Search Results

Search found 29093 results on 1164 pages for 'network interface'.

Page 265/1164 | < Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >

  • It is okay to set MASQUERADE at 2 network interfaces in a Linux server?

    - by Patrick L
    There is a Linux server with 3 network interfaces, eth0, eth1, eth2. IP forwarding has been turn on in this server. eth0 is connected to 10.0.1.0/24. Its IP is 10.0.1.1. eth1 is connected to 172.16.1.0/24. Its IP is 172.16.1.1. Server A can ping router C at 172.16.1.2. eth2 is connected to 192.168.1.0/24. Its IP is 192.168.1.1. Server A can ping server B at 192.168.1.2. Router C is able to route to 172.16.2.0/24 and 172.16.3.0/24. [10.0.1.0/24] | 172.16.2.0/24------| | [C]------172.16.1.0/24------[A]------192.168.1.0/24------[B] 172.16.3.0/24------| We have set MASQUERADE at eth0. When server B (192.168.1.2) connect to 10.0.1.0/24, IP MASQUERADE will happen at eth0. Can we set MASQUERADE at eth1? Is it okay to set MASQUERADE at more than 1 network interfaces in Linux?

    Read the article

  • My server is taking too long to respond when I connect to it outside the local network [closed]

    - by Buzu
    I have my local server online most of the time because it is easy for clients to access a url and see how their project is coming along. They can see updates in real time. However, I got a message from one of my clients saying that the server was not responding. I have a hosts file, and in that file I have my server's address pointed to the local ip. This is because some problem with the ftp. Due to this setup, I had not noticed that the server was not accessible from outside the local network. The address is http://imbuzu.dyndns.info SSH works fine, I can connect from my windows machine to the server, but HTTP does not. The server is taking too long to respond. Looking at the logs, I see that the last incoming connection to the server from outside the network is this: 77.242.153.180 - - [04/Dec/2012:12:11:01 -0800] "\xce\x89\x8d\x85b\ro" 400 317 "-" "-" I'm going to restart the server, but I doubt that will have any effect on it. --EDIT-- I restarted the server, and it did not help. Also, I pinged the server and it seems to be resolving correctly.

    Read the article

  • ASP.NET MVC Framework

    - by Aamir Hasan
     MVC is a design pattern. A reusable "recipe" for constructing your application. Generally, you don't want your user interface code and data access code to be mixed together, it makes changing either one more difficult. By placing data access code into a "Model" object and user interface code into a "View" object, you can use a "Controller" object to act as a go-between, sending messages/calling methods on the view object when the data changes and vice versa. Model-view-controller (MVC) is an architectural pattern used in software engineering. In complex computer applications that present a large amount of data to the user, a developer often wishes to separate data (model) and user interface (view) concerns, so that changes to the user interface will not affect data handling, and that the data can be reorganized without changing the user interface. The model-view-controller solves this problem by decoupling data access and business logic from data presentation and user interaction, by introducing an intermediate component: the controller.Model:    The domain-specific representation of the information that the application operates. Domain logic adds meaning to raw data (e.g., calculating whether today is the user's birthday, or the totals, taxes, and shipping charges for shopping cart items).    Many applications use a persistent storage mechanism (such as a database) to store data. MVC does not specifically mention the data access layer because it is understood to be underneath or encapsulated by the Model.View:    Renders the model into a form suitable for interaction, typically a user interface element. Multiple views can exist for a single model for different purposes.Controller:    Processes and responds to events, typically user actions, and may invoke changes on the model.    

    Read the article

  • Is duck typing a subset of polymorphism

    - by Raynos
    From Polymorphism on WIkipedia In computer science, polymorphism is a programming language feature that allows values of different data types to be handled using a uniform interface. From duck typing on Wikipedia In computer programming with object-oriented programming languages, duck typing is a style of dynamic typing in which an object's current set of methods and properties determines the valid semantics, rather than its inheritance from a particular class or implementation of a specific interface. My interpretation is that based on duck typing, the objects methods/properties determine the valid semantics. Meaning that the objects current shape determines the interface it upholds. From polymorphism you can say a function is polymorphic if it accepts multiple different data types as long as they uphold an interface. So if a function can duck type, it can accept multiple different data types and operate on them as long as those data types have the correct methods/properties and thus uphold the interface. (Usage of the term interface is meant not as a code construct but more as a descriptive, documenting construct) What is the correct relationship between ducktyping and polymorphism ? If a language can duck type, does it mean it can do polymorphism ?

    Read the article

  • Understanding interfaces [closed]

    - by user985482
    Possible Duplicate: When to use abstract classes instead of interfaces and extension methods in C#? Why are interfaces useful? What is the point of an interface? What other reasons are there to write interfaces rather than abstract classes? What is the point of having every service class have an interface? Is it bad habit not using interfaces? I am reading Microsoft Visual C# 2010 Step by Step which I feel it is a very good book on introducing you to the C# language. I have just finished reading a chapter on interfaces and although I understood the syntax of creating and using interfaces I have trouble of understanding the point on why should I use them? Correct me If I am wrong but in an interface you can only declare methods names and parameters.The body of the method should be declared in the class that inherits the interface. So in this case why should I declare an interface if I am going to declare the entire method in the class that inherits that interface? What is the point? Does this have something to do with the fact that a class can inherit multiple interfaces?

    Read the article

  • What is the simplest, but solid, interface from WinForms to a SQL Server database?

    - by Greg
    Hi, If I wanted to have my data in SQL Server, but wanted to use a thick client WinForms application for users, what would be the best practice way to have calls occurring from WinForms to database? And how simple is this? I guess I'm trying to gauge to what extent there are issues with this approach and one needs to go for some (a) middle tier with web services, or (b) have to go asp.net or something. I really just have a simple app that needs a database and I'll only have a 10 - 30 clients on a LAN/WAN network that would be connecting in.

    Read the article

  • Interface Builder is unable to open documents of type iPad XIB.

    - by sagar
    After installing SDK 3.2 Beta 5 on your MAC. Please follow this steps to understand my problem. Start XCode. Click on Help Menu - Select Developer Documentation from the toolbar of window - Click on Home - & select iPhone OS 3.2 Library On the left side of screen - you can see Cocoa Touch Layer Category under Frameworks Select UIKit from it. On right side you will have - ToolbarSeach - as an first one link on it. Click on it. After clicking on it - You will see an option of "Open Project in xCode" on the title. Click on it & save the project to open it. Now, Click on run to execute this sample code. After compilation - it will give you two errors. something like this - "Interface Builder is unable to open documents of type iPad XIB." I don't know why this error is disturbing me? What should be solution to resolve it? Sagar.

    Read the article

  • How to use Java varargs with the GWT Javascript Native Interface? (aka, "GWT has no printf()")

    - by markerikson
    I'm trying to quickly learn GWT as part of a new project. I found out that GWT doesn't implement Java's String.format() function, so there's no printf()-like functionality. I knew that some printf() implementations exist for Javascript, so I figured I could paste one of those in as a GWT Javascript Native Interface function. I ran into problems, and decided I'd better make sure that the varargs values were being passed in correctly. That's where things got ugly. First, some example code: // From Java, call the JSNI function: test("sourceString", "params1", "params2", "params3"); .... public static native void test(Object... params) /*-{ // PROBLEM: this kills GWT! // alert(params.length); // returns "function" alert(typeof(params)); // returns "[Ljava.lang.Object;@b97ff1" alert(params); }-*/; The GWT docs state that "calling a varargs JavaScript method from Java will result in the callee receiving the arguments in an array". I figured that meant I could at least check params.length, but accessing that throws a JavascriptException wrapped in an UmbrellaException, with no real information. When I do "typeof(params)", it returns "function". As if that weren't odd enough, if I check the string value of params, it returns what appears to be a string version of a Java reference. So, I guess I'm asking a few different questions here: 1) How do GWT/JSNI varargs actually work, and do I need to do something special to pass in values? 2) What is actually going on here? 3) Is there any easier way to get printf()-style formatting in a GWT application?

    Read the article

  • Is there an XML XQuery interface to existing XML files?

    - by xsaero00
    My company is in education industry and we use XML to store course content. We also store some course related information (mostly metainfo) in relational database. Right now we are in the process of switching from our proprietary XML Schema to DocBook 5. Along with the switch we want to move course related information from database to XML files. The reason for this is to have all course data in one place and to put it under Subversion. However, we would like to keep flexibility of the relational database and be able to easily extract specific information about a course from an XML document. XQuery seems to be up to the task so I was researching databases that supports it but so far could not find what I needed. What I basically want, is to have my XML files in a certain directory structure and then on top of this I would like to have a system that would index my files and let me select anything out of any file using XQuery. This way I can have "my cake and eat it too": I will have XQuery interface and still keep my files in plain text and versioned. Is there anything out there at least remotely resembling to what I want? If you think that what I an asking for is nonsense please make an alternative suggestion. On the related note: What XML Databases (preferably native and open source) do you have experience with and what would you recommend?

    Read the article

  • Interface for reading variable length files with header and footer.

    - by John S
    I could use some hints or tips for a decent interface for reading file of special characteristics. The files in question has a header (~120 bytes), a body (1 byte - 3gb) and a footer (4 bytes). The header contains information about the body and the footer is only a simple CRC32-value of the body. I use Java so my idea was to extend the "InputStream" class and add a constructor such as "public MyInStream( InputStream in)" where I immediately read the header and the direct the overridden read()'s the body. Problem is, I can't give the user of the class the CRC32-value until the whole body has been read. Because the file can be 3gb large, putting it all in memory is a be an idea. Reading it all in to a temporary file is going to be a performance hit if there are many small files. I don't know how large the file is because the InputStream doesn't have to be a file, it could be a socket. Looking at it again, maybe extending InputStream is a bad idea. Thank you for reading the confused thoughts of a tired programmer. :)

    Read the article

  • Java: How to workaround the lack of Equatable interface?

    - by java.is.for.desktop
    Hello, everyone! As far as I know, things such as SortedMap or SortedSet, use compareTo (rather than equals) on Comparable<?> types for checking equality (contains, containsKey). But what if certain types are equatable by concept, but not comparable? I have to declare a Comparator<?> and override the method int compareTo(T o1, To2). OK, I can return 0 for instances which are considered equal. But, for unqeual instances, what do I return when an order is not evident? Is the approach of using SortedMap or SortedSet on equatable but (by concept) not comparable types good anyway? Thank you! EDIT: I don't want to store things sorted, but would I use "usual" Map and Set, I couldn't "override" the equality-behavior. EDIT 2: Why I can't just override equals(...): I need to alter the equality-behavior of a foreign class. Can't edit it. EDIT 3: Just think of .NET: They have IEquatable interface which cat alter the equality-behavior without touching the comparable behavior.

    Read the article

  • Handling user interface in a multi-threaded application (or being forced to have a UI-only main thre

    - by Patrick
    In my application, I have a 'logging' window, which shows all the logging, warnings, errors of the application. Last year my application was still single-threaded so this worked [quite] good. Now I am introducing multithreading. I quickly noticed that it's not a good idea to update the logging window from different threads. Reading some articles on keeping the UI in the main thread, I made a communication buffer, in which the other threads are adding their logging messages, and from which the main thread takes the messages and shows them in the logging window (this is done in the message loop). Now, in a part of my application, the memory usage increases dramatically, because the separate threads are generating lots of logging messages, and the main thread cannot empty the communication buffer quickly enough. After the while the memory decreases again (if the other threads have finished their work and the main thread gradually empties the communication buffer). I solved this problem by having a maximum size on the communication buffer, but then I run into a problem in the following situation: the main thread has to perform a complex action the main thread takes some parts of the action and let's separate threads execute this while the seperate threads are executing their logic, the main thread processes the results from the other threads and continues with its work if the other threads are finished Problem is that in this situation, if the other threads perform logging, there is no UI-message loop, and so the communication buffer is filled, but not emptied. I see two solutions in solving this problem: require the main thread to do regular polling of the communication buffer only performing user interface logic in the main thread (no other logic) I think the second solution seems the best, but this may not that easy to introduce in a big application (in my case it performs mathematical simulations). Are there any other solutions or tips? Or is one of the two proposed the best, easiest, most-pragmatic solution? Thanks, Patrick

    Read the article

  • Any problems with this C++ const reference accessor interface idiom?

    - by mskfisher
    I was converting a struct to a class so I could enforce a setter interface for my variables. I did not want to change all of the instances where the variable was read, though. So I converted this: struct foo_t { int x; float y; }; to this: class foo_t { int _x; float _y; public: foot_t() : x(_x), y(_y) { set(0, 0.0); } const int &x; const float &y; set(int x, float y) { _x = x; _y = y; } }; I'm interested in this because it seems to model C#'s idea of public read-only properties. Compiles fine, and I haven't seen any problems yet. Besides the boilerplate of associating the const references in the constructor, what are the downsides to this method? Any strange aliasing issues? Why haven't I seen this idiom before?

    Read the article

  • Schizophrenic Ubuntu 12.10-12.04: Atheros 922 PCI WIFI is disabled in Unity but enabled in terminal - How to getit to work?

    - by zewone
    I am trying to get my PCI Wireless Atheros 922 card to work. It is disabled in Unity: both the network utility and the desktop (see screenshot http://www.amisdurailhalanzy.be/Screenshot%20from%202012-10-25%2013:19:54.png) I tried many different advises on many different forums. Installed 12.10 instead of 12.04, enabled all interfaces... etc. I have read about the aht9 driver... The terminal shows no hw or sw lock for the Atheros card, nevertheless, it is still disabled. Nothing worked so far, the card is still disabled. Any help is much appreciated. Here are more tech details: myuser@adri1:~$ sudo lshw -C network *-network:0 DISABLED description: Wireless interface product: AR922X Wireless Network Adapter vendor: Atheros Communications Inc. physical id: 2 bus info: pci@0000:03:02.0 logical name: wlan1 version: 01 serial: 00:18:e7:cd:68:b1 width: 32 bits clock: 66MHz capabilities: pm bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=ath9k driverversion=3.5.0-17-generic firmware=N/A latency=168 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:18 memory:d8000000-d800ffff *-network:1 description: Ethernet interface product: VT6105/VT6106S [Rhine-III] vendor: VIA Technologies, Inc. physical id: 6 bus info: pci@0000:03:06.0 logical name: eth0 version: 8b serial: 00:11:09:a3:76:4a size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=via-rhine driverversion=1.5.0 duplex=half latency=32 link=no maxlatency=8 mingnt=3 multicast=yes port=MII speed=10Mbit/s resources: irq:18 ioport:d300(size=256) memory:d8013000-d80130ff *-network DISABLED description: Wireless interface physical id: 1 bus info: usb@1:8.1 logical name: wlan0 serial: 00:11:09:51:75:36 capabilities: ethernet physical wireless configuration: broadcast=yes driver=rt2500usb driverversion=3.5.0-17-generic firmware=N/A link=no multicast=yes wireless=IEEE 802.11bg myuser@adri1:~$ sudo rfkill list all 0: hci0: Bluetooth Soft blocked: no Hard blocked: no 1: phy1: Wireless LAN Soft blocked: no Hard blocked: yes 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no myuser@adri1:~$ dmesg | grep wlan0 [ 15.114235] IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready myuser@adri1:~$ dmesg | egrep 'ath|firm' [ 14.617562] ath: EEPROM regdomain: 0x30 [ 14.617568] ath: EEPROM indicates we should expect a direct regpair map [ 14.617572] ath: Country alpha2 being used: AM [ 14.617575] ath: Regpair used: 0x30 [ 14.637778] ieee80211 phy0: >Selected rate control algorithm 'ath9k_rate_control' [ 14.639410] Registered led device: ath9k-phy0 myuser@adri1:~$ dmesg | grep wlan1 [ 15.119922] IPv6: ADDRCONF(NETDEV_UP): wlan1: link is not ready myuser@adri1:~$ lspci -nn | grep 'Atheros' 03:02.0 Network controller [0280]: Atheros Communications Inc. AR922X Wireless Network Adapter [168c:0029] (rev 01) myuser@adri1:~$ sudo ifconfig eth0 Link encap:Ethernet HWaddr 00:11:09:a3:76:4a inet addr:192.168.2.2 Bcast:192.168.2.255 Mask:255.255.255.0 inet6 addr: fe80::211:9ff:fea3:764a/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5457 errors:0 dropped:0 overruns:0 frame:0 TX packets:2548 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:3425684 (3.4 MB) TX bytes:282192 (282.1 KB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:590 errors:0 dropped:0 overruns:0 frame:0 TX packets:590 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:53729 (53.7 KB) TX bytes:53729 (53.7 KB) myuser@adri1:~$ sudo iwconfig wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=off Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:on lo no wireless extensions. eth0 no wireless extensions. wlan1 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off myuser@adri1:~$ lsmod | grep "ath9k" ath9k 116549 0 mac80211 461161 3 rt2x00usb,rt2x00lib,ath9k ath9k_common 13783 1 ath9k ath9k_hw 376155 2 ath9k,ath9k_common ath 19187 3 ath9k,ath9k_common,ath9k_hw cfg80211 175375 4 rt2x00lib,ath9k,mac80211,ath myuser@adri1:~$ iwlist scan wlan0 Failed to read scan data : Network is down lo Interface doesn't support scanning. eth0 Interface doesn't support scanning. wlan1 Failed to read scan data : Network is down myuser@adri1:~$ lsb_release -d Description: Ubuntu 12.10 myuser@adri1:~$ uname -mr 3.5.0-17-generic i686 ![Schizophrenic Ubuntu](http://www.amisdurailhalanzy.be/Screenshot%20from%202012-10-25%2013:19:54.png) Any help much appreciated... Thanks, Philippe

    Read the article

  • Intermittent internet connectivity

    - by Rob Oplawar
    UPDATED: I recently built a new computer and set it up to dual-boot Windows 7 and Ubuntu 11.10. In Windows, using the same hardware, my LAN connectivity is solid. In Ubuntu, however, my network interface periodically dies and resets itself; I'll have a solid connection for 30 seconds, and then it will go out for 30 seconds. When I tail the log: tail -f /var/log/kern.log I see "eth0 link up" messages appear periodically, corresponding with the return of connectivity. I posted the original question months ago, and misinterpreted what was going on. With a working Internet connection in Windows, I ignored the problem for some months. See my answer below for the solution (drivers). ORIGINAL POST In Ubuntu, although I maintain a solid connection to my LAN (pinging the router IP address consistently returns a good result), my internet connectivity drops in and out. When I continuously ping 74.125.227.18 (a google.com server), I get responses for a while, then I start getting "Destination Host Unreachable" for a while, then I get responses again. This happens consistently, dropping the connection for about 30 seconds out of every minute or two. Whether I configure my network via the network manager or via /etc/network/interfaces seems to make no difference. I configure with the following settings: address 192.168.1.101 network 192.168.1.0 gateway 192.168.1.99 (my router's IP address) netmask 255.255.255.0 (confirmed as the right netmask for the router) broadcast 192.168.1.255 (also confirmed with the router). ifconfig confirms that these settings are working: eth0 Link encap:Ethernet HWaddr 50:e5:49:40:da:a6 inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::52e5:49ff:fe40:daa6/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:11557 errors:0 dropped:11557 overruns:0 frame:11557 TX packets:13117 errors:0 dropped:211 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:9551488 (9.5 MB) TX bytes:1930952 (1.9 MB) Interrupt:41 Base address:0xa000 I get the same issue when I use automatic DHCP address settings, although I did confirm that there is no other machine on the network with the static IP address I want to use. As I said, the connection to the local network stays solid - I never have any trouble pinging 192.168.1.* - it's internet addresses that I intermittently cannot reach. It's not a DNS issue because pinging known IP addresses directly shows the same behavior. Also, I don't think it's a hardware issue, as I never have any internet connectivity problems on the same machine in Windows. The network hardware is built into the motherboard: Gigabyte Z68XP-UD3P. I managed to bring the OS fully up to date, according to the update manager, but it didn't fix the issue, and with my limited understanding of network architecture I'm at my wit's end. The only clue I can see is that ifconfig is reporting a lot of dropped packets, but I'm not sure what to do about it. UPDATE: It seems my problem is a little more generic than I described; now when I try pinging my router and google simultaneously, they both go unreachable at the same time. Running ifdown eth0 and then ifup eth0 brings it back temporarily; if I just wait it comes back after a couple of minutes. I'll broaden my search through intermittent network connectivity problems.

    Read the article

  • Wireless connection works but the internet is too slow to use in Ubuntu 11.04

    - by Garrin
    The internet is so slow as to be unusable. And I'm not being picky. Even after minutes I can't get my Google home page to load. I tried installing a package through apt-get and was getting rates between 0 and a few hundred bytes/s. That's bytes, not kilobytes! Mostly 0 however (no exaggeration, it spends large amounts of time stalled). And I would go to a speed test web site of some kind but I can't since nothing will load. Briefly put, the laptop I am using was connected to two wireless networks while using Ubuntu 11.04 without any issues before this. It was also connected to a wired network without any issues. It dual boats Windows 7 which has never had any issues, not even with the current wireless network. Just to be clear, on the current wi-fi network, Windows 7 encounters no issues (speedtest.net puts the network speed at 1mb/s) but my network connection in Ubuntu 11.04 is so slow as to literally be unusable. I am unfamiliar with the router except for the fact that it boasts a Rogers logo (that's a large ISP/cable provider in Canada for those not familiar with the land of igloos and polar bears). I am far from the router and some desktop widget I use tells me the signal strength is at 58% (it seems fairly reliable and this would appear to match up with the filled bars in the network icon). I should also mention I'm just renting a room in this house so I'm not the network administrator and while I can access the 192.168.0.1 router page, the password wasn't set to 'password' so it's not much use to me. Here are a bunch of commands I ran which don't tell me a whole lot but I thought might be more instructive to the wise around here: lspci (just showing my network card): 05:00.0 Network controller: Atheros Communications Inc. AR928X Wireless Network Adapter (PCI-Express) (rev 01) This one is self explanatory. PING www.googele.com (216.65.41.185) 56(84) bytes of data. 64 bytes from nnw.net (216.65.41.185): icmp_req=1 ttl=51 time=267 ms 64 bytes from nnw.net (216.65.41.185): icmp_req=2 ttl=51 time=190 ms 64 bytes from nnw.net (216.65.41.185): icmp_req=3 ttl=51 time=212 ms 64 bytes from nnw.net (216.65.41.185): icmp_req=4 ttl=51 time=207 ms 64 bytes from nnw.net (216.65.41.185): icmp_req=5 ttl=51 time=220 ms --- www.googele.com ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4003ms rtt min/avg/max/mdev = 190.079/219.699/267.963/26.121 ms ifconfig eth0 Link encap:Ethernet HWaddr 20:6a:8a:02:20:da UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:42 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:16 errors:0 dropped:0 overruns:0 frame:0 TX packets:16 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:960 (960.0 B) TX bytes:960 (960.0 B) wlan0 Link encap:Ethernet HWaddr 20:7c:8f:05:c6:bf inet addr:192.168.0.16 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::227c:8fff:fe05:c6bf/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:982 errors:0 dropped:0 overruns:0 frame:0 TX packets:658 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:497250 (497.2 KB) TX bytes:95076 (95.0 KB) Thank you

    Read the article

  • OpenVPN not connecting

    - by LandArch
    There have been a number of post similar to this, but none seem to satisfy my need. Plus I am a Ubuntu newbie. I followed this tutorial to completely set up OpenVPN on Ubuntu 12.04 server. Here is my server.conf file ################################################# # Sample OpenVPN 2.0 config file for # # multi-client server. # # # # This file is for the server side # # of a many-clients <-> one-server # # OpenVPN configuration. # # # # OpenVPN also supports # # single-machine <-> single-machine # # configurations (See the Examples page # # on the web site for more info). # # # # This config should work on Windows # # or Linux/BSD systems. Remember on # # Windows to quote pathnames and use # # double backslashes, e.g.: # # "C:\\Program Files\\OpenVPN\\config\\foo.key" # # # # Comments are preceded with '#' or ';' # ################################################# # Which local IP address should OpenVPN # listen on? (optional) local 192.168.13.8 # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. port 1194 # TCP or UDP server? proto tcp ;proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. dev tap0 up "/etc/openvpn/up.sh br0" down "/etc/openvpn/down.sh br0" ;dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca "/etc/openvpn/ca.crt" cert "/etc/openvpn/server.crt" key "/etc/openvpn/server.key" # This file should be kept secret # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh dh1024.pem # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. ;server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. server-bridge 192.168.13.101 255.255.255.0 192.168.13.105 192.168.13.200 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. push "route 192.168.13.1 255.255.255.0" push "dhcp-option DNS 192.168.13.201" push "dhcp-option DOMAIN blahblah.dyndns-wiki.com" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). ;push "redirect-gateway def1 bypass-dhcp" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 208.67.222.222" ;push "dhcp-option DNS 208.67.220.220" # Uncomment this directive to allow different # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. user nobody group nogroup # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I am using Windows 7 as the Client and set that up accordingly using the OpenVPN GUI. That conf file is as follows: ############################################## # Sample client-side OpenVPN 2.0 config file # # for connecting to multi-client server. # # # # This configuration can be used by multiple # # clients, however each client should have # # its own cert and key files. # # # # On Windows, you might want to rename this # # file so it has a .ovpn extension # ############################################## # Specify that we are a client and that we # will be pulling certain config file directives # from the server. client # Use the same setting as you are using on # the server. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. dev tap0 up "/etc/openvpn/up.sh br0" down "/etc/openvpn/down.sh br0" ;dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel # if you have more than one. On XP SP2, # you may need to disable the firewall # for the TAP adapter. ;dev-node MyTap # Are we connecting to a TCP or # UDP server? Use the same setting as # on the server. proto tcp ;proto udp # The hostname/IP and port of the server. # You can have multiple remote entries # to load balance between the servers. blahblah.dyndns-wiki.com 1194 ;remote my-server-2 1194 # Choose a random host from the remote # list for load-balancing. Otherwise # try hosts in the order specified. ;remote-random # Keep trying indefinitely to resolve the # host name of the OpenVPN server. Very useful # on machines which are not permanently connected # to the internet such as laptops. resolv-retry infinite # Most clients don't need to bind to # a specific local port number. nobind # Downgrade privileges after initialization (non-Windows only) user nobody group nobody # Try to preserve some state across restarts. persist-key persist-tun # If you are connecting through an # HTTP proxy to reach the actual OpenVPN # server, put the proxy server/IP and # port number here. See the man page # if your proxy server requires # authentication. ;http-proxy-retry # retry on connection failures ;http-proxy [proxy server] [proxy port #] # Wireless networks often produce a lot # of duplicate packets. Set this flag # to silence duplicate packet warnings. ;mute-replay-warnings # SSL/TLS parms. # See the server config file for more # description. It's best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all clients. ca "C:\\Program Files\OpenVPN\config\\ca.crt" cert "C:\\Program Files\OpenVPN\config\\ChadMWade-THINK.crt" key "C:\\Program Files\OpenVPN\config\\ChadMWade-THINK.key" # Verify server certificate by checking # that the certicate has the nsCertType # field set to "server". This is an # important precaution to protect against # a potential attack discussed here: # http://openvpn.net/howto.html#mitm # # To use this feature, you will need to generate # your server certificates with the nsCertType # field set to "server". The build-key-server # script in the easy-rsa folder will do this. ns-cert-type server # If a tls-auth key is used on the server # then every client must also have the key. ;tls-auth ta.key 1 # Select a cryptographic cipher. # If the cipher option is used on the server # then you must also specify it here. ;cipher x # Enable compression on the VPN link. # Don't enable this unless it is also # enabled in the server config file. comp-lzo # Set log file verbosity. verb 3 # Silence repeating messages ;mute 20 Not sure whats left to do.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Basic networking problem with Ubuntu 9.04 on Acer Extensa 5635Z laptop

    - by sapporo
    I just installed Ubuntu 9.04 on a brand new Acer Extensa 5635Z laptop, but ethernet networking does't work (wireless doesn't work either, but I'd be happy with ethernet for now). eth0 isn't listed in /etc/network/interfaces: $ cat /etc/network/interfaces auto lo iface lo inet loopback lshw does show the nic, but I can't make much sense out of the information: $ sudo lshw -class network -sanitize *-network DISABLED description: Wireless interface product: AR928X Wireless Network Adapter (PCI-Express) vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:07:00.0 logical name: wmaster0 version: 01 serial: [REMOVED] width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix bus_master cap_list logical ethernet physical wireless configuration: broadcast=yes driver=ath9k latency=0 module=ath9k multicast=yes wireless=IEEE 802.11bgn *-network UNCLAIMED description: Ethernet controller product: Attansic Technology Corp. vendor: Attansic Technology Corp. physical id: 0 bus info: pci@0000:09:00.0 version: c0 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd cap_list configuration: latency=0 *-network DISABLED description: Ethernet interface physical id: 1 logical name: pan0 serial: [REMOVED] capabilities: ethernet physical configuration: broadcast=yes driver=bridge driverversion=2.3 firmware=N/A link=yes multicast=yes Thanks for your help!

    Read the article

  • What are my options for sharing music between Windows & Ubuntu on the same network?

    - by jgbelacqua
    We have a few Windows(XP & 7) and Ubuntu machines in the house sharing a wireless connection, and want to share music between them. If possible, I would like to be able to serve music from both Windows and Ubuntu (but it doesn't have to be the same time). I don't know much about sharing folders or streaming, but I'm guessing both would be options (that is, using a local client to access a shared song or a local client to access a shared stream). I want to be able to share the music between the systems as simply as possible. Bonus points (but not requirements) for cross-platform -- same application on both Windows and Ubuntu? available on startup (via daemon or autostart or whatnot) open source More info: All systems have dynamic addresses (DHCP) supplied from the ISP-supplied wireless router. There are several Gigabytes of music on one Windows XP box and one Ubuntu 10.10 The music is not well-sorted (I'm thinking this might have an impact on UI usability). Only has to be available internally (private address space behind the wireless router) bandwidth is not a problem We don't have (legitimate) admin access to the wireless router

    Read the article

  • Beginner Geek: How to Link Contacts to Their Social Network Profiles in the Windows 8 People App

    - by Taylor Gibb
    The built-in People app in Windows 8 allows you to pull in your contact lists from a few different social networks. The problem comes when you start to get duplicate entries, here’s how to link contacts together without losing any information. How To Boot Your Android Phone or Tablet Into Safe Mode HTG Explains: Does Your Android Phone Need an Antivirus? How To Use USB Drives With the Nexus 7 and Other Android Devices

    Read the article

  • Selectively Exposing Functionallity in .Net

    - by David V. Corbin
    Any developer should be aware of the principles of encapsulation, cross-tier isolation, and cross-functional separation of concerns. However, it seems the few take the time to consider the adage of "minimal yet complete"1 when developing the software. Consider the exposure of "business objects" to the user interface. Some common situations occur: Accessing a given element requires a compound set of calls that do not "make sense" to the User Interface. More information than absolutely required is exposed to the user interface It would be much cleaner if a custom interface was provided that exposed exactly (and only) the information that is required by the consumer. Achieving this using conventional techniques would require the creation (and maintenance!) of custom classes to filter and transpose the information into the ideal format. Determining the ROI on this approach can be very difficult to ascertain, and as a result it is often ignored completely. There is another approach, which is largely made practical by virtual of the Action and Func delegates. From a callers point of view, the following two samples can be used interchangeably:     interface ISomeInterface     {         void SampleMethod1(string param);         string SamepleMethod2(string param);     }       class ISomeInterface     {         public Action<string> SampleMethod1 {get; }         public Func<string,string> SamepleMethod2 {get; }     }   The capabilities this simple changes enable are significant (and remember it does not cange the syntax at the call site): The delegates can be initialized to directly call the proper method of any target class. The delegates can be dynamically updated based on the current state. The "interface" can NOT be cast to the concrete class (which often exposes more functionallity). This patterns By limiting the interface to the exact functionallity required, the reduced surface area will typically result in lower development, testing and maintenance costs. We are currently in the process of posting a project on CodePlex which illustrates this (and many other) techniques which have proven helpful in creating robust yet flexible solutions that are highly efficient2 and maintainable. This post will be updated as soon as the project is published. 1) Credit: Scott  Meyers, Effective C++, Addison-Wesley 1992 2) For those who read my previous post on performance it should be noted that the use of delegates is on the same order of magnitude (actually a tiny amount faster) as conventional interfaces.

    Read the article

  • Connect laptop to mobile wifi

    - by Arnab Sen Gupta
    I have a nokia N97. In my apartment there's a wifi network that we all use to connect to the internet. But for the past few days my laptop is not able to find the network..Initially I thought it was a problem of the network,but hen I found out that others were able to use it..My vista os laptop is able to detect other available networks but not the required one..Then i tried to connect my cell phone to the network and it did easily!! I tried restoring the network settings to default but it showed the network for just 2 mins and it ws back to square one.. I wanted to know can I connect my laptop to the cell using USB and browse internet through that?? I have done it when I used GPRS but am not sure if it cn be done in this situation when the cell is connected toa wifi network..plz help..

    Read the article

  • Ubuntu server on VM outgoing network(ping google.com) working, incoming(127.0.0.1:8080) is not. Was working previusly

    - by IvarsB
    I have recently installed Ubuntu server with LAMP,OpenSSH and mail on Oracle's VM, it's incoming networking was recently working, apache's default message could be seen when opening 127.0.0.1:8080. But now it's not! :( Could you give me any tips? I couldn't google anything that helped me. :( I'm running windows 7 with such settings http://www.bildites.lv/images/3d91ikwtraw0ld7lhv.png I recently used apt-get --purge remove phpmyadmin. Could that be the problem? How should I fix it? Thank you in advance! Ivars. EDIT: Sorry for the lame formating.

    Read the article

< Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >