Search Results

Search found 18811 results on 753 pages for 'dynamic memory allocation'.

Page 272/753 | < Previous Page | 268 269 270 271 272 273 274 275 276 277 278 279  | Next Page >

  • Distorted text in programs

    - by Teneff
    I've installed Ubuntu 11 with gnome and in some point the text in the programs becomes unreadable like this. It's not only the text, but even the desktop background looks awful. I've tried to add section in xorg.conf, but it didn't helped out. Section "Device" Identifier "g33/X3000" Driver "intel" BusID "PCI:0:2:0" Option "ModeDebug" "on" Option "MonitorLayout" "LCD,VGA" Option "DevicePresence" "true" EndSection And this is what the lshw returns about the VGA *-display description: VGA compatible controller product: 82945G/GZ Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 02 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:16 memory:dfe00000-dfe7ffff ioport:8800(size=8) memory:e0000000-efffffff memory:dfe80000-d$

    Read the article

  • ubuntu 14.04 slow

    - by TURN A
    so i upgraded to ubuntu 14.04 from 12.04 with a usb but i have internet ,my computer is really slow at 1024x768 definition ,everything works super slow ,windows closing and opening and streaming videos ,everything ive used so far.but it works fine at 800x600 definition ,i want it to be fine at the higher definition ,how do i make it run well at 1024x768 ? in additional drivers nothing shows ,and my computer mirrors by default for some reason ,i tried stopping it from mirroring but most buttons dont want to work and weird glitches happen ,the system doesnt work well when not mirroring , i dont care if it mirrors or not i just want good performance .thank you in advance for any answers !! here are the computer specs Processor 1.8 GHz 8032 RAM 2 GB DDR3 Memory Speed 1066 MHz Hard Drive 32 GB Graphics Coprocessor Graphics Media Accelerator HD Wireless Type 802.11B, 802.11G, 802.11n Number of USB 2.0 Ports 4 Expand Other Technical Details Brand Name Asus Item model number EB1030-B003L Hardware Platform Linux Operating System Ubuntu Item Weight 1.5 pounds Item Dimensions L x W x H 1.14 x 6.70 x 8.60 inches Color Black Processor Brand Intel Processor Count 1 Computer Memory Type DDR3 SDRAM Flash Memory Size 32 Hard Drive Interface Solid State Optical Drive Type No

    Read the article

  • Dual display setup - only one displayed after logon

    - by oneofthemany
    During boot process my desktop shows both Monitors, but after log I only get one. I'm using Ubuntu 11.10 When I go into Displays its still only shows on Monitor. Here is my graphics card details: 01:00.0 VGA compatible controller: nVidia Corporation G72 [GeForce 7300 LE] (rev a1) (prog-if 00 [VGA controller]) Subsystem: Dell Device 0405 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at dd000000 (32-bit, non-prefetchable) [size=16M] Memory at c0000000 (64-bit, prefetchable) [size=256M] Memory at de000000 (64-bit, non-prefetchable) [size=16M] [virtual] Expansion ROM at dfe00000 [disabled] [size=128K] Capabilities: <access denied> Kernel driver in use: nvidia Kernel modules: nvidia_96, nvidia_173, nouveau, nvidiafb

    Read the article

  • Which events specifically cause Windows 2008 to mark a SAN volume offline?

    - by Jeremy
    I am searching for specific criteria/events that will cause Windows 2008 to mark a SAN volume as offline in disk management, even though it is connected to that SAN volume via FC or iSCSI. Microsoft states that "A dynamic disk may become Offline if it is corrupted or intermittently unavailable. A dynamic disk may also become Offline if you attempt to import a foreign (dynamic) disk and the import fails. An error icon appears on the Offline disk. Only dynamic disks display the Missing or Offline status." I am specifically wondering if, on the SAN, changing the path to the disk (such as the disk being presented to the host via a different iSCSI target IQN or a different LUN #) would cause a volume to be offlined in disk management. Thanks! Edit: I have already found two reasons why a disk might be set offline, disk signature collisions and the SAN disk policy. Bounty would be awarded to someone who can find further documented reasons related to changes in the volume's path. Disk signature collisions: http://blogs.technet.com/b/markrussinovich/archive/2011/11/08/3463572.aspx SAN disk policy: http://jeffwouters.nl/index.php/2011/06/disk-offline-with-error-the-disk-is-offline-because-of-a-policy-set-by-an-administrator/

    Read the article

  • Is Cherokee (probably) the best static content server for beginner sysadmins?

    - by Bad Learner
    I have read the pros and cons of most of the popular web servers and have come to a conclusion that Apache would (probably) be the best web server for serving dynamic content - - no wonder YouTube, Flickr and Facbook, among many others, use it. I do not know if that C10K problem applies to Apache even when serving dynamic content only, but I think any web server used to serve dynamic content needs some good tweaking for optimized performance, and the fact that nothing beats Apache when it comes to documentation, resources and support on the web, I think should will go with Apache for dynamic content. That apart, the confusion begins when it comes to choosing web servers for static content (including streaming videos). I see that Nginx, Cherokee and Lighttpd are among the best (I am not considering non-open source or non-linux stuff here). So, which too choose? I know one cannot go wrong with any of the three (Nginx, Cherokee, Lighttpd). Lighttpd's development has evidently gotten slower than it was a good time ago. The documentation is pretty good for all the three, and hopefully, so are the resources (knowledge of these among the users of Stackoverflow/Serverfault sites, the web etc). Precisely, and noting point [2] and [3], if I am not wrong, I should either go with Nginx or Cherokee. I would love to see someone clarify these... is Cherokee just as fast (mb/s), performant (connections/s), and reliable (think downtime/restarting server) as Nginx for serving static content and load balancing, for small, medium to large (and really large) websites and applications? (Think, the size of YouTube, Apache or Facebook.) if the answer for the Q above is a big "hell, yes!" then, I should probably prefer Cherokee, right? Because, since I am a beginner, it would a lot easier to setup Cherokee as it has a graphical admin user interface + really good documentation. Yes? I could be wrong, I could be right. I put down what I know so that you can offer most relevant advise. Pardon if anything I've said is offensive.

    Read the article

  • Should I use nginx exclusively, or have it as a proxy to Tomcat (performance related)?

    - by Kevin
    I've planned to create a website that'll be pretty heavy on dynamic content, and want to know what would be the wisest choice for part of my webstack. Right now I'm trying to decide whether I should develop upon nginx, using PHP to deliver the dynamic content, or use nginx as a proxy to Tomcat and use servlets to deliver the dynamic content. I have a good amount of experience with Java, JSP, and servlets, so that's a plus right off the bat. Also, since it is a compiled language, it will execute faster than PHP (it is implied here that Java is around 37x faster than PHP) , and will create the web pages faster. I have no experience with PHP, however i'm under the impression that it is easy to pick up. It's slower than Java, but since the client will only be communicating with nginx, I'm thinking that serving the dynamically created web pages to the client will be faster this way. Considering these things, i'd like to know: Are my assumptions correct? Where does the bottleneck occur: creating pages or serving them back to the client? Will proxying Tomcat with nginx give me any of nginx performance benefits if I'm going to be using Tomcat to generate the dynamic content (keeping in mind my site is going to be heavy in this aspect)? I don't mind learning PHP if, in the end, its going to give me the best performance. I just want to know what would be the best choice from that standpoint.

    Read the article

  • Using an alternate JSON Serializer in ASP.NET Web API

    - by Rick Strahl
    The new ASP.NET Web API that Microsoft released alongside MVC 4.0 Beta last week is a great framework for building REST and AJAX APIs. I've been working with it for quite a while now and I really like the way it works and the complete set of features it provides 'in the box'. It's about time that Microsoft gets a decent API for building generic HTTP endpoints into the framework. DataContractJsonSerializer sucks As nice as Web API's overall design is one thing still sucks: The built-in JSON Serialization uses the DataContractJsonSerializer which is just too limiting for many scenarios. The biggest issues I have with it are: No support for untyped values (object, dynamic, Anonymous Types) MS AJAX style Date Formatting Ugly serialization formats for types like Dictionaries To me the most serious issue is dealing with serialization of untyped objects. I have number of applications with AJAX front ends that dynamically reformat data from business objects to fit a specific message format that certain UI components require. The most common scenario I have there are IEnumerable query results from a database with fields from the result set rearranged to fit the sometimes unconventional formats required for the UI components (like jqGrid for example). Creating custom types to fit these messages seems like overkill and projections using Linq makes this much easier to code up. Alas DataContractJsonSerializer doesn't support it. Neither does DataContractSerializer for XML output for that matter. What this means is that you can't do stuff like this in Web API out of the box:public object GetAnonymousType() { return new { name = "Rick", company = "West Wind", entered= DateTime.Now }; } Basically anything that doesn't have an explicit type DataContractJsonSerializer will not let you return. FWIW, the same is true for XmlSerializer which also doesn't work with non-typed values for serialization. The example above is obviously contrived with a hardcoded object graph, but it's not uncommon to get dynamic values returned from queries that have anonymous types for their result projections. Apparently there's a good possibility that Microsoft will ship Json.NET as part of Web API RTM release.  Scott Hanselman confirmed this as a footnote in his JSON Dates post a few days ago. I've heard several other people from Microsoft confirm that Json.NET will be included and be the default JSON serializer, but no details yet in what capacity it will show up. Let's hope it ends up as the default in the box. Meanwhile this post will show you how you can use it today with the beta and get JSON that matches what you should see in the RTM version. What about JsonValue? To be fair Web API DOES include a new JsonValue/JsonObject/JsonArray type that allow you to address some of these scenarios. JsonValue is a new type in the System.Json assembly that can be used to build up an object graph based on a dictionary. It's actually a really cool implementation of a dynamic type that allows you to create an object graph and spit it out to JSON without having to create .NET type first. JsonValue can also receive a JSON string and parse it without having to actually load it into a .NET type (which is something that's been missing in the core framework). This is really useful if you get a JSON result from an arbitrary service and you don't want to explicitly create a mapping type for the data returned. For serialization you can create an object structure on the fly and pass it back as part of an Web API action method like this:public JsonValue GetJsonValue() { dynamic json = new JsonObject(); json.name = "Rick"; json.company = "West Wind"; json.entered = DateTime.Now; dynamic address = new JsonObject(); address.street = "32 Kaiea"; address.zip = "96779"; json.address = address; dynamic phones = new JsonArray(); json.phoneNumbers = phones; dynamic phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); //var jsonString = json.ToString(); return json; } which produces the following output (formatted here for easier reading):{ name: "rick", company: "West Wind", entered: "2012-03-08T15:33:19.673-10:00", address: { street: "32 Kaiea", zip: "96779" }, phoneNumbers: [ { type: "Home", number: "808 123-1233" }, { type: "Mobile", number: "808 123-1234" }] } If you need to build a simple JSON type on the fly these types work great. But if you have an existing type - or worse a query result/list that's already formatted JsonValue et al. become a pain to work with. As far as I can see there's no way to just throw an object instance at JsonValue and have it convert into JsonValue dictionary. It's a manual process. Using alternate Serializers in Web API So, currently the default serializer in WebAPI is DataContractJsonSeriaizer and I don't like it. You may not either, but luckily you can swap the serializer fairly easily. If you'd rather use the JavaScriptSerializer built into System.Web.Extensions or Json.NET today, it's not too difficult to create a custom MediaTypeFormatter that uses these serializers and can replace or partially replace the native serializer. Here's a MediaTypeFormatter implementation using the ASP.NET JavaScriptSerializer:using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using System.IO; namespace Westwind.Web.WebApi { public class JavaScriptSerializerFormatter : MediaTypeFormatter { public JavaScriptSerializerFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type== typeof(JsonArray) ) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var ser = new JavaScriptSerializer(); string json; using (var sr = new StreamReader(stream)) { json = sr.ReadToEnd(); sr.Close(); } object val = ser.Deserialize(json,type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var ser = new JavaScriptSerializer(); var json = ser.Serialize(value); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } Formatter implementation is pretty simple: You override 4 methods to tell which types you can handle and then handle the input or output streams to create/parse the JSON data. Note that when creating output you want to take care to still allow JsonValue/JsonObject/JsonArray types to be handled by the default serializer so those objects serialize properly - if you let either JavaScriptSerializer or JSON.NET handle them they'd try to render the dictionaries which is very undesirable. If you'd rather use Json.NET here's the JSON.NET version of the formatter:// this code requires a reference to JSON.NET in your project #if true using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using Newtonsoft.Json; using System.IO; using Newtonsoft.Json.Converters; namespace Westwind.Web.WebApi { public class JsonNetFormatter : MediaTypeFormatter { public JsonNetFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type == typeof(JsonArray)) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; var sr = new StreamReader(stream); var jreader = new JsonTextReader(sr); var ser = new JsonSerializer(); ser.Converters.Add(new IsoDateTimeConverter()); object val = ser.Deserialize(jreader, type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; string json = JsonConvert.SerializeObject(value, Formatting.Indented, new JsonConverter[1] { new IsoDateTimeConverter() } ); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } #endif   One advantage of the Json.NET serializer is that you can specify a few options on how things are formatted and handled. You get null value handling and you can plug in the IsoDateTimeConverter which is nice to product proper ISO dates that I would expect any Json serializer to output these days. Hooking up the Formatters Once you've created the custom formatters you need to enable them for your Web API application. To do this use the GlobalConfiguration.Configuration object and add the formatter to the Formatters collection. Here's what this looks like hooked up from Application_Start in a Web project:protected void Application_Start(object sender, EventArgs e) { // Action based routing (used for RPC calls) RouteTable.Routes.MapHttpRoute( name: "StockApi", routeTemplate: "stocks/{action}/{symbol}", defaults: new { symbol = RouteParameter.Optional, controller = "StockApi" } ); // WebApi Configuration to hook up formatters and message handlers // optional RegisterApis(GlobalConfiguration.Configuration); } public static void RegisterApis(HttpConfiguration config) { // Add JavaScriptSerializer formatter instead - add at top to make default //config.Formatters.Insert(0, new JavaScriptSerializerFormatter()); // Add Json.net formatter - add at the top so it fires first! // This leaves the old one in place so JsonValue/JsonObject/JsonArray still are handled config.Formatters.Insert(0, new JsonNetFormatter()); } One thing to remember here is the GlobalConfiguration object which is Web API's static configuration instance. I think this thing is seriously misnamed given that GlobalConfiguration could stand for anything and so is hard to discover if you don't know what you're looking for. How about WebApiConfiguration or something more descriptive? Anyway, once you know what it is you can use the Formatters collection to insert your custom formatter. Note that I insert my formatter at the top of the list so it takes precedence over the default formatter. I also am not removing the old formatter because I still want JsonValue/JsonObject/JsonArray to be handled by the default serialization mechanism. Since they process in sequence and I exclude processing for these types JsonValue et al. still get properly serialized/deserialized. Summary Currently DataContractJsonSerializer in Web API is a pain, but at least we have the ability with relatively limited effort to replace the MediaTypeFormatter and plug in our own JSON serializer. This is useful for many scenarios - if you have existing client applications that used MVC JsonResult or ASP.NET AJAX results from ASMX AJAX services you can plug in the JavaScript serializer and get exactly the same serializer you used in the past so your results will be the same and don't potentially break clients. JSON serializers do vary a bit in how they serialize some of the more complex types (like Dictionaries and dates for example) and so if you're migrating it might be helpful to ensure your client code doesn't break when you switch to ASP.NET Web API. Going forward it looks like Microsoft is planning on plugging in Json.Net into Web API and make that the default. I think that's an awesome choice since Json.net has been around forever, is fast and easy to use and provides a ton of functionality as part of this great library. I just wish Microsoft would have figured this out sooner instead of now at the last minute integrating with it especially given that Json.Net has a similar set of lower level JSON objects JsonValue/JsonObject etc. which now will end up being duplicated by the native System.Json stuff. It's not like we don't already have enough confusion regarding which JSON serializer to use (JavaScriptSerializer, DataContractJsonSerializer, JsonValue/JsonObject/JsonArray and now Json.net). For years I've been using my own JSON serializer because the built in choices are both limited. However, with an official encorsement of Json.Net I'm happily moving on to use that in my applications. Let's see and hope Microsoft gets this right before ASP.NET Web API goes gold.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX  ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Use Drive Mirroring for Instant Backup in Windows 7

    - by Trevor Bekolay
    Even with the best backup solution, a hard drive crash means you’ll lose a few hours of work. By enabling drive mirroring in Windows 7, you’ll always have an up-to-date copy of your data. Windows 7’s mirroring – which is only available in Professional, Enterprise, and Ultimate editions – is a software implementation of RAID 1, which means that two or more disks are holding the exact same data. The files are constantly kept in sync, so that if one of the disks fails, you won’t lose any data. Note that mirroring is not technically a backup solution, because if you accidentally delete a file, it’s gone from both hard disks (though you may be able to recover the file). As an additional caveat, having mirrored disks requires changing them to “dynamic disks,” which can only be read within modern versions of Windows (you may have problems working with a dynamic disk in other operating systems or in older versions of Windows). See this Wikipedia page for more information. You will need at least one empty disk to set up disk mirroring. We’ll show you how to mirror an existing disk (of equal or lesser size) without losing any data on the mirrored drive, and how to set up two empty disks as mirrored copies from the get-go. Mirroring an Existing Drive Click on the start button and type partitions in the search box. Click on the Create and format hard disk partitions entry that shows up. Alternatively, if you’ve disabled the search box, press Win+R to open the Run window and type in: diskmgmt.msc The Disk Management window will appear. We’ve got a small disk, labeled OldData, that we want to mirror in a second disk of the same size. Note: The disk that you will use to mirror the existing disk must be unallocated. If it is not, then right-click on it and select Delete Volume… to mark it as unallocated. This will destroy any data on that drive. Right-click on the existing disk that you want to mirror. Select Add Mirror…. Select the disk that you want to use to mirror the existing disk’s data and press Add Mirror. You will be warned that this process will change the existing disk from basic to dynamic. Note that this process will not delete any data on the disk! The new disk will be marked as a mirror, and it will starting copying data from the existing drive to the new one. Eventually the drives will be synced up (it can take a while), and any data added to the E: drive will exist on both physical hard drives. Setting Up Two New Drives as Mirrored If you have two new equal-sized drives, you can format them to be mirrored copies of each other from the get-go. Open the Disk Management window as described above. Make sure that the drives are unallocated. If they’re not, and you don’t need the data on either of them, right-click and select Delete volume…. Right-click on one of the unallocated drives and select New Mirrored Volume…. A wizard will pop up. Click Next. Click on the drives you want to hold the mirrored data and click Add. Note that you can add any number of drives. Click Next. Assign it a drive letter that makes sense, and then click Next. You’re limited to using the NTFS file system for mirrored drives, so enter a volume label, enable compression if you want, and then click Next. Click Finish to start formatting the drives. You will be warned that the new drives will be converted to dynamic disks. And that’s it! You now have two mirrored drives. Any files added to E: will reside on both physical disks, in case something happens to one of them. Conclusion While the switch from basic to dynamic disks can be a problem for people who dual-boot into another operating system, setting up drive mirroring is an easy way to make sure that your data can be recovered in case of a hard drive crash. Of course, even with drive mirroring, we advocate regular backups to external drives or online backup services. Similar Articles Productive Geek Tips Rebit Backup Software [Review]Disabling Instant Search in Outlook 2007Restore Files from Backups on Windows Home ServerSecond Copy 7 [Review]Backup Windows Home Server Folders to an External Hard Drive TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010

    Read the article

  • InnoDB Compression Improvements in MySQL 5.6

    - by Inaam Rana
    MySQL 5.6 comes with significant improvements for the compression support inside InnoDB. The enhancements that we'll talk about in this piece are also a good example of community contributions. The work on these was conceived, implemented and contributed by the engineers at Facebook. Before we plunge into the details let us familiarize ourselves with some of the key concepts surrounding InnoDB compression. In InnoDB compressed pages are fixed size. Supported sizes are 1, 2, 4, 8 and 16K. The compressed page size is specified at table creation time. InnoDB uses zlib for compression. InnoDB buffer pool will attempt to cache compressed pages like normal pages. However, whenever a page is actively used by a transaction, we'll always have the uncompressed version of the page as well i.e.: we can have a page in the buffer pool in compressed only form or in a state where we have both the compressed page and uncompressed version but we'll never have a page in uncompressed only form. On-disk we'll always only have the compressed page. When both compressed and uncompressed images are present in the buffer pool they are always kept in sync i.e.: changes are applied to both atomically. Recompression happens when changes are made to the compressed data. In order to minimize recompressions InnoDB maintains a modification log within a compressed page. This is the extra space available in the page after compression and it is used to log modifications to the compressed data thus avoiding recompressions. DELETE (and ROLLBACK of DELETE) and purge can be performed without recompressing the page. This is because the delete-mark bit and the system fields DB_TRX_ID and DB_ROLL_PTR are stored in uncompressed format on the compressed page. A record can be purged by shuffling entries in the compressed page directory. This can also be useful for updates of indexed columns, because UPDATE of a key is mapped to INSERT+DELETE+purge. A compression failure happens when we attempt to recompress a page and it does not fit in the fixed size. In such case, we first try to reorganize the page and attempt to recompress and if that fails as well then we split the page into two and recompress both pages. Now lets talk about the three major improvements that we made in MySQL 5.6.Logging of Compressed Page Images:InnoDB used to log entire compressed data on the page to the redo logs when recompression happens. This was an extra safety measure to guard against the rare case where an attempt is made to do recovery using a different zlib version from the one that was used before the crash. Because recovery is a page level operation in InnoDB we have to be sure that all recompress attempts must succeed without causing a btree page split. However, writing entire compressed data images to the redo log files not only makes the operation heavy duty but can also adversely affect flushing activity. This happens because redo space is used in a circular fashion and when we generate much more than normal redo we fill up the space much more quickly and in order to reuse the redo space we have to flush the corresponding dirty pages from the buffer pool.Starting with MySQL 5.6 a new global configuration parameter innodb_log_compressed_pages. The default value is true which is same as the current behavior. If you are sure that you are not going to attempt to recover from a crash using a different version of zlib then you should set this parameter to false. This is a dynamic parameter.Compression Level:You can now set the compression level that zlib should choose to compress the data. The global parameter is innodb_compression_level - the default value is 6 (the zlib default) and allowed values are 1 to 9. Again the parameter is dynamic i.e.: you can change it on the fly.Dynamic Padding to Reduce Compression Failures:Compression failures are expensive in terms of CPU. We go through the hoops of recompress, failure, reorganize, recompress, failure and finally page split. At the same time, how often we encounter compression failure depends largely on the compressibility of the data. In MySQL 5.6, courtesy of Facebook engineers, we have an adaptive algorithm based on per-index statistics that we gather about compression operations. The idea is that if a certain index/table is experiencing too many compression failures then we should try to pack the 16K uncompressed version of the page less densely i.e.: we let some space in the 16K page go unused in an attempt that the recompression won't end up in a failure. In other words, we dynamically keep adding 'pad' to the 16K page till we get compression failures within an agreeable range. It works the other way as well, that is we'll keep removing the pad if failure rate is fairly low. To tune the padding effort two configuration variables are exposed. innodb_compression_failure_threshold_pct: default 5, range 0 - 100,dynamic, implies the percentage of compress ops to fail before we start using to padding. Value 0 has a special meaning of disabling the padding. innodb_compression_pad_pct_max: default 50, range 0 - 75, dynamic, the  maximum percentage of uncompressed data page that can be reserved as pad.

    Read the article

  • Why would Copying a Large Image to the Clipboard Freeze a Computer?

    - by Akemi Iwaya
    Sometimes, something really odd happens when using our computers that makes no sense at all…such as copying a simple image to the clipboard and the computer freezing up because of it. An image is an image, right? Today’s SuperUser post has the answer to a puzzled reader’s dilemna. Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Original image courtesy of Wikimedia. The Question SuperUser reader Joban Dhillon wants to know why copying an image to the clipboard on his computer freezes it up: I was messing around with some height map images and found this one: (http://upload.wikimedia.org/wikipedia/commons/1/15/Srtm_ramp2.world.21600×10800.jpg) The image is 21,600*10,800 pixels in size. When I right click and select “Copy Image” in my browser (I am using Google Chrome), it slows down my computer until it freezes. After that I must restart. I am curious about why this happens. I presume it is the size of the image, although it is only about 6 MB when saved to my computer. I am also using Windows 8.1 Why would a simple image freeze Joban’s computer up after copying it to the clipboard? The Answer SuperUser contributor Mokubai has the answer for us: “Copy Image” is copying the raw image data, rather than the image file itself, to your clipboard. The raw image data will be 21,600 x 10,800 x 3 (24 bit image) = 699,840,000 bytes of data. That is approximately 700 MB of data your browser is trying to copy to the clipboard. JPEG compresses the raw data using a lossy algorithm and can get pretty good compression. Hence the compressed file is only 6 MB. The reason it makes your computer slow is that it is probably filling your memory up with at least the 700 MB of image data that your browser is using to show you the image, another 700 MB (along with whatever overhead the clipboard incurs) to store it on the clipboard, and a not insignificant amount of processing power to convert the image into a format that can be stored on the clipboard. Chances are that if you have less than 4 GB of physical RAM, then those copies of the image data are forcing your computer to page memory out to the swap file in an attempt to fulfil both memory demands at the same time. This will cause programs and disk access to be sluggish as they use the disk and try to use the data that may have just been paged out. In short: Do not use the clipboard for huge images unless you have a lot of memory and a bit of time to spare. Like pretty graphs? This is what happens when I load that image in Google Chrome, then copy it to the clipboard on my machine with 12 GB of RAM: It starts off at the lower point using 2.8 GB of RAM, loading the image punches it up to 3.6 GB (approximately the 700 MB), then copying it to the clipboard spikes way up there at 6.3 GB of RAM before settling back down at the 4.5-ish you would expect to see for a program and two copies of a rather large image. That is a whopping 3.7 GB of image data being worked on at the peak, which is probably the initial image, a reserved quantity for the clipboard, and perhaps a couple of conversion buffers. That is enough to bring any machine with less than 8 GB of RAM to its knees. Strangely, doing the same thing in Firefox just copies the image file rather than the image data (without the scary memory surge). Have something to add to the explanation? Sound off in the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 6

    - by MarkPearl
    Learning Outcomes Discuss the physical characteristics of magnetic disks Describe how data is organized and accessed on a magnetic disk Discuss the parameters that play a role in the performance of magnetic disks Describe different optical memory devices Magnetic Disk The way data is stored on and retried from magnetic disks Data is recorded on and later retrieved form the disk via a conducting coil named the head (in many systems there are two heads) The writ mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below with different patterns for positive and negative currents The physical characteristics of a magnetic disk   Summarize from book   The factors that play a role in the performance of a disk Seek time – the time it takes to position the head at the track Rotational delay / latency – the time it takes for the beginning of the sector to reach the head Access time – the sum of the seek time and rotational delay Transfer time – the time it takes to transfer data RAID The rate of improvement in secondary storage performance has been considerably less than the rate for processors and main memory. Thus secondary storage has become a bit of a bottleneck. RAID works on the concept that if one disk can be pushed so far, additional gains in performance are to be had by using multiple parallel components. Points to note about RAID… RAID is a set of physical disk drives viewed by the operating system as a single logical drive Data is distributed across the physical drives of an array in a scheme known as striping Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure (not supported by RAID 0 or RAID 1) Interesting to note that the increase in the number of drives, increases the probability of failure. To compensate for this decreased reliability RAID makes use of stored parity information that enables the recovery of data lost due to a disk failure.   The RAID scheme consists of 7 levels…   Category Level Description Disks Required Data Availability Large I/O Data Transfer Capacity Small I/O Request Rate Striping 0 Non Redundant N Lower than single disk Very high Very high for both read and write Mirroring 1 Mirrored 2N Higher than RAID 2 – 5 but lower than RAID 6 Higher than single disk Up to twice that of a signle disk for read Parallel Access 2 Redundant via Hamming Code N + m Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Parallel Access 3 Bit interleaved parity N + 1 Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Independent Access 4 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, significantly lower than single disk for write Similar to RAID 0 for read, significantly lower than single disk for write Independent Access 5 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, lower than single disk for write Similar to RAID 0 for read, generally  lower than single disk for write Independent Access 6 Block interleaved parity N + 2 Highest of all listed alternatives Similar to RAID 0 for read; lower than RAID 5 for write Similar to RAID 0 for read, significantly lower than RAID 5  for write   Read page 215 – 221 for detailed explanation on RAID levels Optical Memory There are a variety of optical-disk systems available. Read through the table on page 222 – 223 Some of the devices include… CD CD-ROM CD-R CD-RW DVD DVD-R DVD-RW Blue-Ray DVD Magnetic Tape Most modern systems use serial recording – data is lade out as a sequence of bits along each track. The typical recording used in serial is referred to as serpentine recording. In this technique when data is being recorded, the first set of bits is recorded along the whole length of the tape. When the end of the tape is reached the heads are repostioned to record a new track, and the tape is again recorded on its whole length, this time in the opposite direction. That process continued back and forth until the tape is full. To increase speed, the read-write head is capable of reading and writing a number of adjacent tracks simultaneously. Data is still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks as suggested. A tape drive is a sequential access device. Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost, slowest speed member of the memory hierarchy.

    Read the article

  • Mastering snow and Java development at jDays in Gothenburg

    - by JavaCecilia
    Last weekend, I took the train from Stockholm to Gothenburg to attend and present at the new Java developer conference jDays. It was professionally arranged in the Swedish exhibition hall close to the amusement park Liseberg and we got a great deal out of the top-level presenters and hallway discussions. Understanding and Improving Your Java Process Our main purpose was to spread information on JVM and our monitoring tools for Java processes, so I held a crash course in the most important terms and concepts if you want to affect the performance of your Java process. From the beginning - the JVM specification to interpretation of heap usage graphs. For correct analysis, you also need to understand something about process memory - you need space for the Java heap (-Xms for initial size and -Xmx for max heap size), but the process memory also contain the thread stacks (to a size of -Xss), JVM internal data structures used for keeping track of Java objects on the heap, method compilation/optimization, native libraries, etc. If you get long pause times, make sure to monitor your application, see the allocation rate and frequency of pause times.My colleague Klara Ward then held a presentation on the Java Mission Control product, the profiling and diagnostics tools suite for HotSpot, coming soon. The room was packed and very appreciated, Klara demonstrated four different scenarios, e.g. how to diagnose and fix latencies due to lock contention for logging.My German colleague, OpenJDK ambassador Dalibor Topic travelled to Sweden to do the second keynote on "Make the Future Java". He let us in on the coming features and roadmaps of Java, now delivering major versions on a two-year schedule (Java 7 2011, Java 8 2013, etc). Also letting us in on where to download early versions of 8, to report problems early on. Software Development in teams Being a scout leader, I'm drilled in different team building and workshop techniques, creating strong groups - of course, I had to attend Henrik Berglund's session on building successful teams. He spoke about the importance of clear goals, autonomy and agreed processes. Thomas Sundberg ended the conference by doing live remote pair programming with Alex in Rumania and a concrete tips for people wanting to try it out (for local collaboration, remember to wash and change clothes). Memory Master Keynote The conference keynote was delivered by the Swedish memory master Mattias Ribbing, showing off by remembering the order of a deck of cards he'd seen once. He made it interactive by forcing the audience to learn a memory mastering technique of remembering ten ordered things by heart, asking us to shout out the order backwards and we made it! I desperately need this - bought the book, will get back on the subject. Continuous Delivery The most impressive presenter was Axel Fontaine on Continuous Delivery. Very well prepared slides with key images of his message and moved about the stage like a rock star. The topic is of course highly interesting, how to create an infrastructure enabling immediate feedback to developers and ability to release your product several times per day. Tomek Kaczanowski delivered a funny and useful presentation on good and bad tests, providing comic relief with poorly written tests and the useful rules of thumb how to rewrite them. To conclude, we had a great time and hope to see you at jDays next year :)

    Read the article

  • trying to setup wireless

    - by JohnMerlino
    I'm trying to set up wireless on vostro 1520 dell laptop, with latest Ubuntu install. Here's the output of some of the commands that I was told to run: lshw -C network viggy@ubuntu:~$ lshw -C network WARNING: you should run this program as super-user. *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:08:00.0 logical name: eth0 version: 03 serial: 00:24:e8:da:84:25 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168d-1.fw ip=192.168.2.6 latency=0 multicast=yes port=MII speed=100Mbit/s resources: irq:47 ioport:3000(size=256) memory:f6004000-f6004fff memory:f6000000-f6003fff memory:f6020000-f603ffff *-network description: Network controller product: BCM4312 802.11b/g LP-PHY vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:0e:00.0 version: 01 width: 64 bits clock: 33MHz capabilities: bus_master cap_list configuration: driver=b43-pci-bridge latency=0 resources: irq:18 memory:fa000000-fa003fff *-network DISABLED description: Wireless interface physical id: 1 logical name: wlan0 serial: 0c:60:76:05:ee:74 capabilities: ethernet physical wireless configuration: broadcast=yes driver=b43 driverversion=3.2.0-29-generic firmware=N/A multicast=yes wireless=IEEE 802.11bg lspci 00:00.0 Host bridge: Intel Corporation Mobile 4 Series Chipset Memory Controller Hub (rev 07) 00:02.0 VGA compatible controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller (rev 07) 00:02.1 Display controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller (rev 07) 00:1a.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 03) 00:1a.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 03) 00:1a.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 03) 00:1a.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2 (rev 03) 00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 03) 00:1c.0 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1 (rev 03) 00:1c.1 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 2 (rev 03) 00:1c.2 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 3 (rev 03) 00:1c.3 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 4 (rev 03) 00:1c.4 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5 (rev 03) 00:1c.5 PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 6 (rev 03) 00:1d.0 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1 (rev 03) 00:1d.1 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2 (rev 03) 00:1d.2 USB controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3 (rev 03) 00:1d.7 USB controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1 (rev 03) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev 93) 00:1f.0 ISA bridge: Intel Corporation ICH9M LPC Interface Controller (rev 03) 00:1f.2 SATA controller: Intel Corporation 82801IBM/IEM (ICH9M/ICH9M-E) 4 port SATA Controller [AHCI mode] (rev 03) 00:1f.3 SMBus: Intel Corporation 82801I (ICH9 Family) SMBus Controller (rev 03) 08:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 03) 0e:00.0 Network controller: Broadcom Corporation BCM4312 802.11b/g LP-PHY (rev 01) 1a:00.0 FireWire (IEEE 1394): O2 Micro, Inc. Device 10f7 (rev 01) 1a:00.1 SD Host controller: O2 Micro, Inc. Device 8120 (rev 01) 1a:00.2 Mass storage controller: O2 Micro, Inc. Device 8130 (rev 01) iwconfig lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on eth0 no wireless extensions. At this point in time, I don't have wireless.

    Read the article

  • Data breakpoints to find points where data gets broken

    - by raccoon_tim
    When working with a large code base, finding reasons for bizarre bugs can often be like finding a needle in a hay stack. Finding out why an object gets corrupted without no apparent reason can be quite daunting, especially when it seems to happen randomly and totally out of context. Scenario Take the following scenario as an example. You have defined the a class that contains an array of characters that is 256 characters long. You now implement a method for filling this buffer with a string passed as an argument. At this point you mistakenly expect the buffer to be 256 characters long. At some point you notice that you require another character buffer and you add that after the previous one in the class definition. You now figure that you don’t need the 256 characters that the first member can hold and you shorten that to 128 to conserve space. At this point you should start thinking that you also have to modify the method defined above to safeguard against buffer overflow. It so happens, however, that in this not so perfect world this does not cross your mind. Buffer overflow is one of the most frequent sources for errors in a piece of software and often one of the most difficult ones to detect, especially when data is read from an outside source. Many mass copy functions provided by the C run-time provide versions that have boundary checking (defined with the _s suffix) but they can not guard against hard coded buffer lengths that at some point get changed. Finding the bug Getting back to the scenario, you’re now wondering why does the second string get modified with data that makes no sense at all. Luckily, Visual Studio provides you with a tool to help you with finding just these kinds of errors. It’s called data breakpoints. To add a data breakpoint, you first run your application in debug mode or attach to it in the usual way, and then go to Debug, select New Breakpoint and New Data Breakpoint. In the popup that opens, you can type in the memory address and the amount of bytes you wish to monitor. You can also use an expression here, but it’s often difficult to come up with an expression for data in an object allocated on the heap when not in the context of a certain stack frame. There are a couple of things to note about data breakpoints, however. First of all, Visual Studio supports a maximum of four data breakpoints at any given time. Another important thing to notice is that some C run-time functions modify memory in kernel space which does not trigger the data breakpoint. For instance, calling ReadFile on a buffer that is monitored by a data breakpoint will not trigger the breakpoint. The application will now break at the address you specified it to. Often you might immediately spot the issue but the very least this feature can do is point you in the right direction in search for the real reason why the memory gets inadvertently modified. Conclusions Data breakpoints are a great feature, especially when doing a lot of low level operations where multiple locations modify the same data. With the exception of some special cases, like kernel memory modification, you can use it whenever you need to check when memory at a certain location gets changed on purpose or inadvertently.

    Read the article

  • Concurrent Affairs

    - by Tony Davis
    I once wrote an editorial, multi-core mania, on the conundrum of ever-increasing numbers of processor cores, but without the concurrent programming techniques to get anywhere near exploiting their performance potential. I came to the.controversial.conclusion that, while the problem loomed for all procedural languages, it was not a big issue for the vast majority of programmers. Two years later, I still think most programmers don't concern themselves overly with this issue, but I do think that's a bigger problem than I originally implied. Firstly, is the performance boost from writing code that can fully exploit all available cores worth the cost of the additional programming complexity? Right now, with quad-core processors that, at best, can make our programs four times faster, the answer is still no for many applications. But what happens in a few years, as the number of cores grows to 100 or even 1000? At this point, it becomes very hard to ignore the potential gains from exploiting concurrency. Possibly, I was optimistic to assume that, by the time we have 100-core processors, and most applications really needed to exploit them, some technology would be around to allow us to do so with relative ease. The ideal solution would be one that allows programmers to forget about the problem, in much the same way that garbage collection removed the need to worry too much about memory allocation. From all I can find on the topic, though, there is only a remote likelihood that we'll ever have a compiler that takes a program written in a single-threaded style and "auto-magically" converts it into an efficient, correct, multi-threaded program. At the same time, it seems clear that what is currently the most common solution, multi-threaded programming with shared memory, is unsustainable. As soon as a piece of state can be changed by a different thread of execution, the potential number of execution paths through your program grows exponentially with the number of threads. If you have two threads, each executing n instructions, then there are 2^n possible "interleavings" of those instructions. Of course, many of those interleavings will have identical behavior, but several won't. Not only does this make understanding how a program works an order of magnitude harder, but it will also result in irreproducible, non-deterministic, bugs. And of course, the problem will be many times worse when you have a hundred or a thousand threads. So what is the answer? All of the possible alternatives require a change in the way we write programs and, currently, seem to be plagued by performance issues. Software transactional memory (STM) applies the ideas of database transactions, and optimistic concurrency control, to memory. However, working out how to break down your program into sufficiently small transactions, so as to avoid contention issues, isn't easy. Another approach is concurrency with actors, where instead of having threads share memory, each thread runs in complete isolation, and communicates with others by passing messages. It simplifies concurrent programs but still has performance issues, if the threads need to operate on the same large piece of data. There are doubtless other possible solutions that I haven't mentioned, and I would love to know to what extent you, as a developer, are considering the problem of multi-core concurrency, what solution you currently favor, and why. Cheers, Tony.

    Read the article

  • Unity.ResolutionFailedException - Resolution of the dependency failed

    - by Anibas
    I have the following code: public static IEngine CreateEngine() { UnityContainer container = Unity.LoadUnityContainer(DefaultStrategiesContainerName); IEnumerable<IStrategy> strategies = container.ResolveAll<IStrategy>(); ITraderProvider provider = container.Resolve<ITraderProvider>(); return new Engine(provider, new List<IStrategy>(strategies)); } and the config: <unity> <typeAliases> <typeAlias alias="singleton" type="Microsoft.Practices.Unity.ContainerControlledLifetimeManager, Microsoft.Practices.Unity" /> <typeAlias alias="weakRef" type="Microsoft.Practices.Unity.ExternallyControlledLifetimeManager, Microsoft.Practices.Unity" /> <typeAlias alias="Strategy" type="ADTrader.Core.Contracts.IStrategy, ADTrader.Core" /> <typeAlias alias="Trader" type="ADTrader.Core.Contracts.ITraderProvider, ADTrader.Core" /> </typeAliases> <containers> <container name="strategies"> <types> <type type="Strategy" mapTo="ADTrader.Strategies.ThreeTurningStrategy, ADTrader.Strategies" name="1" /> <type type="Trader" mapTo="ADTrader.MbTradingProvider.MBTradingProvider, ADTrader.MbTradingProvider" /> </types> </container> </containers></unity> I am getting the following exception: Microsoft.Practices.Unity.ResolutionFailedException: Resolution of the dependency failed, type = "ADTrader.Core.Contracts.ITraderProvider", name = "". Exception message is: The current build operation (build key Build Key[ADTrader.MbTradingProvider.MBTradingProvider, null]) failed: Attempted to read or write protected memory. This is often an indication that other memory is corrupt. (Strategy type BuildPlanStrategy, index 3) --- Microsoft.Practices.ObjectBuilder2.BuildFailedException: The current build operation (build key Build Key[ADTrader.MbTradingProvider.MBTradingProvider, null]) failed: Attempted to read or write protected memory. This is often an indication that other memory is corrupt. (Strategy type BuildPlanStrategy, index 3) --- System.AccessViolationException: Attempted to read or write protected memory. This is often an indication that other memory is corrupt. at MBTCOMLib.MbtComMgrClass.EnableSplash(Boolean bEnable) at ADTrader.MbTradingProvider.MBTradingProvider..ctor() at BuildUp_ADTrader.MbTradingProvider.MBTradingProvider(IBuilderContext ) at Microsoft.Practices.ObjectBuilder2.DynamicMethodBuildPlan.BuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.BuildPlanStrategy.PreBuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) --- End of inner exception stack trace --- at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.Builder.BuildUp(IReadWriteLocator locator, ILifetimeContainer lifetime, IPolicyList policies, IStrategyChain strategies, Object buildKey, Object existing) at Microsoft.Practices.Unity.UnityContainer.DoBuildUp(Type t, Object existing, String name) --- End of inner exception stack trace --- at Microsoft.Practices.Unity.UnityContainer.DoBuildUp(Type t, Object existing, String name) at Microsoft.Practices.Unity.UnityContainer.Resolve(Type t, String name) at Microsoft.Practices.Unity.UnityContainerBase.ResolveT at ADTrader.Engine.EngineFactory.CreateEngine() Any idea?

    Read the article

  • Using Image Source with big images in WPF

    - by xyzzer
    I am working on an application that allows users to manipulate multiple images by using ItemsControl. I started running some tests and found that the app has problems displaying some big images - ie. it did not work with the high resolution (21600x10800), 20MB images from http://earthobservatory.nasa.gov/Features/BlueMarble/BlueMarble_monthlies.php, though it displays the 6200x6200, 60MB Hubble telescope image from http://zebu.uoregon.edu/hudf/hudf.jpg just fine. The original solution just specified an Image control with a Source property pointing at a file on a disk (through a binding). With the Blue Marble file - the image would just not show up. Now this could be just a bug hidden somewhere deep in the funky MVVM + XAML implementation - the visual tree displayed by Snoop goes like: Window/Border/AdornerDecorator/ContentPresenter/Grid/Canvas/UserControl/Border/ContentPresenter/Grid/Grid/Grid/Grid/Border/Grid/ContentPresenter/UserControl/UserControl/Border/ContentPresenter/Grid/Grid/Grid/Grid/Viewbox/ContainerVisual/UserControl/Border/ContentPresenter/Grid/Grid/ItemsControl/Border/ItemsPresenter/Canvas/ContentPresenter/Grid/Grid/ContentPresenter/Image... Now debug this! WPF can be crazy like that... Anyway, it turned out that if I create a simple WPF application - the images load just fine. I tried finding out the root cause, but I don't want to spend weeks on it. I figured the right thing to do might be to use a converter to scale the images down - this is what I have done: ImagePath = @"F:\Astronomical\world.200402.3x21600x10800.jpg"; TargetWidth = 2800; TargetHeight = 1866; and <Image> <Image.Source> <MultiBinding Converter="{StaticResource imageResizingConverter}"> <MultiBinding.Bindings> <Binding Path="ImagePath"/> <Binding RelativeSource="{RelativeSource Self}" /> <Binding Path="TargetWidth"/> <Binding Path="TargetHeight"/> </MultiBinding.Bindings> </MultiBinding> </Image.Source> </Image> and public class ImageResizingConverter : MarkupExtension, IMultiValueConverter { public Image TargetImage { get; set; } public string SourcePath { get; set; } public int DecodeWidth { get; set; } public int DecodeHeight { get; set; } public object Convert(object[] values, Type targetType, object parameter, CultureInfo culture) { this.SourcePath = values[0].ToString(); this.TargetImage = (Image)values[1]; this.DecodeWidth = (int)values[2]; this.DecodeHeight = (int)values[3]; return DecodeImage(); } private BitmapImage DecodeImage() { BitmapImage bi = new BitmapImage(); bi.BeginInit(); bi.DecodePixelWidth = (int)DecodeWidth; bi.DecodePixelHeight = (int)DecodeHeight; bi.UriSource = new Uri(SourcePath); bi.EndInit(); return bi; } public object[] ConvertBack(object value, Type[] targetTypes, object parameter, CultureInfo culture) { throw new Exception("The method or operation is not implemented."); } public override object ProvideValue(IServiceProvider serviceProvider) { return this; } } Now this works fine, except for one "little" problem. When you just specify a file path in Image.Source - the application actually uses less memory and works faster than if you use BitmapImage.DecodePixelWidth. Plus with Image.Source if you have multiple Image controls that point to the same image - they only use as much memory as if only one image was loaded. With the BitmapImage.DecodePixelWidth solution - each additional Image control uses more memory and each of them uses more than when just specifying Image.Source. Perhaps WPF somehow caches these images in compressed form while if you specify the decoded dimensions - it feels like you get an uncompressed image in memory, plus it takes 6 times the time (perhaps without it the scaling is done on the GPU?), plus it feels like the original high resolution image also gets loaded and takes up space. If I just scale the image down, save it to a temporary file and then use Image.Source to point at the file - it will probably work, but it will be pretty slow and it will require handling cleanup of the temporary file. If I could detect an image that does not get loaded properly - maybe I could only scale it down if I need to, but Image.ImageFailed never gets triggered. Maybe it has something to do with the video memory and this app just using more of it with the deep visual tree, opacity masks etc. Actual question: How can I load big images as quickly as Image.Source option does it, without using more memory for additional copies and additional memory for the scaled down image if I only need them at a certain resolution lower than original? Also, I don't want to keep them in memory if no Image control is using them anymore.

    Read the article

  • .htaccess allow from hostname?

    - by Mikey B
    Ubuntu 9.10 Apache2 Hi Guys, Long story short, I need to restrict access to a certain part of my web site based on a dynamic IP source address that changes every now and then. Historically, I've just added the following to htaccess... order deny,allow deny from all # allow my dynamic IP address allow from <dynamic ip> But the problem is that I'll have to manually make this change every time the IP changes. Ideally I'd like to specify a hostname instead... something like: order deny,allow deny from all # allow my host allow from hostname.whatever.local That doesn't seemed to have worked though. I get an error 403 - access forbidden. Does .htaccess not support hostnames?

    Read the article

  • "Chunked" MemoryStream

    - by Karol Kolenda
    I'm looking for the implementation of MemoryStream which does not allocate memory as one big block, but rather a collection of chunks. I want to store a few GB of data in memory (64 bit) and avoid limitation of memory fragmentation.

    Read the article

  • using securestring for a sql connection

    - by Rick
    Hi, I want to use a SecureString to hold a connection string for a database. But as soon as I set the SqlConnection object's ConnectionString property to the value of the securestring surely it will become visible to any other application that is able to read my application's memory? I have made the following assumptions: a) I am not able to instantiate a SqlConnection object outside of managed memory b) any string within managed memory can be read by an application such as Hawkeye

    Read the article

  • Measure heap used by each object in Java

    - by Fazal
    Can some suggest a good a free memory profiling tool which will show memory being used by each object in the heap separately. We are trying to profile our application and I used jconsole but its gives me total memory usage only. I am using Eclipse and OC4J

    Read the article

  • SSRS 2005 - Usability analysis - Is SSRS a good option for this scenario?

    - by Sach
    How practical is it to consider SSRS 2005 or SSRS 2008 as a reporting solution for a report that has to show reports with millions of records (records vary from 3 to 10 million)? Is there any threshold on the size of report in SSRS? How do I know that for a huge report, wheather SSRS will consume the whole memory and start paging the operations to disk or it will give a memory leak error? Even if I keep on increasing the memory how can I be sure that certain memory will be sufficient for such huge reports for the report server? All the above questions are haunting me because I have a dedicated report server with a decent hardware and OS configuration (8 processors, 8GB RAM, 64 bit OS and 64 bit SQL Server 2005). Still my report with around 2 million records is taking more than 6 minutes and going from one page to another takes 3 minutes!!! My datasource is on separate server and when I execute only the stored proc there, it returns the results in less than 2 minutes.

    Read the article

  • Managed language for scientific computing software

    - by heisen
    Scientific computing is algorithm intensive and can also be data intensive. It often needs to use a lot of memory to run analysis and release it before continuing with the next. Sometime it also uses memory pool to recycle memory for each analysis. Managed language is interesting here because it can allow the developer to concentrate on the application logic. Since it might need to deal with huge dataset, performance is important too. But how can we control memory and performance with managed language?

    Read the article

  • android compile error: could not reserve enough space for object heap

    - by moonlightcheese
    I'm getting this error during compilation: Error occurred during initialization of VM Could not create the Java virtual machine. Could not reserve enough space for object heap What's worse, the error occurs intermittently. Sometimes it happens, sometimes it doesn't. It seems to be dependent on the amount of code in the application. If I get rid of some variables or drop some imported libraries, it will compile. Then when I add more to it, I get the error again. I've included the following sources into the application in the [project_root]/src/ directory: org.apache.httpclient (I've stripped all references to log4j from the sources, so don't need it) org.apache.codec (as a dependency) org.apache.httpcore (dependency of httpclient) and my own activity code consisting of nothing more than an instance of HttpClient. I know this has something to do with the amount of memory necessary during compile time or some compiler options, and I'm not really stressing my system while i'm coding. I've got 2GB of memory on this Core Duo laptop and windows reports only 860MB page file usage (haven't used any other memory tools. I should have plenty of memory and processing power for this... and I'm only compiling some common http libs... total of 406 source files. What gives? edit (4/30/2010-18:24): Just compiled some code where I got the above stated error. I closed some web browser windows and recompiled the same exact code with no edits and it compiled with no issue. this is definitely a compiler issue related to memory usage. Any help would be great.... because I have no idea where to go from here. Android API Level: 5 Android SDK rel 5 JDK version: 1.6.0_12 Sorry I had to repost this question because regardless of whether I use the native HttpClient class in the Android SDK or my custom version downloaded from apache, the error still occurs.

    Read the article

  • Windows 2003 DNS updates from ISC DHCP server

    - by wolfgangsz
    We have a very mixed network, with most clients being Debian Lenny, the rest Windows XP/Vista/7. The network itself is split into two segments (for technical reasons) called "corporate" and "engineering". On the "corporate" side all clients get their IP addresses from a Windows DHCP server and the dynamic updates into the Windows DNS work just fine. On the "engineering" side, clients get their IP addresses from a linux machine running the standard ISC DHCP server. Although this server is configured to do dynamic DNS updates, they actually don't work. Anybody got any advice on how to fix this? Please note: dynamic updates from the clients directly into the DNS would work, but are not an option for us. So this is strictly on how make this work from an ISC DHCP server to a Windows DNS server.

    Read the article

< Previous Page | 268 269 270 271 272 273 274 275 276 277 278 279  | Next Page >