Search Results

Search found 18811 results on 753 pages for 'dynamic memory allocation'.

Page 265/753 | < Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >

  • Is there a way to load multiple app.configs in memory?

    - by Dave
    I have a windows service that loads multiple "handlers" written by different developers. The windows service exe has it's own app.config which I need. I'm trying to make it so that each developer can provide their own app.config along with their handler code. However, it seems an exe can only have one app.config. However, ASP.NET seems to support nested web.config... That's not exactly what I want, but I don't even know how I would get that to work in a windows service. Anyone come across this before or have any ideas?

    Read the article

  • (Java) Get value of string loaded into dynamic-type object?

    - by Michael
    I'm very new to Java (~10 days), so my code is probably pretty bad, but here's what I've got: ArgsDataHolder argsData = new ArgsDataHolder(); // a class that holds two // ArrayList's where each element // representing key/value args Class thisArgClass; String thisArgString; Object thisArg; for(int i=2; i< argsString.length; i++) { thisToken = argsString[i]; thisArgClassString = getClassStringFromToken(thisToken).toLowerCase(); System.out.println("thisArgClassString: " + thisArgClassString); thisArgClass = getClassFromClassString(thisArgClassString); // find closing tag; concatenate middle Integer j = new Integer(i+1); thisArgString = getArgValue(argsString, j, "</" + thisArgClassString + ">"); thisArg = thisArgClass.newInstance(); thisArg = thisArgClass.valueOf(thisArgString); argsData.append(thisArg, thisArgClass); } The user basically has to input a set of key/value arguments into the command prompt in this format: <class>value</class>, e.g. <int>62</int>. Using this example, thisArgClass would be equal to Integer.class, thisArgString would be a string that read "62", and thisArg would be an instance of Integer that is equal to 62. I tried thisArg.valueOf(thisArgString), but I guess valueOf(<String>) is only a method of certain subclasses of Object. For whatever reason, I can't seem to be able to cast thisArg to thisArgClass (like so: thisArg = (thisArgClass)thisArgClass.newInstance();, at which point valueOf(<String>) should become accessible. There's got to be a nice, clean way of doing this, but it is beyond my abilities at this point. How can I get the value of the string loaded into a dynamically-typed object (Integer, Long, Float, Double, String, Character, Boolean, etc.)? Or am I just overthinking this, and Java will do the conversion for me? :confused:

    Read the article

  • Is there a way to have a dynamic google map that opens links in _blank?

    - by danieltalsky
    I came up with a good solution for a client showing a google map iFrame using the normal google maps embed. Only problem? They want the links inside the iFrame to open in a new window instead of there on the page. So, I used the static API to come up with a static image of a map and have that link to the google maps site with target="_blank". Great, but they don't get the pretty draggable map. Is there a way to do what I want using the google maps API? I'm reading the API documentation but without actually trying it I'm not sure if it can be done, and would love it if someone with some experience with the API can point me in the right direction or just tell me why it's WAY not worth the effort.

    Read the article

  • Loading Unmanaged C++ in C#. Error Attempted to read or write protected memory

    - by Thatoneguy
    I have a C++ function that looks like this __declspec(dllexport) int ___stdcall RegisterPerson(char const * const szName) { std::string copyName( szName ); // Assign name to a google protocol buffer object // Psuedo code follows.. Protobuf::Person person; person->set_name(copyName); // Error Occurs here... std::cerr << person->DebugString() << std::endl; } The corresponding C# code looks like this... [DllImport(@"MyLibrary.dll", SetLastError = true)] public static unsafe extern int RegisterPerson([MarshalAs(UnmanagedType.LPTStr)]string szName) Not sure why this is not working. My C++ library is compiled as Multi Threaded DLL with MultiByte encoding. Any help would be appreciated. I saw this is a common problem online but no answers lead me to a solution for my problem.

    Read the article

  • Memory allocated with malloc does not persist outside function scope?

    - by PM
    Hi, I'm a bit new to C's malloc function, but from what I know it should store the value in the heap, so you can reference it with a pointer from outside the original scope. I created a test program that is supposed to do this but I keep getting the value 0, after running the program. What am I doing wrong? int f1(int * b) { b = malloc(sizeof(int)); *b = 5; } int main() { int * a; f1(a); printf("%d\n", a); return 0; }

    Read the article

  • How to set a dynamic width on a floating div?

    - by user330144
    I have a div container with 3 div elements inside (A, B, and C). I'll know the width of the container and the width of A and B) the problem is that in some cases B won't be there in which case I need C to expand to fill the rest of the container. How would I do this with straight css or am I going to need to use javascript to calculate the width? Thanks.

    Read the article

  • any way to simplify this with a form of dynamic class instantiation?

    - by gnychis
    I have several child classes that extend a parent class, forced to have a uniform constructor. I have a queue which keeps a list of these classes, which must extend MergeHeuristic. The code that I currently have looks like the following: Class<? extends MergeHeuristic> heuristicRequest = _heuristicQueue.pop(); MergeHeuristic heuristic = null; if(heuristicRequest == AdjacentMACs.class) heuristic = new AdjacentMACs(_parent); if(heuristicRequest == SimilarInterfaceNames.class) heuristic = new SimilarInterfaceNames(_parent); if(heuristicRequest == SameMAC.class) heuristic = new SameMAC(_parent); Is there any way to simplify that to dynamically instantiate the class, something along the lines of: heuristic = new heuristicRequest.somethingSpecial(); That would flatten that block of if statements.

    Read the article

  • How do I display/compare a dynamic value of a mysql row in a if statement?

    - by Ralph The Mouf
    I have a checkboxes on my site that when unchecked, update their row in in the db as unchecked, and if checked,update their row in the db as checked. I am creating an ifstatement that will commence with its command if checked, and not if unchecked. I have echoed the variable and it is holding the proper value (checked or unchecked) but not sure if I am syntactically correct on displaying the state of the row in the db. This is what I am trying and will not work. I am new at php still and thank you very much for any help. if($auth->check_prof == 'checked'){// do the stuff in here}

    Read the article

  • How i can to Destory(free) a Form from memory?

    - by user482923
    Hello, i have 2 Form (Form1 and Form2) in the my project, Form1 is Auto-create forms, but Form2 is Available forms. how i can to create Form2 and unload Form1? I received a "Access validation" Error in this code. Here is Form1 code: 1. uses Unit2; //********* 2. procedure TForm1.FormCreate(Sender: TObject); 3. var a:TForm2; 4. begin 5. a := TForm2.Create(self); 6. a.Show; 7. self.free; // Or self.destory; 8. end; Thanks.

    Read the article

  • is it a bad idea to load into memory 160000 variables in a php script?

    - by user1397417
    im processing a large file with sentences, i only care about the lines that have english or japanese, so while im reading the file, if i find english or japanese sentence, i want to just save it in an array and after finished reading, open another file for writting and output all the sentences in the array. this would result in me setting about 160,000 variables. all strings, some short some long. just wondering if its a bad idea to for memeory to set so many values? example line from the file: "1978033 jpn ?????????????????????"

    Read the article

  • How to pass dynamic id text box value to another page without refreshing with jquery and php

    - by linlin
    $('.btncomment').click(function() { var id = $(this).attr('id'); $.post('SaveTopicInformation.php',{tid:commentform.(topic_+id).value, topicdetail:commentform.(topicdetail_+id).value,userid:commentform.(user_+id).value}); }); $userid=$rows['UserID']; $topicid=$rows['TopicID']; ? " " class="commentAlink"Comment " " value=""/ " value=""/ " cols="50" rows="5" "Cancel " value="Comment" / ?

    Read the article

  • Spotlight on an ACE: Edwin Biemond

    - by jeckels
    Edwin Biemond is an active member of the ACE community, having worked with Oracle's development tooling and database technologies since 1997. Since then, Edwin has become an expert in many of Oracle's middleware technologies as well, including WebLogic and SOA. In fact, Edwin has become so prolfic that he was named the Java Developer of the Year in 2009. Edwin hails from the Netherlands, where he is an architect at the company Amis, and is also a co-author of the OSB Development Cookbook. He's a proven expert in ADF, JSF, messaging (Edifact / ebXML), Enterprise Service Bus, web services and tuning of application servers and databases. Recently, Edwin posted a blog on the road map of WebLogic 12c, going over salient features and what the future looks like for Fusion Middleware and the Application Server areas - it's well worth a read, so give it a look. A snippet: WebLogic 12.1.3 will be the first version for many FMW 12c products like Oracle SOA Suite 12c and probably come in one big jar. 12.1.3 & 12.1.4 will add extra features and improvements to Elastic JMS & Dynamic Clusters. Elastic JMS in 12.1.3 will support Server Migration so you can’t lose any JMS messages. In 12.1.4, Dynamic Clusters will have support for auto-scaling based on thresholds based on user-defined metrics. WebLogic 12.1.4 will also have an API to control the Dynamic Clusters, this way we can easily program when to stop, start or remove nodes from a dynamic cluster. Further, Edwin is hosting a session on getting your FMW environment up and running in less than 10 minutes using popular tooling to configure and manage the many FMW components you have in your technology stack. Register now for this virtual developer day to see more. We thank Edwin for his commitment to being an ACE, his work on his blog, his social media publishing and his overall commitment to helping other technologists be even more successful with Oracle products. Follow Edwin on his blog, Twitter, Facebook, LinkedIn, or read his ACE Profile

    Read the article

  • Edd strikes again &ndash; IronRuby for Rubyists on InfoQ

    - by Eric Nelson
    Colleague, friend and generally top guy on IronRuby Edd Morgan has just been published over on InfoQ. To wet the appetite… a snippet or three. IronRuby for Rubyists IronRuby is Microsoft's implementation of the Ruby language we all know and love with the added bonus of interoperability with the .NET framework — the Iron in the name is actually an acronym for 'Implementation running on .NET'. It's supported by the .NET Common Language Runtime as well as, albeit unofficially, the Mono project. You'd be forgiven for harbouring some question in your mind about running a dynamic language such as Ruby atop the CLR - that's where the DLR (Dynamic Language Runtime) comes in. The DLR is Microsoft's way of providing dynamic language capability on top of the CLR. Both IronRuby and the DLR are, as part of Microsoft's commitment to open source software, available as part of the Microsoft Public License on GitHub and CodePlex respectively… And Metaprogramming with IronRuby The art and science of metaprogramming — especially in Ruby, where it's an absolute joy — is something that could very easily span an entire article. As you would hope, IronRuby code is fully able to manipulate itself allowing you to bend your classes to your whim just as you would expect with a good dynamic language… And Riding the irails? So let's get to the point. I think it's a solid bet to make that a large proportion of Ruby programmers are familiar with the Rails framework - perhaps it's even safe to assume that most were first led to the Ruby language by the siren song of the Rails framework itself. Long story short, IronRuby is compatible enough to run your Rails app… Now… get yourself over to the full article and also check out some of Edds other work below. Related Links: 5 Steps to getting started with IronRuby Mini Book Review of IronRuby Unleashed by Shay Friedman Guest Post: Using IronRuby and .NET to produce the ‘Hello World of WPF’ – also by Edd Getting PhP and Ruby working on Windows Azure and SQL Azure Guest Post: What's IronRuby, and how do I put it on Rails? – also by Edd

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Custom SNMP Cacti Data Source fails to update

    - by Andrew Wilkinson
    I'm trying to create a custom SNMP datasource for Cacti but despite everything I can check being correct, it is not creating the rrd file, or updating it even when I create it. Other, standard SNMP sources are working correctly so it's not SNMP or permissions that are the problem. I've created a new Data Query, which when I click on "Verbose Query" on the device screen returns the following: + Running data query [10]. + Found type = '3' [SNMP Query]. + Found data query XML file at '/volume1/web/cacti/resource/snmp_queries/syno_volume_stats.xml' + XML file parsed ok. + missing in XML file, 'Index Count Changed' emulated by counting oid_index entries + Executing SNMP walk for list of indexes @ '.1.3.6.1.2.1.25.2.3.1.3' Index Count: 8 + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.1' value: 'Physical memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.3' value: 'Virtual memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.6' value: 'Memory buffers' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.7' value: 'Cached memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.10' value: 'Swap space' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.31' value: '/' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.32' value: '/volume1' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.33' value: '/opt' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.1' results: '1' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.3' results: '3' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.6' results: '6' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.7' results: '7' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.10' results: '10' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.31' results: '31' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.32' results: '32' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.33' results: '33' + Located input field 'index' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.3' + Found item [index='Physical memory'] index: 1 [from value] + Found item [index='Virtual memory'] index: 3 [from value] + Found item [index='Memory buffers'] index: 6 [from value] + Found item [index='Cached memory'] index: 7 [from value] + Found item [index='Swap space'] index: 10 [from value] + Found item [index='/'] index: 31 [from value] + Found item [index='/volume1'] index: 32 [from value] + Found item [index='/opt'] index: 33 [from value] + Located input field 'volsizeunit' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.4' + Found item [volsizeunit='1024 Bytes'] index: 1 [from value] + Found item [volsizeunit='1024 Bytes'] index: 3 [from value] + Found item [volsizeunit='1024 Bytes'] index: 6 [from value] + Found item [volsizeunit='1024 Bytes'] index: 7 [from value] + Found item [volsizeunit='1024 Bytes'] index: 10 [from value] + Found item [volsizeunit='4096 Bytes'] index: 31 [from value] + Found item [volsizeunit='4096 Bytes'] index: 32 [from value] + Found item [volsizeunit='4096 Bytes'] index: 33 [from value] + Located input field 'volsize' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.5' + Found item [volsize='1034712'] index: 1 [from value] + Found item [volsize='3131792'] index: 3 [from value] + Found item [volsize='1034712'] index: 6 [from value] + Found item [volsize='775904'] index: 7 [from value] + Found item [volsize='2097080'] index: 10 [from value] + Found item [volsize='612766'] index: 31 [from value] + Found item [volsize='1439812394'] index: 32 [from value] + Found item [volsize='1439812394'] index: 33 [from value] + Located input field 'volused' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.6' + Found item [volused='1022520'] index: 1 [from value] + Found item [volused='1024096'] index: 3 [from value] + Found item [volused='32408'] index: 6 [from value] + Found item [volused='775904'] index: 7 [from value] + Found item [volused='1576'] index: 10 [from value] + Found item [volused='148070'] index: 31 [from value] + Found item [volused='682377865'] index: 32 [from value] + Found item [volused='682377865'] index: 33 [from value] AS you can see it appears to be returning the correct data. I've also set up data templates and graph templates to display the data. The create graphs for a device screen shows the correct data, and when selecting one row can clicking create a new data source and graph are created. Unfortunately the data source is never updated. Increasing the poller log level shows that it appears to not even be querying the data source, despite it being used? What should my next steps to debug this issue be?

    Read the article

  • Write a signal handler to catch SIGSEGV

    - by Adi
    Hi all, I want to write a signal handler to catch SIGSEGV. First , I would protect a block of memory for read or writes using char *buffer; char *p; char a; int pagesize = 4096; " mprotect(buffer,pagesize,PROT_NONE) " What this will do is , it will protect the memory starting from buffer till pagesize for any reads or writes. Second , I will try to read the memory by doing something like p = buffer; a = *p This will generate a SIGSEGV and i have initialized a handler for this. The handler will be called . So far so good. Now the problem I am facing is , once the handler is called, I want to change the access write of the memory by doing mprotect(buffer, pagesize,PROT_READ); and continue my normal functioning of the code. I do not want to exit the function. On future writes to the same memory, I want again catch the signal and modify the write rights and then take account of that event. Here is the code I am trying : #include <signal.h> #include <stdio.h> #include <malloc.h> #include <stdlib.h> #include <errno.h> #include <sys/mman.h> #define handle_error(msg) \ do { perror(msg); exit(EXIT_FAILURE); } while (0) char *buffer; int flag=0; static void handler(int sig, siginfo_t *si, void *unused) { printf("Got SIGSEGV at address: 0x%lx\n",(long) si->si_addr); printf("Implements the handler only\n"); flag=1; //exit(EXIT_FAILURE); } int main(int argc, char *argv[]) { char *p; char a; int pagesize; struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = handler; if (sigaction(SIGSEGV, &sa, NULL) == -1) handle_error("sigaction"); pagesize=4096; /* Allocate a buffer aligned on a page boundary; initial protection is PROT_READ | PROT_WRITE */ buffer = memalign(pagesize, 4 * pagesize); if (buffer == NULL) handle_error("memalign"); printf("Start of region: 0x%lx\n", (long) buffer); printf("Start of region: 0x%lx\n", (long) buffer+pagesize); printf("Start of region: 0x%lx\n", (long) buffer+2*pagesize); printf("Start of region: 0x%lx\n", (long) buffer+3*pagesize); //if (mprotect(buffer + pagesize * 0, pagesize,PROT_NONE) == -1) if (mprotect(buffer + pagesize * 0, pagesize,PROT_NONE) == -1) handle_error("mprotect"); //for (p = buffer ; ; ) if(flag==0) { p = buffer+pagesize/2; printf("It comes here before reading memory\n"); a = *p; //trying to read the memory printf("It comes here after reading memory\n"); } else { if (mprotect(buffer + pagesize * 0, pagesize,PROT_READ) == -1) handle_error("mprotect"); a = *p; printf("Now i can read the memory\n"); } /* for (p = buffer;p<=buffer+4*pagesize ;p++ ) { //a = *(p); *(p) = 'a'; printf("Writing at address %p\n",p); }*/ printf("Loop completed\n"); /* Should never happen */ exit(EXIT_SUCCESS); } The problem I am facing with this is ,only the signal handler is running and I am not able to return to the main function after catching the signal.. Any help in this will be greatly appreciated. Thanks in advance Aditya

    Read the article

  • CodePlex Daily Summary for Friday, April 09, 2010

    CodePlex Daily Summary for Friday, April 09, 2010New Projects(SocketCoder) Free Silverlight Voice/Video Conferencing Modules: The Goal of this project is to provide complete Open Source Voice/Video Chatting Client/Server Modules Using Silverlight techniques, this project i...AJAX Control Framework: Do PageMethods and the UpdatePanel make you feel dirty? Think making AJAX enabled custom ASP.NET controls should WAY easier than it is? Wish ASP.NE...Bluetooth Radar: WPF 4.0 Application working with The final release of 32feet.net (v2.2) to Discover Bluetooth devices, send files and more cool stuff for Bluetooth...Bomberman: Bomberman c++ Project Code Library: This is just a personal storage place for a utility library containing extension methods, new classes, and/or improvements to existing classes.DianPing.com MogileFS Client: MogileFS Client for .Net 2.0Dirty City Hearts Website: Dirty City Hearts WebsiteDocGen - SharePoint 2010 Bulk Document Loader: DocGen is a SharePoint 2010 multithreaded console application for bulk loading sample documents into SharePoint. This program generates Microsoft ...dou24: WebSite for DOUExplora: Explora es un navegador de archivos que no pretende ser un sustituto del explorador de Windows, sino un experimento de codificación que compartir c...HobbyBrew Mobile: This project is basic beer brewing software for Windows Mobile able to read HobbyBrew xml files. Developed in C# and Windows FormsjLight: Interop between Silverlight and the javascript based on jQuery. The syntax used in Silverlight is as close as posible to the jQuery syntax.johandekoning.nl samples: Sample code project which are discussed on johandekoning.nl / johandekoning.com. Most examples are / will be developed with C#Kanban: this is a agile paroject managementMETAR.NET Decoder: Project libraries used to decode airport METAR weather information into adequate data types, change them and back, create resulting METAR informati...Micro Framework: MFDeploy with Set/Get mote SKU ID: This is a modification to the Micro Framework's MFDeploy utility that lets the user set and get the mote's ID (aka SKU). It can be done via the GUI...MobySharp: MobySharp is a implementation of the Mobypicture.com API written in C#NGilead: NGilead permits you to use your NHibernate POCO (and especially the partially loaded ones) outside the .NET Virtual Machine (to Silverlight for exa...OpenIdPortableArea: OpenIdPortableArea is an MvcContrib powered Portable Area that encapsulates logic for implementing OpenId encapsulation (using DotNetOpenAuth).OrderToList Extension for IEnumerable: An extension method for IEnumerable<T> that will sort the IEnumerable based on a list of keys. Suppose you have a list of IDs {10, 5, 12} and wa...project3140.org: Code repository for project3140.org.Prometheus Backup Solution: The Prometheus Backup Solution is a free and small Backup Utility for personal use and for small businesses.Roids: an asteroids clone for Silverlight and XNA: An example of a simple game cross-compiling for both Silverlight and XNA using SilverSprite.SemanticAnalyzer: 3rd phase of Compiler Design ProjectSSRS SDK for PHP: SQL Server Reporting Service SDK for PHPWorking Memory Workout: Working Memory Workout is a working memory training game based on the N-back, a task researchers say may improve fluid intelligence. It greatly ex...Wouters Code Samples: This Project will host some of my sample projects I created. I'm a professional SharePoint/BizTalk developer so most of the provided samples will ...New Releases(SocketCoder) Free Silverlight Voice/Video Conferencing Modules: Silverlight Voice Video Chat Modules: Client/Server Silverlight Voice Video Chat ModulesAccessibilityChecker: Accessibility Checker V0.2: Accessibility Checker V0.2 - Direct url´s input functionality added - XHTML, WAI validation modules, easy to extend. (W3C and Achecker modules incl...AStar.net: AStar.net 1.1 downloads: AStar.net 1.1 Version detailsGreatly improved path finding speed and memory usage from version 1.0. Avalaible downloads:AStar.net 1.1 dll - Runtim...AutoPoco: AutoPoco 0.2: This release will bring some non-generic alternatives to configuration + some more automatic configuration options such as assembly scanningBluetooth Radar: Version 1: Basic version only with the ability to discover Bluetooth devices around you.Convert-Media PowerShell Module for Expression Encoder: Release 1.0.0.2: This is a build that incorporates the latest change sets including perform publish. No other changesDevTreks -social budgeting that improves lives and livelihoods: Social Budgeting Web Software, DevTreks alpha 3e: Alpha 3e is a general debug. It also upgrades the software's family budgeting capabilities, including the addition of a new 'Food Nutrition Input'...dV2t Enterprise Library: dV2tEntLib 1.0.0.3: dV2tEntLib 1.0.0.3EnhSim: Release v1.9.8.3: Release v1.9.8.3 Change Armour Penetration calcs to apply the "Rouncer fix" (current version displays debug info to assist users in testing that th...HouseFly controls: HouseFly controls alpha 0.9: HouseFly controls 0.9 alpha binaries (Includes HouseFly.Classes and HouseFly.Controls).Jitbit WYSWYG BBCode Editor: Release: ReleaseMicro Framework: MFDeploy with Set/Get mote SKU ID: MFDeploy with get, set mote ID: The Micro Framework 4.0 MFDeploy, modified to let the user get & set the mote IDMobySharp: MobySharp 1.0: Initial ReleaseOpenIdPortableArea: OpenIdPortableArea: OpenIdPortableArea.Release: DotNetOpenAuth.dll DotNetOpenAuth.xml MvcContrib.dll MvcContrib.xml OpenIdPortableArea.dll OpenIdPortableAre...OrderToList Extension for IEnumerable: Release 0.9b: I'm calling this 0.9 because I came up with it yesterday and there's little real word use so there's probably something that needs fixing or improv...Prometheus Backup Solution: Prometheus BETA: Actual BETA Release. Restore Functions are not available...Reusable Library: V1.0.6: A collection of reusable abstractions for enterprise application developer.Reusable Library Demo: V1.0.4: A demonstration of reusable abstractions for enterprise application developerSharePoint Labs: SPLab4005A-FRA-Level100: SPLab4005A-FRA-Level100 This SharePoint Lab will teach you the 5th best practice you should apply when writing code with the SharePoint API. Lab La...SharePoint Labs: SPLab6001A-FRA-Level200: SPLab6001A-FRA-Level200 This SharePoint Lab will teach you how to create a generic Feature Receiver within Visual Studio. Creating a Feature Receiv...SharePoint LogViewer: SharePoint LogViewer 2.0: Supports live Farm monitoring. Many bug fixes.Simple Savant: Simple Savant v0.5: Added support for custom constraint/validation logic (See Versioning and Consistency) Added support for reliable cross-domain writes (See Version...SQL Server Extended Properties Quick Editor: Release 1.6.1: Whats new in 1.6.1: Add an edit form to support long text editing. double click to open editor. Add an ORM extended properties initializer to creat...SSRS SDK for PHP: SSRS SDK for PHP: Current release includes the SSRSReport library to connect to SQL Server Reporting Services and a sample application to show the basic steps needed...Table Storage Backup & Restore for Windows Azure: Table Storage Backup 1.0.3751: Bug fix: Crash when creating a table if the existing table had not finished deleting. Bug fix: Incorrect batch URI if the storage account ended in ...VCC: Latest build, v2.1.30408.0: Automatic drop of latest buildVisual Studio DSite: Audio Player (Visual C++ 2008): An audio player that can play wav files.Working Memory Workout: Working Memory Workout 1.0: Working Memory Workout is a working memory trainer based on the N-back memory task.Wouters Code Samples: XMLReceiveCBR: This is a Custom Pipeline component. It will help you create a Content Based Routing solution in combination of a WCF Requst/Response service. Gene...Xen: Graphics API for XNA: Xen 1.8: Version 1.8 (XNA 3.1) This update fixes a number of bugs in several areas of the API and introduces a large new Tutorial. [Added] L2 Spherical Ha...Most Popular ProjectsWBFS ManagerRawrMicrosoft SQL Server Product Samples: DatabaseASP.NET Ajax LibrarySilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesFacebook Developer ToolkitMost Active ProjectsnopCommerce. Open Source online shop e-commerce solution.Shweet: SharePoint 2010 Team Messaging built with PexRawrAutoPocopatterns & practices – Enterprise LibraryIonics Isapi Rewrite FilterNB_Store - Free DotNetNuke Ecommerce Catalog ModuleFacebook Developer ToolkitFarseer Physics EngineNcqrs Framework - The CQRS framework for .NET

    Read the article

< Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >