks, you also need to flip the pixels within each block. I found code here to flip BC1/BC2/BC3 blocks, and from the block diagrams on MSDN it was easy to adapt the BC3-flipping code to handle BC4 and BC5. The BC6 and BC7 formats look significantly more intimidating, though. Is there a similar bit-twiddling trick to flip these formats, or would I have to fully decompress and recompress each block?

    Read the article

  • Multiple audio sources on a single gameObject in unity

    - by angryInsomniac
    So, I have an audio system set up wherein I have loaded all my audio clips centrally and play them on demand by passing the requesting audioSource into the sound manager. However, there is a complication wherein if I want to overlay multiple looping sounds, I need to have multiple audio sources on an object, which is fine , so I created two in my script instantiated them and played my clips on them and then the world went crazy. For some reason, when I create two audio Sources in an object only the latest one is ever used, even if I explicitly keep objects separated, playing a clip on one or the other plays the clip on the last one that was created, furthermore, either this last one is not created in the right place or somehow messes with the rolloff rules because I can hear it all across my level, havign just one source works fine, but putting a second one on it causes shit to go batshit insane. Does anyone know the reason / solution for this ? Some pseudocode : guardSoundsSource = (AudioSource)gameObject.AddComponent("AudioSource"); guardSoundsSource.name = "Guard_Sounds_source"; // Setup this source guardThrusterSource = (AudioSource)gameObject.AddComponent("AudioSource"); guardThrusterSource.name = "Guard_Thruster_Source"; // setup this source // play using custom Sound manager soundMan.soundMgr.playOnSource(guardSoundsSource,"Guard_Idle_loop" ,true,GameManager.Manager.PlayerType); // this method prints out the name of the source the sound was to be played on and it always shows "Guard_Thruster_Source" even on the "Guard_Idle_loop" even though I clearly told it to use "Guard_Sounds_source"

    Read the article

  • For normal mapping, why can we not simply add the tangent normal to the surface normal?

    - by sebf
    I am looking at implementing bump mapping (which in all implementations I have seen is really normal mapping), and so far all I have read says that to do this, we create a matrix to convert from world-space to tangent-space, in order to transform the lights and eye direction vectors into tangent space, so that the vectors from the normal map may be used directly in place of those passed through from the vertex shader. What I do not understand though, is why we cannot just use the normalised sum of the sampled-normal vector, and the surface-normal? (assuming we already transform and pass through the surface normal for the existing lighting functions) Take the diagram below; the normal is simply the deviation from the 'reference normal' for any given coordinate system, correct? And transforming the surface normal of a mapped surface from world space to tangent space makes it equivalent to the tangent space 'reference normal', no? If so, why do we transform all lighting vectors into tangent space, instead of simply transforming the sampled tangent once in the pixel shader?

    Read the article

  • Drawing multiple triangles at once isn't working

    - by Deukalion
    I'm trying to draw multiple triangles at once to make up a "shape". I have a class that has an array of VertexPositionColor, an array of Indexes (rendered by this Triangulation class): http://www.xnawiki.com/index.php/Polygon_Triangulation So, my "shape" has multiple points of VertexPositionColor but I can't render each triangle in the shape to "fill" the shape. It only draws the first triangle. struct ShapeColor { // Properties (not all properties) VertexPositionColor[] Points; int[] Indexes; } First method that I've tried, this should work since I iterate through the index array that always are of "3s", so they always contain at least one triangle. //render = ShapeColor for (int i = 0; i < render.Indexes.Length; i += 3) { device.DrawUserIndexedPrimitives<VertexPositionColor> ( PrimitiveType.TriangleList, new VertexPositionColor[] { render.Points[render.Indexes[i]], render.Points[render.Indexes[i+1]], render.Points[render.Indexes[i+2]] }, 0, 3, new int[] { 0, 1, 2 }, 0, 1 ); } or the method that should work: device.DrawUserIndexedPrimitives<VertexPositionColor> ( PrimitiveType.TriangleList, render.Points, 0, render.Points.Length, render.Indexes, 0, render.Indexes.Length / 3, VertexPositionColor.VertexDeclaration ); No matter what method I use this is the "typical" result from my Editor (in Windows Forms with XNA) It should show a filled shape, because the indexes are right (I've checked a dozen of times) I simply click the screen (gets the world coordinates, adds a point from a color, when there are 3 points or more it should start filling out the shape, it only draws the lines (different method) and only 1 triangle). The Grid isn't rendered with "this" shape. Any ideas?

    Read the article

  • DirectX10 How to use Constant Buffers

    - by schnozzinkobenstein
    I'm trying to access some variables in my shader, but I think I'm doing this wrong. Say I have a constant buffer that looks like this: cbuffer perFrame { float foo; float bar; }; I got an ID3D10EffectConstantBuffer reference to it, and I can get a specific index by calling GetMemberByIndex, but how can I figure out how many members perFrame has so that I can get each member without going out of bounds?

    Read the article

  • Keeping Aspect Screen Ration While Stays in Center

    - by David Dimalanta
    I sqw and I tried this suggestion on PISTACHIO BRAINSTORMIN* on how to make a good and adaptive screen ration. For every different screen size, let's say I put the perfect circle as a Texture in LibGDX and played it on screen. Here's the blueberry image example and it's perfectly rounded: When I played it on the Google Nexus 7, the circle turn into a slightly oblonng shape, resembling as it was being flatten a bit. Please observe this snapshot below and you can see the blueberry is almost but slightly not perfectly rounded: Now, when I tried the suggested code for aspect ratio, the perfect circle retained but another problem is occured. The problem is that I expecting for a view on center but instead it's been moved to the right offset leaving with a half black screen. This would be look like this: Here is my code using the suggested screen aspect ratio code: Class' Field // Ingredients Needed for Screen Aspect Ratio private static final int VIRTUAL_WIDTH = 720; private static final int VIRTUAL_HEIGHT = 1280; private static final float ASPECT_RATIO = ((float) VIRTUAL_WIDTH)/((float) VIRTUAL_HEIGHT); private Camera Mother_Camera; private Rectangle Viewport; render() // Camera updating... Mother_Camera.update(); Mother_Camera.apply(Gdx.gl10); // Reseting viewport... Gdx.gl.glViewport((int) Viewport.x, (int) Viewport.y, (int) Viewport.width, (int) Viewport.height); // Clear previous frame. Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); show() Mother_Camera = new OrthographicCamera(VIRTUAL_WIDTH, VIRTUAL_HEIGHT); Was this code useful for screen aspect ratio-proportion fixing or it is statically dependent on actual device's width and height? *see http://blog.acamara.es/2012/02/05/keep-screen-aspect-ratio-with-different-resolutions-using-libgdx/#comment-317

    Read the article

  • Java - 2d Array Tile Map Collision

    - by Corey
    How would I go about making certain tiles in my array collide with my player? Like say I want every number 2 in the array to collide. I am reading my array from a txt file if that matters and I am using the slick2d library. Here is my code if needed. public class Tiles { Image[] tiles = new Image[3]; int[][] map = new int[500][500]; Image grass, dirt, mound; SpriteSheet tileSheet; int tileWidth = 32; int tileHeight = 32; public void init() throws IOException, SlickException { tileSheet = new SpriteSheet("assets/tiles.png", tileWidth, tileHeight); grass = tileSheet.getSprite(0, 0); dirt = tileSheet.getSprite(7, 7); mound = tileSheet.getSprite(2, 6); tiles[0] = grass; tiles[1] = dirt; tiles[2] = mound; int x=0, y=0; BufferedReader in = new BufferedReader(new FileReader("assets/map.txt")); String line; while ((line = in.readLine()) != null) { String[] values = line.split(","); for (String str : values) { int str_int = Integer.parseInt(str); map[x][y]=str_int; //System.out.print(map[x][y] + " "); y=y+1; } //System.out.println(""); x=x+1; y = 0; } in.close(); } public void update() { } public void render(GameContainer gc) { for(int x = 0; x < 50; x++) { for(int y = 0; y < 50; y ++) { int textureIndex = map[y][x]; Image texture = tiles[textureIndex]; texture.draw(x*tileWidth,y*tileHeight); } } } } I tried something like this, but I it doesn't ever "collide". X and y are my player position. if (tiles.map[(int)x/32][(int)y/32] == 2) { System.out.println("Collided"); }

    Read the article

  • How do I get FEATURE_LEVEL_9_3 to work with shaders in Direct3D11?

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • Compute directional light frustum from view furstum points and light direction

    - by Fabian
    I'm working on a friends engine project and my task is to construct a new frustum from the light direction that overlaps the view frustum and possible shadow casters. The project already has a function that creates a frustum for this but its way to big and includes way to many casters (shadows) which can't be seen in the view frustum. Now the only parameter of this function are the normalized light direction vector and a view class which lets me extract the 8 view frustum points in world space. I don't have any additional infos about the scene. I have read some of the related Questions here but non seem to fit very well to my problem as they often just point to cascaded shadow maps. Sadly i can't use DX or openGl functions directly because this engine has a dedicated math library. From what i've read so far the steps are: Transform view frustum points into light space and find min/max x and y values (or sometimes minima and maxima of all three axis) and create a AABB using the min/max vectors. But what comes after this step? How do i transform this new AABB back to world space? What i've done so far: CVector3 Points[8], MinLight = CVector3(FLT_MAX), MaxLight = CVector3(FLT_MAX); for(int i = 0; i<8;++i){ Points[i] = Points[i] * WorldToShadowMapMatrix; MinLight = Math::Min(Points[i],MinLight); MaxLight = Math::Max(Points[i],MaxLight); } AABox box(MinLight,MaxLight); I don't think this is the right way to do it. The near plain probably has to extend into the direction of the light source to include potentional shadow casters. I've read the Microsoft article about cascaded shadow maps http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307%28v=vs.85%29.aspx which also includes some sample code. But they seem to use the scenes AABB to determine the near and far plane which I can't since i cant access this information from the funtion I'm working in. Could you guys please link some example code which shows the calculation of such frustum? Thanks in advance! Additional questio: is there a way to construct a WorldToFrustum matrix that represents the above transformation?

    Read the article

  • Limit the amount a camera can pitch

    - by ChocoMan
    I'm having problems trying to limit the range my camera can pitch. Currently my camera can pitch around a model without restriction, but having a hard time trying to find the value of the degree/radian the camera is currently at after pitching. Here is what I got so far: // Moves camera with thumbstick Pitch = pController.ThumbSticks.Right.Y * MathHelper.ToRadians(speedAngleMAX); // Pitch Camera around model public void cameraPitch(float pitch) { pitchAngle = ModelLoad.camTarget - ModelLoad.CameraPos; axisPitch = Vector3.Cross(Vector3.Up, pitchAngle); // pitch constrained to model's orientation axisPitch.Normalize(); ModelLoad.CameraPos = Vector3.Transform(ModelLoad.CameraPos - ModelLoad.camTarget, Matrix.CreateFromAxisAngle(axisPitch, pitch)) + ModelLoad.camTarget; } I've tried restraining the Y-camera position of ModelLoad.CameraPos.Y, but doing so gave me some unwanted results.

    Read the article

  • Implementing 2D CSG (for collision shapes)?

    - by bluescrn
    Are there any simple (or well documented) algorithms for basic CSG operations on 2D polygons? I'm looking for a way to 'add' a number of overlapping 2D collision shapes. These may be convex or concave, but will be closed shapes, defined as a set of line segments, with no self-intersections. The use of this would be to construct a clean set of collision edges, for use with a 2D physics engine, from a scene consisting of many arbitrarily placed (and frequently overlapping) objects, each with their own collision shape. To begin with, I only need to 'add' shapes, but the ability to 'subtract', to create holes, may also be useful.

    Read the article

  • Rotate a particle system

    - by Blueski
    Languages / Libraries in use: C++, OpenGL, GLUT Okay, here's the deal. I've got a particle system which shoots out alpha blended textures to produce a flame. The system only keeps track of very basic things such as, time alive, life, xyz and spread. The direction in which the flames are currently moving in is purely based on other things which are going on in my code ( I assume ). My goal however, is to attach the flame to the camera (DONE) and have the flame pointing in the direction my camera is facing (NOT WORKING). I've tried glRotate for both x,y,z and I can't get it to work properly. I'm currently using gluLookAt to move the camera, and get the flame to follow the XYZ of the camera by calling glTranslatef(camX, camY - offset, camZ); Any suggestions on how I can rotate the direction of the flame with the camera would be greatly appreciated. Heres an image of what I've got: http://i.imgur.com/YhV4w.png Notes: Crosshair depicts where camera is facing if I turn the camera, flame doesn't follow the crosshair Also asked here: http://stackoverflow.com/questions/9560396/rotate-a-particle-system but was referred here

    Read the article

  • Frustum culling with third person camera

    - by Christian Frantz
    I have a third person camera that contains two matrices: view and projection, and two Vector3's: camPosition and camTarget. I've read up on frustum culling and it makes it seem easy enough for a first person camera, but how would I implement this for a third person camera? I need to take into effect the objects I can see behind me too. How would I implement this into my camera class so it runs at the same time as my update method? public void CameraUpdate(Matrix objectToFollow) { camPosition = objectToFollow.Translation + (objectToFollow.Backward *backward) + (objectToFollow.Up * up); camTarget = objectToFollow.Translation; view = Matrix.CreateLookAt(camPosition, camTarget, Vector3.Up); } Can I just create another method within the class which creates a bounding sphere with a value from my camera and then uses the culling based on that? And if so, which value am I using to create the bounding sphere from? After this is implemented, I'm planning on using occlusion culling for the faces of my objects adjacent to other objects. Will using just one or the other make a difference? Or will both of them be better? I'm trying to keep my framerate as high as possible

    Read the article

  • Problem using glm::lookat

    - by omikun
    I am trying to rotate a sprite so it is always facing a 3D camera. Object GLfloat vertexData[] = { // X Y Z U V 0.0f, 0.8f, 0.0f, 0.5f, 1.0f, -0.8f,-0.8f, 0.0f, 0.0f, 0.0f, 0.8f,-0.8f, 0.0f, 1.0f, 0.0f, }; Per frame transform glm::mat4 newTransform = glm::lookAt(glm::vec3(0), gCamera.position(), gCamera.up()); shaders->setUniform("camera", gCamera.matrix()); shaders->setUniform("model", newTransform); In the vertex shader: gl_Position = camera * model * vec4(vert, 1); The object will track the camera if I move the camera up or down, but if I move the camera left/right (spin the camera around the object's y axis), it will rotate in the other direction so I end up seeing its front twice and its back twice as I rotate around it 360. If I use -gCamera.up() instead, it would track the camera side to side, but spin the opposite direction when I move the camera up/down. What am I doing wrong?

    Read the article

  • Stack Overflow Error

    - by dylanisawesome1
    I recently created a recursive cave algorithm, and would like to have more extensive caves, but get a stack overflow after re-cursing a couple times. Any advice? Here's my code: for(int i=0;i<100;i++) { int rand = new Random().nextInt(100); if(rand<=20) { if(curtile.bounds.y-40>500+new Random().nextInt(20)) digDirection(Direction.UP); } if(rand<=40 && rand>20) { if(curtile.bounds.y+40<m.height) digDirection(Direction.DOWN); } if(rand<=60 && rand>40) { if(curtile.bounds.x-40>0) digDirection(Direction.LEFT); } if(rand<=80 && rand>60) { if(curtile.bounds.x+40<m.width) digDirection(Direction.RIGHT); } } } public void digDirection(Direction d) { if(new Random().nextInt(100)<=10) { new Miner(curtile, map); // try { // Thread.sleep(2); // } catch (InterruptedException e) { // // TODO Auto-generated catch block // e.printStackTrace(); // } //Tried this to avoid stack overflow. Didn't work. }

    Read the article

  • What is a simple deformer in which vertices deform linearly with control points?

    - by sebf
    In my project I want to deform a complex mesh, using a simpler 'proxy' mesh. In effect, each vertex of the proxy/collision mesh will be a control point/bone, which should deform the vertices of the main mesh attached to it depending on weight, but where the weight is not dependant on the absolute distance from the control point but rather distance relative to the other affecting control points. The point of this is to preserve complex three dimensional features of the main mesh while using physics implementations which expect something far simpler, low resolution, single surface, etc. Therefore, the vertices must deform linearly with their respective weighted control points (i.e. no falloff fields or all the mesh features will end up collapsed) - as if each vertex was linked to a point on the plane created by the attached control points and deformed with it. I have tried implementing the weight computation algorithm in this paper (page 4) but it is not working as expected and I am wondering if it is really the best way to do what I want. What is the simplest way to 'skin'* an arbitrary mesh, to another arbitrary mesh? *By skin I mean I need an algorithm to determine the best control points for a vertex, and their weights.

    Read the article

  • How are these bullets done?

    - by Mike
    I really want to know how the bullets in Radiangames Inferno are done. The bullets seem like they are just billboard particles but I am curious about how their tails are implemented. They can curve so this means they are not just a billboard. Also, they appear continuous which implies that the tails are not made of a bunch of smaller particles (I think). Can anyone shead some light on this for me?

    Read the article

  • What are the benefits of designing a KeyBinding relay?

    - by Adam Naylor
    The input system of Quake3 is handled using a Keybinding relay, whereby each keypress is matched against a 'binding' which is then passed to the CLI along with a time stamp of when the keypress (or release) occurred. I just wanted to get an idea from developers what they considered to be the key benefits of designing your input system around this approach? One thing i don't particularly like is the appending of the timestamp to the bound command. This seems like a bit of a hack to bend the CLI into handling the games input? Also I feel that detecting the keypress only to add the command to a stream of text that gets parsed at a later date to be a slightly latent way of responding to input? (or is this unfounded?) The only real benefit i can see is that it allows you to bind 'complex' commands to keypresses; like 'switch weapon;+fire;' for example. Or maybe for journaling purposes? Thanks for any insights!

    Read the article

  • OpenGL-ES: clearing the alpha of the FrameBufferObject

    - by MrDatabase
    This question is a follow-up to Texture artifacts on iPad How does one "clear the alpha of the render texture frameBufferObject"? I've searched around here, StackOverflow and various search engines but no luck. I've tried a few things... for example calling GlClear(GL_COLOR_BUFFER_BIT) at the beginning of my render loop... but it doesn't seem to make a difference. Any help is appreciated since I'm still new to OpenGL. Cheers! p.s. I read on SO and in Apple's documentation that GlClear should always be called at the beginning of the renderLoop. Agree? Disagree? Here's where I read this: http://stackoverflow.com/questions/2538662/how-does-glclear-improve-performance

    Read the article

  • OpenGL font rendering

    - by DEElekgolo
    I am trying to make an openGL text rendering class using FreeType. I was originally following this code but it doesn't seem to work out for me. I get nothing reguardless of what parameters I put for Draw(). class Font { public: Font() { if (FT_Init_FreeType(&ftLibrary)) { printf("Could not initialize FreeType library\n"); return; } glGenBuffers(1,&iVerts); } bool Load(std::string sFont, unsigned int Size = 12.0f) { if (FT_New_Face(ftLibrary,sFont.c_str(),0,&ftFace)) { printf("Could not open font: %s\n",sFont.c_str()); return true; } iSize = Size; FT_Set_Pixel_Sizes(ftFace,0,(int)iSize); FT_GlyphSlot gGlyph = ftFace->glyph; //Generating the texture atlas. //Rather than some amazing rectangular packing method, I'm just going //to have one long strip of letters with the height being that of the font size. int width = 0; int height = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { printf("Error rendering letter %c for font %s.\n",i,sFont.c_str()); } width += gGlyph->bitmap.width; height += std::max(height,gGlyph->bitmap.rows); } //Generate the openGL texture glActiveTexture(GL_TEXTURE0); //if I texture exists then delete it. iTexture ? glDeleteBuffers(1,&iTexture):0; glGenTextures(1,&iTexture); glBindTexture(GL_TEXTURE_2D,iTexture); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,width,height,0,GL_ALPHA,GL_UNSIGNED_BYTE,0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //load the glyphs and set the glyph data int x = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { //if it cant load the character continue; } //load the glyph map into the texture glTexSubImage2D(GL_TEXTURE_2D,0,x,0, gGlyph->bitmap.width, gGlyph->bitmap.rows, GL_ALPHA, GL_UNSIGNED_BYTE, gGlyph->bitmap.buffer); //move the "pen" down the strip x += gGlyph->bitmap.width; chars[i].ax = (float)(gGlyph->advance.x >> 6); chars[i].ay = (float)(gGlyph->advance.y >> 6); chars[i].bw = (float)gGlyph->bitmap.width; chars[i].bh = (float)gGlyph->bitmap.rows; chars[i].bl = (float)gGlyph->bitmap_left; chars[i].bt = (float)gGlyph->bitmap_top; chars[i].tx = (float)x/width; } printf("Loaded font: %s\n",sFont.c_str()); return true; } void Draw(std::string sString,Vector2f vPos = Vector2f(0,0),Vector2f vScale = Vector2f(1,1)) { struct pPoint { pPoint() { x = y = s = t = 0; } pPoint(float a,float b,float c,float d) { x = a; y = b; s = c; t = d; } float x,y; float s,t; }; pPoint* cCoordinates = new pPoint[6*sString.length()]; int n = 0; for (const char *p = sString.c_str(); *p; p++) { float x2 = vPos.x() + chars[*p].bl * vScale.x(); float y2 = -vPos.y() - chars[*p].bt * vScale.y(); float w = chars[*p].bw * vScale.x(); float h = chars[*p].bh * vScale.y(); float x = vPos.x() + chars[*p].ax * vScale.x(); float y = vPos.y() + chars[*p].ay * vScale.y(); //skip characters with no pixels //still advances though if (!w || !h) { continue; } //triangle one cCoordinates[n++] = pPoint( x2 , -y2 , chars[*p].tx , 0); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2-h , chars[*p].tx + chars[*p].bw / w , chars[*p].bh / h); } glBindBuffer(GL_ARRAY_BUFFER,iVerts); glBindBuffer(GL_TEXTURE_2D,iTexture); //Vertices glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].x); //TexCoord 0 glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].s); glCullFace(GL_NONE); glBufferData(GL_ARRAY_BUFFER,6*sString.length(),cCoordinates,GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES,0,n); glCullFace(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER,0); glBindBuffer(GL_TEXTURE_2D,0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } ~Font() { glDeleteBuffers(1,&iVerts); glDeleteBuffers(1,&iTexture); } private: unsigned int iSize; //openGL texture atlas unsigned int iTexture; //openGL geometry buffer; unsigned int iVerts; FT_Library ftLibrary; FT_Face ftFace; struct Character { float ax,ay;//Advance float bw,bh;//bitmap size float bl,bt;//bitmap left and top float tx; } chars[128]; };

    Read the article

< Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >