Search Results

Search found 21124 results on 845 pages for 'zend framework mvc'.

Page 267/845 | < Previous Page | 263 264 265 266 267 268 269 270 271 272 273 274  | Next Page >

  • WPF DataGrid Entity Framework: Is it possible to bind a datagrid column to a method/function?

    - by seddler
    Hi. I'm wondering if it's possible to bind a gridcolumn (field) to a method or function of an entity? For example I have two entities Person and Company that both inherit the abstract entity Addressee. In my grid I'm listing all Addressees (both persons and companies). I have a column, Name, in the datagrid that I whish to bind to a function GetName(). This function is part of the entity Addressee and based on what type of addressee it is it returns CompanyName (if company) or FirstName+' '+LastName (if person). I also have tried to add a partial class Addressee with a property Name that does the same thing as the function descried over, but this failes when I'm saving to database because the column Name does not exist in database. Can anybody please help me? :-)

    Read the article

  • Entity framework generates values for NOT NULL columns which has default defined in db.

    - by Muhammad Kashif Nadeem
    Hi I have a table Customer. One of the columns in table is DateCreated. This column is NOT NULL but default values is defined for this column in db. When I add new Customer using EF4 from my code. var customer = new Customer(); customer.CustomerName = "Hello"; customer.Email = "[email protected]"; // Watch out commented out. //customer.DateCreated = DateTime.Now; context.AddToCustomers(customer); context.SaveChanges(); Above code generates following query. exec sp_executesql N'insert [dbo].[Customers]([CustomerName], [Email], [Phone], [DateCreated], [DateUpdated]) values (@0, @1, null, @2, null) select [CustomerId] from [dbo].[Customers] where @@ROWCOUNT > 0 and [CustomerId] = scope_identity() ',N'@0 varchar(100),@1 varchar(100),@2 datetime2(7) ',@0='Hello',@1='[email protected]',@2='0001-01-01 00:00:00' And throws following error The conversion of a datetime2 data type to a datetime data type resulted in an out-of-range value. The statement has been terminated. Can you please tell me how NOT NULL columns which has default values at db level should not have values generated by EF? DB: DateCreated DATETIME NOT NULL DateCreated Properties in EF: Nullable: False Getter/Setter: public Type: DateTime DefaultValue: None Thanks.

    Read the article

  • How to make Entity Key Mapping in Entity Framework like sql's foreign key?

    - by programmerist
    I try to give entity map on my entity app. But how can I do it? I try to make it like below: var test = ( from k in Kartlar where k.Rehber..... above codes k.(can not see Rehber or not working ) if you are correct , i can write k.Rehber.ID and others. i can not write: from k in Kartlar where k.Rehber.ID = 123 //assuming that navigation property name is Rehbar and its primary key of Rehbar table is ID && k.Kampanya.ID = 345 //assuming that navigation property name is Kampanya and its primary //key of Kampanya table is ID && k.Birim.ID = 567 //assuming that navigation property name is Birim and its primary key of Birim table is ID select k images you can see: also: You should look : http://i42.tinypic.com/2nqyyc6.png I have a table it includes 3 foreign key field like that: My Table: Kartlar ID (Pkey) RehberID (Fkey) KampanyaID (Fkey) BrimID (Fkey) Name Detail How can i write entity query with LINQ ? select * from Kartlar where RehberID=123 and KampanyaID=345 and BrimID=567 BUT please be careful I can not see RehberID, KampanyaID, BrimID in entity they are foreign key. I should use entity key but how?

    Read the article

  • What would you do if you coded a C++/OO cross-platform framework and realize its laying on your disk

    - by Manuel
    This project started as a development platform because i wanted to be able to write games for mobile devices, but also being able to run and debug the code on my desktop machine too (ie, the EPOC device emulator was so bad): the platforms it currently supports are: Window-desktop WinCE Symbian iPhone The architecture it's quite complete with 16bit 565 video framebuffer, blitters, basic raster ops, software pixel shaders, audio mixer with shaders (dsp fx), basic input, a simple virtual file system... although this thing is at it's first write and so there are places where some refactoring would be needed. Everything has been abstracted away and the guiding principle are: mostly clean code, as if it was a book to just be read object-orientation, without sacrifying performances mobile centric The idea was to open source it, but without being able to manage it, i doubt the software itself would benefit from this move.. Nevertheless, i myself have learned a lot from unmaintained projects. So, thanking you in advance for reading all this... really, what would you do?

    Read the article

  • Too Many Left Outer Joins in Entity Framework 4?

    - by Adam
    I have a product entity, which has 0 or 1 "BestSeller" entities. For some reason when I say: db.Products.OrderBy(p = p.BestSeller.rating).ToList(); the SQL I get has an "extra" outer join (below). And if I add on a second 0 or 1 relation ship, and order by both, then I get 4 outer joins. It seems like each such entity is producing 2 outer joins rather than one. LINQ to SQL behaves exactly as you'd expect, with no extra join. Has anyone else experienced this, or know how to fix it? SELECT [Extent1].[id] AS [id], [Extent1].[ProductName] AS [ProductName] FROM [dbo].[Products] AS [Extent1] LEFT OUTER JOIN [dbo].[BestSeller] AS [Extent2] ON [Extent1].[id] = [Extent2].[id] LEFT OUTER JOIN [dbo].[BestSeller] AS [Extent3] ON [Extent2].[id] = [Extent3].[id] ORDER BY [Extent3].[rating] ASC

    Read the article

  • Is there a way to add extra fields to an association in the ADO.NET Entity Framework?

    - by bigbird1040
    I would like to be able to model a many-to-many relationship that has extra details about the relationship. For example: Person: int id, String name Project: int id, String name ProjectPerson: Person.id, Project.id, String role Whenever I create the ProjectPerson association in the EF, I am unable to add the role attribute to the association. If I create the tables in my DB and then import it into the model, I lose the extra properties.

    Read the article

  • how to populate an entity you have extended in the Entity Framework?

    - by user169867
    I have an entity in my EDMX that I've extended with a few fields in a partial class like this: public partial class Employee { public string JobName {get;set;} } These properties are for display only. In the above example say the entity has a JobTypeID property. I wish JobName to be populated w/ the name that belongs to that JobTypeID. Is there anyway to query the employee record in EF including the value for the JobName property w/o explicity assigning each field using select()? The reason I ask is that there are a lot of fields in the Employee entity so I'd like to be able to take advantage of something like: ctx.Employees.Where(e=>e.EmployeeID==employeeID).Single() ...add somehow fill in JobName too Is this possible?

    Read the article

  • Which framework should I choose - Seam, Wicket, JSF or GWT?

    - by karl
    I'm debating whether to use Seam, Wicket, JSF or GWT as the foundation for my presentation layer in a Java project. I narrowed my selection of Java web frameworks down to this subset based on job market considerations, newness of the technology and recommendations from other S.O. users. What factors should I take into consideration in deciding among these?

    Read the article

  • Using Entity Framework 4.0 with Code-First and POCO: How to Get Parent Object with All its Children

    - by SirEel
    I'm new to EF 4.0, so maybe this is an easy question. I've got VS2010 RC and the latest EF CTP. I'm trying to implement the "Foreign Keys" code-first example on the EF Team's Design Blog, http://blogs.msdn.com/efdesign/archive/2009/10/12/code-only-further-enhancements.aspx. public class Customer { public int Id { get; set; public string CustomerDescription { get; set; public IList<PurchaseOrder> PurchaseOrders { get; set; } } public class PurchaseOrder { public int Id { get; set; } public int CustomerId { get; set; } public Customer Customer { get; set; } public DateTime DateReceived { get; set; } } public class MyContext : ObjectContext { public RepositoryContext(EntityConnection connection) : base(connection){} public IObjectSet<Customer> Customers { get {return base.CreateObjectSet<Customer>();} } } I use a ContextBuilder to configure MyContext: { var builder = new ContextBuilder<MyContext>(); var customerConfig = _builder.Entity<Customer>(); customerConfig.Property(c => c.Id).IsIdentity(); var poConfig = _builder.Entity<PurchaseOrder>(); poConfig.Property(po => po.Id).IsIdentity(); poConfig.Relationship(po => po.Customer) .FromProperty(c => c.PurchaseOrders) .HasConstraint((po, c) => po.CustomerId == c.Id); ... } This works correctly when I'm adding new Customers, but not when I try to retrieve existing Customers. This code successfully saves a new Customer and all its child PurchaseOrders: using (var context = builder.Create(connection)) { context.Customers.AddObject(customer); context.SaveChanges(); } But this code only retrieves Customer objects; their PurchaseOrders lists are always empty. using (var context = _builder.Create(_conn)) { var customers = context.Customers.ToList(); } What else do I need to do to the ContextBuilder to make MyContext always retrieve all the PurchaseOrders with each Customer?

    Read the article

  • Entity Framework (4.0) how to exclude a related table.

    - by Kohan
    I have just updated to using EF 4.0 where before i was using Linq 2 SQL. I have a query: var UserList = this.repository.GetUsers(); return Json(UserList, JsonRequestBehavior.AllowGet); This was generating an error: "A circular reference was detected while serializing an object of type" This prompted this code which worked fine in L2S: var UserList = this.repository.GetUsers(); foreach (User u in UserList){ u.Subscriptions = null; } return Json(UserList, JsonRequestBehavior.AllowGet); How can i stop EF from looking into the Subscriptions table, i just want the Userlist, none of the related properties and the above example does not seem to work for this. Cheers, Kohan

    Read the article

  • Can't update rows in my database using Entity Framework...?

    - by Dissonant
    Okay, this is really weird. I made a simple database with a single table, Customer, which has a single column, Name. From the database I auto-generated an ADO.NET Entity Data Model, and I'm trying to add a new Customer to it like so: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Test { class Program { static void Main() { Database1Entities db = new Database1Entities(); Customer c = new Customer(); c.Name = "Harry"; db.AddToCustomer(c); db.SaveChanges(); } } } But it doesn't persist Customer "Harry" to the database! I've been scratching my head for a while now wondering why such a simple operation doesn't work. What on earth could be the problem!?

    Read the article

  • What causes POCO proxy entities to only sometimes be created in Entity Framework 4.

    - by Kohan
    I have set up my POCOs and I have marked their public properties as virtual and I am successfully getting Proxies most of the time (95%) but randomly I am getting EF return some proxies and some non-proxies. Recycling the app pool when this happens will then fix this instance of the error and it will go away for an amount of time. Then it will re-occur in some other random (it seems) place. What can cause this sort of behaviour? Thanks, Kohan

    Read the article

  • How do I tell Entity Framework that a column in a view is nullable?

    - by Ryan ONeill
    I have a view which has an Int column which is nullable (let's call it StackOverflowCount). When generating an EF model from the database, the EF designer does not recognise it as nullable and creates the column as an Int. The issue I have is that on the EF designer I have set the column to Nullable and the following error then kills the compilation; Error 3031: Problem in mapping fragments starting at line 2327: Non-nullable column MyView.StackOverflowCount in table MyView is mapped to a nullable entity property. I can get round this by opening the .edmx file in XML mode and manually editing the SQL column definition, but there is no way to do this using the designer and it gets overwritten the next time I refresh from the model from the DB. Is this 'by design' or an example of something that slipped through into EF 4.0? I'm using .Net 4.0 with EF 4.0 under VS 2010.

    Read the article

  • how to select specific number of child entities instead of all in entity framework 3.5?

    - by Sasha
    Hi all, i am wondering how can i select specific number of child objects instead of taking them all with include? lets say i have object 'Group' and i need to select last ten students that joined the group. When i use '.Include("Students"), EF includes all students. I was trying to use Take(10), but i am pretty new to EF and programming as well, so i couldn't figure it out. Any suggestions? UPDATED: ok, i have Group object already retrieved from db like this: Group group = db.Groups.FirstOrDefault(x=>x.GroupId == id) I know that i can add Include("Students") statement, but that would bring ALL students, and their number could be quite big whether i need only freshest 10 students. Can i do something like this: var groupWithStudents = group.Students.OrderByDescending(//...).Take(10);? The problem with this is that Take< no longer appears in intellisense. Is this clear enough? Thanks for responses

    Read the article

  • Fix: Orchard Error ‘The controller for path '/OrchardLocal/' was not found or does not implement IController.

    - by Ken Cox [MVP]
    Suddenly, in a local Orchard 1.6 project, I started getting this error in ShellRoute.cs: The controller for path '/OrchardLocal/' was not found or does not implement IController. Obviously I had changed something, but the error wasn’t helping much.  After losing far too much time, I copied over the original Orchard source code and was back in business. Shortly thereafter, I further flattened my forehead by applying a sudden, solid blow with the lower portion of my palm! You see, in testing the importing of comments via blogML, I had set the added blog as the Orchard site’s Start page. Then, I deleted the blog so I could test another import batch. The upshot was that by deleting the blog, Orchard no longer had a default (home) page at the root of the site. The site’s default content was missing. The fix was to go to the Admin subdirectory (http://localhost:30320/OrchardLocal/admin) . add a new page, and check Set as homepage. Once again, the problem was between the keyboard and the chair. I hope this helps someone else. Ken

    Read the article

  • Running an intern program

    - by dotneteer
    This year I am running an unpaid internship program for high school students. I work for a small company. We have ideas for a few side projects but never have time to do them. So we experiment by making them intern projects. In return, we give these interns guidance to learn, personal attentions, and opportunities with real-world projects. A few years ago, I blogged about the idea of teaching kids to write application with no more than 6 hours of training. This time, I was able to reduce the instruction time to 4 hours and immediately put them into real work projects. When they encounter problems, I combine directions, pointer to various materials on w3school, Udacity, Codecademy and UTube, as well as encouraging them to  search for solutions with search engines. Now entering the third week, I am more than encouraged and feeling accomplished. Our the most senior intern, Christopher Chen, is a recent high school graduate and is heading to UC Berkeley to study computer science after the summer. He previously only had one year of Java experience through the AP computer science course but had no web development experience. Only 12 days into his internship, he has already gain advanced css skills with deeper understanding than more than half of the “senior” developers that I have ever worked with. I put him on a project to migrate an existing website to the Orchard content management system (CMS) with which I am new as well. We were able to teach each other and quickly gain advanced Orchard skills such as creating custom theme and modules. I felt very much a relationship similar to the those between professors and graduate students. On the other hand, I quite expect that I will lose him the next summer to companies like Google, Facebook or Microsoft. As a side note, Christopher and I will do a two part Orchard presentations together at the next SoCal code camp at UC San Diego July 27-28. The first part, “creating an Orchard website on Azure in 60 minutes”, is an introductory lecture and we will discuss how to create a website using Orchard without writing code. The 2nd part, “customizing Orchard websites without limit”, is an advanced lecture and we will discuss custom theme and module development with WebMatrix and Visual Studio.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

< Previous Page | 263 264 265 266 267 268 269 270 271 272 273 274  | Next Page >