Search Results

Search found 30309 results on 1213 pages for 'object relationships'.

Page 271/1213 | < Previous Page | 267 268 269 270 271 272 273 274 275 276 277 278  | Next Page >

  • Abstracting functionality

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/22/abstracting-functionality.aspxWhat is more important than data? Functionality. Yes, I strongly believe we should switch to a functionality over data mindset in programming. Or actually switch back to it. Focus on functionality Functionality once was at the core of software development. Back when algorithms were the first thing you heard about in CS classes. Sure, data structures, too, were important - but always from the point of view of algorithms. (Niklaus Wirth gave one of his books the title “Algorithms + Data Structures” instead of “Data Structures + Algorithms” for a reason.) The reason for the focus on functionality? Firstly, because software was and is about doing stuff. Secondly because sufficient performance was hard to achieve, and only thirdly memory efficiency. But then hardware became more powerful. That gave rise to a new mindset: object orientation. And with it functionality was devalued. Data took over its place as the most important aspect. Now discussions revolved around structures motivated by data relationships. (John Beidler gave his book the title “Data Structures and Algorithms: An Object Oriented Approach” instead of the other way around for a reason.) Sure, this data could be embellished with functionality. But nevertheless functionality was second. When you look at (domain) object models what you mostly find is (domain) data object models. The common object oriented approach is: data aka structure over functionality. This is true even for the most modern modeling approaches like Domain Driven Design. Look at the literature and what you find is recommendations on how to get data structures right: aggregates, entities, value objects. I´m not saying this is what object orientation was invented for. But I´m saying that´s what I happen to see across many teams now some 25 years after object orientation became mainstream through C++, Delphi, and Java. But why should we switch back? Because software development cannot become truly agile with a data focus. The reason for that lies in what customers need first: functionality, behavior, operations. To be clear, that´s not why software is built. The purpose of software is to be more efficient than the alternative. Money mainly is spent to get a certain level of quality (e.g. performance, scalability, security etc.). But without functionality being present, there is nothing to work on the quality of. What customers want is functionality of a certain quality. ASAP. And tomorrow new functionality needs to be added, existing functionality needs to be changed, and quality needs to be increased. No customer ever wanted data or structures. Of course data should be processed. Data is there, data gets generated, transformed, stored. But how the data is structured for this to happen efficiently is of no concern to the customer. Ask a customer (or user) whether she likes the data structured this way or that way. She´ll say, “I don´t care.” But ask a customer (or user) whether he likes the functionality and its quality this way or that way. He´ll say, “I like it” (or “I don´t like it”). Build software incrementally From this very natural focus of customers and users on functionality and its quality follows we should develop software incrementally. That´s what Agility is about. Deliver small increments quickly and often to get frequent feedback. That way less waste is produced, and learning can take place much easier (on the side of the customer as well as on the side of developers). An increment is some added functionality or quality of functionality.[1] So as it turns out, Agility is about functionality over whatever. But software developers’ thinking is still stuck in the object oriented mindset of whatever over functionality. Bummer. I guess that (at least partly) explains why Agility always hits a glass ceiling in projects. It´s a clash of mindsets, of cultures. Driving software development by demanding small increases in functionality runs against thinking about software as growing (data) structures sprinkled with functionality. (Excuse me, if this sounds a bit broad-brush. But you get my point.) The need for abstraction In the end there need to be data structures. Of course. Small and large ones. The phrase functionality over data does not deny that. It´s not functionality instead of data or something. It´s just over, i.e. functionality should be thought of first. It´s a tad more important. It´s what the customer wants. That´s why we need a way to design functionality. Small and large. We need to be able to think about functionality before implementing it. We need to be able to reason about it among team members. We need to be able to communicate our mental models of functionality not just by speaking about them, but also on paper. Otherwise reasoning about it does not scale. We learned thinking about functionality in the small using flow charts, Nassi-Shneiderman diagrams, pseudo code, or UML sequence diagrams. That´s nice and well. But it does not scale. You can use these tools to describe manageable algorithms. But it does not work for the functionality triggered by pressing the “1-Click Order” on an amazon product page for example. There are several reasons for that, I´d say. Firstly, the level of abstraction over code is negligible. It´s essentially non-existent. Drawing a flow chart or writing pseudo code or writing actual code is very, very much alike. All these tools are about control flow like code is.[2] In addition all tools are computationally complete. They are about logic which is expressions and especially control statements. Whatever you code in Java you can fully (!) describe using a flow chart. And then there is no data. They are about control flow and leave out the data altogether. Thus data mostly is assumed to be global. That´s shooting yourself in the foot, as I hope you agree. Even if it´s functionality over data that does not mean “don´t think about data”. Right to the contrary! Functionality only makes sense with regard to data. So data needs to be in the picture right from the start - but it must not dominate the thinking. The above tools fail on this. Bottom line: So far we´re unable to reason in a scalable and abstract manner about functionality. That´s why programmers are so driven to start coding once they are presented with a problem. Programming languages are the only tool they´ve learned to use to reason about functional solutions. Or, well, there might be exceptions. Mathematical notation and SQL may have come to your mind already. Indeed they are tools on a higher level of abstraction than flow charts etc. That´s because they are declarative and not computationally complete. They leave out details - in order to deliver higher efficiency in devising overall solutions. We can easily reason about functionality using mathematics and SQL. That´s great. Except for that they are domain specific languages. They are not general purpose. (And they don´t scale either, I´d say.) Bummer. So to be more precise we need a scalable general purpose tool on a higher than code level of abstraction not neglecting data. Enter: Flow Design. Abstracting functionality using data flows I believe the solution to the problem of abstracting functionality lies in switching from control flow to data flow. Data flow very naturally is not about logic details anymore. There are no expressions and no control statements anymore. There are not even statements anymore. Data flow is declarative by nature. With data flow we get rid of all the limiting traits of former approaches to modeling functionality. In addition, nomen est omen, data flows include data in the functionality picture. With data flows, data is visibly flowing from processing step to processing step. Control is not flowing. Control is wherever it´s needed to process data coming in. That´s a crucial difference and needs some rewiring in your head to be fully appreciated.[2] Since data flows are declarative they are not the right tool to describe algorithms, though, I´d say. With them you don´t design functionality on a low level. During design data flow processing steps are black boxes. They get fleshed out during coding. Data flow design thus is more coarse grained than flow chart design. It starts on a higher level of abstraction - but then is not limited. By nesting data flows indefinitely you can design functionality of any size, without losing sight of your data. Data flows scale very well during design. They can be used on any level of granularity. And they can easily be depicted. Communicating designs using data flows is easy and scales well, too. The result of functional design using data flows is not algorithms (too low level), but processes. Think of data flows as descriptions of industrial production lines. Data as material runs through a number of processing steps to be analyzed, enhances, transformed. On the top level of a data flow design might be just one processing step, e.g. “execute 1-click order”. But below that are arbitrary levels of flows with smaller and smaller steps. That´s not layering as in “layered architecture”, though. Rather it´s a stratified design à la Abelson/Sussman. Refining data flows is not your grandpa´s functional decomposition. That was rooted in control flows. Refining data flows does not suffer from the limits of functional decomposition against which object orientation was supposed to be an antidote. Summary I´ve been working exclusively with data flows for functional design for the past 4 years. It has changed my life as a programmer. What once was difficult is now easy. And, no, I´m not using Clojure or F#. And I´m not a async/parallel execution buff. Designing the functionality of increments using data flows works great with teams. It produces design documentation which can easily be translated into code - in which then the smallest data flow processing steps have to be fleshed out - which is comparatively easy. Using a systematic translation approach code can mirror the data flow design. That way later on the design can easily be reproduced from the code if need be. And finally, data flow designs play well with object orientation. They are a great starting point for class design. But that´s a story for another day. To me data flow design simply is one of the missing links of systematic lightweight software design. There are also other artifacts software development can produce to get feedback, e.g. process descriptions, test cases. But customers can be delighted more easily with code based increments in functionality. ? No, I´m not talking about the endless possibilities this opens for parallel processing. Data flows are useful independently of multi-core processors and Actor-based designs. That´s my whole point here. Data flows are good for reasoning and evolvability. So forget about any special frameworks you might need to reap benefits from data flows. None are necessary. Translating data flow designs even into plain of Java is possible. ?

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • What software is available to keep track of hundreds of servers?

    - by djangofan
    What good software is available (free or not free) to help me keep track of information relating to hundreds of servers, their relationships to each other (parent/child, category, type), and information on connecting to them, as well as possibly showing a picture or grid of some kind that allows me to report these relationships and key information to my supervisor. I am trying to avoid the "spreadsheet solution" or "visio solution" because I want to share this information and make changes with other persons in my server team. In other words, the solution I am looking for is a cross between a spreadsheet solution and a visio solution, providing both graphing and configuration information WITHOUT monitoring, and in a consistent format.

    Read the article

  • Performance surprise with "as" and nullable types

    - by Jon Skeet
    I'm just revising chapter 4 of C# in Depth which deals with nullable types, and I'm adding a section about using the "as" operator, which allows you to write: object o = ...; int? x = o as int?; if (x.HasValue) { ... // Use x.Value in here } I thought this was really neat, and that it could improve performance over the C# 1 equivalent, using "is" followed by a cast - after all, this way we only need to ask for dynamic type checking once, and then a simple value check. This appears not to be the case, however. I've included a sample test app below, which basically sums all the integers within an object array - but the array contains a lot of null references and string references as well as boxed integers. The benchmark measures the code you'd have to use in C# 1, the code using the "as" operator, and just for kicks a LINQ solution. To my astonishment, the C# 1 code is 20 times faster in this case - and even the LINQ code (which I'd have expected to be slower, given the iterators involved) beats the "as" code. Is the .NET implementation of isinst for nullable types just really slow? Is it the additional unbox.any that causes the problem? Is there another explanation for this? At the moment it feels like I'm going to have to include a warning against using this in performance sensitive situations... Results: Cast: 10000000 : 121 As: 10000000 : 2211 LINQ: 10000000 : 2143 Code: using System; using System.Diagnostics; using System.Linq; class Test { const int Size = 30000000; static void Main() { object[] values = new object[Size]; for (int i = 0; i < Size - 2; i += 3) { values[i] = null; values[i+1] = ""; values[i+2] = 1; } FindSumWithCast(values); FindSumWithAs(values); FindSumWithLinq(values); } static void FindSumWithCast(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { if (o is int) { int x = (int) o; sum += x; } } sw.Stop(); Console.WriteLine("Cast: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithAs(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { int? x = o as int?; if (x.HasValue) { sum += x.Value; } } sw.Stop(); Console.WriteLine("As: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithLinq(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = values.OfType<int>().Sum(); sw.Stop(); Console.WriteLine("LINQ: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } }

    Read the article

  • PHP parsing XML file with and without namespaces

    - by Mike
    I need to get a XML File into a Database. Thats not the problem. Cant read it, parse it and create some Objects to map to the DB. Problem is, that sometimes the XML File can contain namespaces and sometimes not. Furtermore sometimes there is no namespace defined at all. So what i first got was something like this: <?xml version="1.0" encoding="UTF-8"?> <struct xmlns:b="http://www.w3schools.com/test/"> <objects> <object> <node_1>value1</node_1> <node_2>value2</node_2> <node_3 iso_land="AFG"/> <coords lat="12.00" long="13.00"/> </object> </objects> </struct> And the parsing: $t = $xml->xpath('/objects/object'); foreach($nodes AS $node) { if($t[0]->$node) { $obj->$node = (string) $t[0]->$node; } } Thats fine as long as there are no namespaces. Here comes the XML File with namespaces: <?xml version="1.0" encoding="UTF-8"?> <b:struct xmlns:b="http://www.w3schools.com/test/"> <b:objects> <b:object> <b:node_1>value1</b:node_1> <b:node_2>value2</b:node_2> <b:node_3 iso_land="AFG"/> <b:coords lat="12.00" long="13.00"/> </b:object> </b:objects> </b:struct> I now came up with something like this: $xml = simplexml_load_file("test.xml"); $namespaces = $xml->getNamespaces(TRUE); $ns = count($namespaces) ? 'a:' : ''; $xml->registerXPathNamespace("a", "http://www.w3schools.com/test/"); $nodes = array('node_1', 'node_2'); $obj = new stdClass(); foreach($nodes AS $node) { $t = $xml->xpath('/'.$ns.'objects/'.$ns.'object/'.$ns.$node); if($t[0]) { $obj->$node = (string) $t[0]; } } $t = $xml->xpath('/'.$ns.'objects/'.$ns.'object/'.$ns.'node_3'); if($t[0]) { $obj->iso_land = (string) $t[0]->attributes()->iso_land; } $t = $xml->xpath('/'.$ns.'objects/'.$ns.'object/'.$ns.'coords'); if($t[0]) { $obj->lat = (string) $t[0]->attributes()->lat; $obj->long = (string) $t[0]->attributes()->long; } That works with namespaces and without. But i feel that there must be a better way. Before that i could do something like this: $t = $xml->xpath('/'.$ns.'objects/'.$ns.'object'); foreach($nodes AS $node) { if($t[0]->$node) { $obj->$node = (string) $t[0]->$node; } } But that just wont work with namespaces.

    Read the article

  • Creating a Serializable mock with Mockito error

    - by KwintenP
    I'm trying to create a mock object with Mockito that can be serialized. The object is an interface implementation. When this method is called, I receive an object that I want to pass to another object, hence using the doAnswer(...)-method. This is my code. InterfaceClass obj = mock(InterfaceClass.class, withSettings().serializable()); doAnswer(new Answer<Object>() { public Object answer(InvocationOnMock invocation) throws Throwable { Object[] args = invocation.getArguments(); //Here I do something with the arguments } }).when(obj).someMethod( any(someObject.class)); ByteArrayOutputStream bos = new ByteArrayOutputStream(); ObjectOutput out = null; try { out = new ObjectOutputStream(bos); out.writeObject(obj); byte[] yourBytes = bos.toByteArray(); } finally { out.close(); bos.close(); } As far as I can tell this should be correct (I'm fairly new to Mockito). But when Serializing my object I get this error: java.io.NotSerializableException: com.trust1t.ocs.signcore.test.InvalidInputTestCase$1 at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1165) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:329) at java.util.concurrent.ConcurrentLinkedQueue.writeObject(ConcurrentLinkedQueue.java:644) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:950) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1482) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1535) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:329) at java.util.LinkedList.writeObject(LinkedList.java:943) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:950) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1482) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1535) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1535) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1535) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1535) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1413) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1159) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:329) at com.trust1t.ocs.signcore.test.InvalidInputTestCase.certificateValidationTest(InvalidInputTestCase.java:117) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:50) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:467) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:683) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:390) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:197) The invalidInputTestCase class is the class containing the test where I'm using this code. It looks as if the mock object references this TestCase somewhere (can't find it though). Am I not correctly implementing this or better ideas to mock?

    Read the article

  • Cannot Display Chinese Character in my PHP code

    - by Jun1st
    I want to display my Twitter Info in my blog. So I write some code to get it. the issue I got is that Chinese characters displayed as unknown code. Here is the test code. Could anyone take a look and help? Thanks <html> <title>Twitter Test</title> <body> <?php function mystique_objectToArray($object){ if(!is_object($object) && !is_array($object)) return $object; if(is_object($object)) $object = get_object_vars($object); return array_map('mystique_objectToArray', $object); } define( 'ABSPATH', dirname(dirname(__FILE__)) . '/' ); require_once('/home/jun1st/jun1stfeng.com/wp-includes/class-snoopy.php'); $snoopy = new Snoopy; $response = @$snoopy->fetch("http://twitter.com/users/show/jun1st.json"); if ($response) $userdata = json_decode($snoopy->results, true); else $error = true; $response = @$snoopy->fetch("http://twitter.com/statuses/user_timeline/jun1st.json"); if ($response) $tweets = json_decode($snoopy->results, true); else $error = true; if(!$error): // for php < 5 (included JSON returns object) $userdata = mystique_objectToArray($userdata); $tweets = mystique_objectToArray($tweets); $twitdata = array(); $twitdata['user']['profile_image_url'] = $userdata['profile_image_url']; $twitdata['user']['name'] = $userdata['name']; $twitdata['user']['screen_name'] = $userdata['screen_name']; $twitdata['user']['followers_count'] = $userdata['followers_count']; $i = 0; foreach($tweets as $tweet): $twitdata['tweets'][$i]['text'] = $tweet['text']; $twitdata['tweets'][$i]['created_at'] = $tweet['created_at']; $twitdata['tweets'][$i]['id'] = $tweet['id']; $i++; endforeach; endif; // only show if the twitter data from the database is newer than 6 hours if(is_array($twitdata['tweets'])): ?> <div class="clear-block"> <div class="avatar"><img src="<?php echo $twitdata['user']['profile_image_url']; ?>" alt="<?php echo $twitdata['user']['name']; ?>" /></div> <div class="info"><a href="http://www.twitter.com/jun1st"><?php echo $twitdata['user']['name']; ?> </a><br /><span class="followers"> <?php printf(__("%s followers","mystique"),$twitdata['user']['followers_count']); ?></span></div> </div> <ul> <?php $i = 0; foreach($twitdata['tweets'] as $tweet): $pattern = '/\@(\w+)/'; $replace = '<a rel="nofollow" href="http://twitter.com/$1">@$1</a>'; $tweet['text'] = preg_replace($pattern, $replace , $tweet['text']); $tweet['text'] = make_clickable($tweet['text']); // remove +XXXX $tweettime = substr_replace($tweet['created_at'],'',strpos($tweet['created_at'],"+"),5); $link = "http://twitter.com/".$twitdata['user']['screen_name']."/statuses/".$tweet['id']; echo '<li><span class="entry">' . $tweet['text'] .'<a class="date" href="'.$link.'" rel="nofollow">'.$tweettime.'</a></span></li>'; $i++; if ($i == $twitcount) break; endforeach; ?> </ul> <? endif?> ?> </body> </html>

    Read the article

  • How can I bind events to strongly typed datasets of different types?

    My application contains several forms which consist of a strongly typed datagridview, a strongly typed bindingsource, and a strongly typed table adapter. I am using some code in each form to update the database whenever the user leaves the current row, shifts focus away from the datagrid or the form, or closes the form. This code is the same in each case, so I want to make a subclass of form, from which all of these forms can inherit. But the strongly typed data objects all inherit from component, which doesn't expose the events I want to bind to or the methods I want to invoke. The only way I can see of gaining access to the events is to use: Type(string Name).GetEvent(string EventName).AddEventHandler(object Target,Delegate Handler) Similarly, I want to call the Update method of the strongly typed table adapter, and am using Type(string Name).GetMethod(String name, Type[] params).Invoke(object target, object[] params). It works ok, but it seems very heavy handed. Is there a better way? Here is my code for the main class: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Windows.Forms; using System.Data; using System.Data.SqlClient; using System.ComponentModel; namespace MyApplication { public class AutoSaveDataGridForm: Form { private DataRow PreviousRow; public Component Adapter { private get; set; } private Component dataGridView; public Component DataGridView { private get { return dataGridView; } set { dataGridView = value; Type t = dataGridView.GetType(); t.GetEvent("Leave").AddEventHandler(dataGridView, new EventHandler(DataGridView_Leave)); } } private Component bindingSource; public Component BindingSource { private get { return bindingSource; } set { bindingSource = value; Type t = bindingSource.GetType(); t.GetEvent("PositionChanged").AddEventHandler(bindingSource, new EventHandler(BindingSource_PositionChanged)); } } protected void Save() { if (PreviousRow != null && PreviousRow.RowState != DataRowState.Unchanged) { Type t = Adapter.GetType(); t.GetMethod("Update", new Type[] { typeof(DataRow[]) }).Invoke(Adapter, new object[] { new DataRow[] { PreviousRow } }); } } private void BindingSource_PositionChanged(object sender, EventArgs e) { BindingSource bindingSource = sender as BindingSource; DataRowView CurrentRowView = bindingSource.Current as DataRowView; DataRow CurrentRow = CurrentRowView.Row; if (PreviousRow != null && PreviousRow != CurrentRow) { Save(); } PreviousRow = CurrentRow; } private void InitializeComponent() { this.SuspendLayout(); // // AutoSaveDataGridForm // this.FormClosed += new System.Windows.Forms.FormClosedEventHandler(this.AutoSaveDataGridForm_FormClosed); this.Leave += new System.EventHandler(this.AutoSaveDataGridForm_Leave); this.ResumeLayout(false); } private void DataGridView_Leave(object sender, EventArgs e) { Save(); } private void AutoSaveDataGridForm_FormClosed(object sender, FormClosedEventArgs e) { Save(); } private void AutoSaveDataGridForm_Leave(object sender, EventArgs e) { Save(); } } } And here is a (partial) form which implements it: public partial class FileTypesInherited :AutoSaveDataGridForm { public FileTypesInherited() { InitializeComponent(); } private void FileTypesInherited_Load(object sender, EventArgs e) { // TODO: This line of code loads data into the 'sharedFoldersInformationV2DataSet.tblFileTypes' table. You can move, or remove it, as needed. this.tblFileTypesTableAdapter.Fill(this.sharedFoldersInformationV2DataSet.tblFileTypes); this.BindingSource = tblFileTypesBindingSource; this.Adapter = tblFileTypesTableAdapter; this.DataGridView = tblFileTypesDataGridView; } }

    Read the article

  • globals and locals in python exec()

    - by hawkettc
    Hi, I'm trying to run a piece of python code using exec. my_code = """ class A(object): pass print 'locals: %s' % locals() print 'A: %s' % A class B(object): a_ref = A """ global_env = {} local_env = {} my_code_AST = compile(my_code, "My Code", "exec") exec(my_code_AST, global_env, local_env) print local_env which results in the following output locals: {'A': <class 'A'>} A: <class 'A'> Traceback (most recent call last): File "python_test.py", line 16, in <module> exec(my_code_AST, global_env, local_env) File "My Code", line 8, in <module> File "My Code", line 9, in B NameError: name 'A' is not defined However, if I change the code to this - my_code = """ class A(object): pass print 'locals: %s' % locals() print 'A: %s' % A class B(A): pass """ global_env = {} local_env = {} my_code_AST = compile(my_code, "My Code", "exec") exec(my_code_AST, global_env, local_env) print local_env then it works fine - giving the following output - locals: {'A': <class 'A'>} A: <class 'A'> {'A': <class 'A'>, 'B': <class 'B'>} Clearly A is present and accessible - what's going wrong in the first piece of code? I'm using 2.6.5, cheers, Colin * UPDATE 1 * If I check the locals() inside the class - my_code = """ class A(object): pass print 'locals: %s' % locals() print 'A: %s' % A class B(object): print locals() a_ref = A """ global_env = {} local_env = {} my_code_AST = compile(my_code, "My Code", "exec") exec(my_code_AST, global_env, local_env) print local_env Then it becomes clear that locals() is not the same in both places - locals: {'A': <class 'A'>} A: <class 'A'> {'__module__': '__builtin__'} Traceback (most recent call last): File "python_test.py", line 16, in <module> exec(my_code_AST, global_env, local_env) File "My Code", line 8, in <module> File "My Code", line 10, in B NameError: name 'A' is not defined However, if I do this, there is no problem - def f(): class A(object): pass class B(object): a_ref = A f() print 'Finished OK' * UPDATE 2 * ok, so the docs here - http://docs.python.org/reference/executionmodel.html 'A class definition is an executable statement that may use and define names. These references follow the normal rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names defined at the class scope are not visible in methods.' It seems to me that 'A' should be made available as a free variable within the executable statement that is the definition of B, and this happens when we call f(), but not when we use exec(). This can be more easily shown with the following - my_code = """ class A(object): pass print 'locals in body: %s' % locals() print 'A: %s' % A def f(): print 'A in f: %s' % A f() class B(object): a_ref = A """ which outputs locals in body: {'A': <class 'A'>} A: <class 'A'> Traceback (most recent call last): File "python_test.py", line 20, in <module> exec(my_code_AST, global_env, local_env) File "My Code", line 11, in <module> File "My Code", line 9, in f NameError: global name 'A' is not defined So I guess the new question is - why aren't those locals being exposed as free variables in functions and class definitions - it seems like a pretty standard closure scenario.

    Read the article

  • Java JNI leak in c++ process.

    - by user662056
    Hi all.. I am beginner in Java. My problem is: I am calling a Java class's method from c++. For this i am using JNI. Everythings works correct, but i have some memory LEAKS in the process of c++ program... So.. i did simple example.. 1) I create a java machine (jint res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);) 2) then i take a pointer on java class (jclass cls = env-FindClass("test_jni")); 3) after that i create a java class object object, by calling the constructor (testJavaObject = env-NewObject(cls, testConstruct);) AT THIS very moment in the process of c++ program is allocated 10 MB of memory 4) Next i delete the class , the object, and the Java Machine .. AT THIS very moment the 10 MB of memory are not free ................. So below i have a few lines of code c++ program void main() { { //Env JNIEnv *env; // java virtual machine JavaVM *jvm; JavaVMOption* options = new JavaVMOption[1]; //class paths options[0].optionString = "-Djava.class.path=C:/Sun/SDK/jdk/lib;D:/jms_test/java_jni_leak;"; // other options JavaVMInitArgs vm_args; vm_args.version = JNI_VERSION_1_6; vm_args.options = options; vm_args.nOptions = 1; vm_args.ignoreUnrecognized = false; // alloc part of memory (for test) before CreateJavaVM char* testMem0 = new char[1000]; for(int i = 0; i < 1000; ++i) testMem0[i] = 'a'; // create java VM jint res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args); // alloc part of memory (for test) after CreateJavaVM char* testMem1 = new char[1000]; for(int i = 0; i < 1000; ++i) testMem1[i] = 'b'; //Creating java virtual machine jclass cls = env->FindClass("test_jni"); // Id of a class constructor jmethodID testConstruct = env->GetMethodID(cls, "<init>", "()V"); // The Java Object // Calling the constructor, is allocated 10 MB of memory in c++ process jobject testJavaObject = env->NewObject(cls, testConstruct); // function DeleteLocalRef, // In this very moment memory not free env->DeleteLocalRef(testJavaObject); env->DeleteLocalRef(cls); // 1!!!!!!!!!!!!! res = jvm->DestroyJavaVM(); delete[] testMem0; delete[] testMem1; // In this very moment memory not free. TO /// } int gg = 0; } java class (it just allocs some memory) import java.util.*; public class test_jni { ArrayList<String> testStringList; test_jni() { System.out.println("start constructor"); testStringList = new ArrayList<String>(); for(int i = 0; i < 1000000; ++i) { // ??????? ?????? testStringList.add("TEEEEEEEEEEEEEEEEST"); } } } process memory view, after crating javaVM and java object: testMem0 and testMem1 - test memory, that's allocated by c++. ************** testMem0 ************** JNI_CreateJavaVM ************** testMem1 ************** // create java object jobject testJavaObject = env->NewObject(cls, testConstruct); ************** process memory view, after destroy javaVM and delete ref on java object: testMem0 and testMem1 are deleted to; ************** JNI_CreateJavaVM ************** // create java object jobject testJavaObject = env->NewObject(cls, testConstruct); ************** So testMem0 and testMem1 is deleted, But JavaVM and Java object not.... Sow what i do wrong... and how i can free memory in the c++ process program.

    Read the article

  • CodePlex Daily Summary for Friday, May 07, 2010

    CodePlex Daily Summary for Friday, May 07, 2010New ProjectsBibleBrowser: BibleBrowserBibleMaps: BibleMapsChristianLibrary: ChristianLibraryCLB Podcast Module: DotNetNuke Module used to allow DNN to host one or more podcasts within a portal.Coletivo InVitro: Nova versão do Site do ColetivoCustomer Care Accelerator for Microsoft Dynamics CRM: Customer Care Accelerator for Microsoft Dynamics CRM.EasyTFS: A very lightweight, quick, web-based search application for Team Foundation Server. EasyTfs searches as you type, providing real-time search resul...FSCommunity: abcGeocache Downloader: GeocacheDownloader helps you download geocache information in an organised way, making easier to copy the information to your device. The applicati...Grabouille: Grabouille aims to be an incubation project for Microsoft best patterns & practices and also a container for last .Net technologies. The goal is, i...Klaverjas: Test application for testing different new technologies in .NET (WCF, DataServices, C# stuff, Entity...etc.)Livecity: Social network. Alpha 0.1MarxSupples: testMOSS 2007 - Excel Services: This helps you understand MOSS 2007 - Excel Services and how to use the same in .NETmy site: a personal web siteNazTek.Extension.Clr35: Contains a set of CLR 3.5 extensions and utility APInetDumbster: netDumbster is a .Net Fake SMTP Server clone of the popular Dumbster (http://quintanasoft.com/dumbster/) netDumbster is based on the API of nDumbs...Object-Oriented Optimization Toolbox (OOOT): A library (.dll) of various linear, nonlinear, and stochastic numerical optimization techniques. While some of these are older than 50 years, they ...OMap - Object to Object Mapper: OMap is a simple object to object mapper. It could be used for scenarios like mapping your data from domain objects into data transfer objects.PDF Renderer for BlackBerry.: Render and view PDF files on BlackBerry using a modified version of Sun's PDF Renderer.Pomodoro Tool: Pomodoro Tool is a timer for http://www.pomodorotechnique.com/ . It's a timer and task tracker with a text task editing interface.ReadingPlan: ReadingPlanRil#: .net library to use the public Readitlater.com public APISCSM Incident SLA Management: This project provides an extension to System Center Service Manager to provide more granular control over incident service level agreement (SLA) ma...SEAH - Sistema Especialista de Agravante de Hipertensão: O SEAH tem como propósito alertar o indivíduo em relação ao seu agravante de hipertensão arterial e a órgãos competentes, entidades de ensino, pesq...StudyGuide: StudyGuideTest Project (ignore): This is used to demonstrate CodePlex at meetings. Please ignore this project.YCC: YCC is an open source c compiler which compatible with ANSI standard.The project is currently an origin start.We will work it for finally useable a...New ReleasesAlbum photo de club - Club's Photos Album: App - version 0.5: Modifications : - Ajout des favoris - Ajout de l'update automatique /*/ - Add favorites - Add automatic updateBoxee Launcher: Boxee Launcher 1.0.1.5: Boxee Launcher finds the BOXEE executable using a registry key that BOXEE creates. The new version of BOXEE changed the location. Boxee Launcher ha...CBM-Command: 2010-05-06: Release Notes - 2010-05-06New Features Creating Directories Deleting Files and Directories Renaming Files and Directories Changes 40 columns i...Customer Care Accelerator for Microsoft Dynamics CRM: Customer Care Accelerator for Dynamics CRM R1: The Customer Care Accelerator (CCA) for Microsoft Dynamics CRM focuses on delivering contact center enabling functionality, such as the ability to ...D-AMPS: D-AMPS 0.9.2: Add .bat files for command-line running Bug fixed (core engine) Section 6, 8, 9 modifications Sources (Fortran) for core engineDynamicJson: Release 1.1.0.0: Add - foreach support Add - Dynamic Shortcut of IsDefined,Delete,Deserialize Fix - Deserialize Delete - LengthEasyTFS: EasyTfs 1.0 Beta 1: A very lightweight, quick, web-based search application for Team Foundation Server. EasyTfs searches as you type, providing real-time search resul...Event Scavenger: Add installer for Admin tool: Added installer for Admin tool. Removed exe's for admin and viewer from zip file - were replaced by the msi installers.Expression Blend Samples: PathListBoxUtils for Expression Blend 4 RC: Initial release of the PathListBoxUtils samples.HackingSilverlight Code Browser: HackingSilverlight Code Browser: Out with the old and in with the new... the HackingSilverlight Code Browser is a reference tool for code snippets so that I can not have to remembe...Hammock for REST: Hammock v1.0.3: v1.0.3 ChangesFixes for OAuth escaping and API usage Added FollowRedirects feature to RestClient/RestRequest v1.0.2 Changes.NET 4.0 and Client P...ImmlPad: ImmlPad Beta 1.1.1: Changes in this release: Added more intelligent right-click menu's to allow opening an IMML document with a specific Player version Fixed issue w...LinkedIn® for Windows Mobile: LinkedIn for Windows Mobile v0.8: Improved error message dumping + moved OAuth parameters from www.* to api.* In case of unexpected errors, check "Application Data\LinkedIn for Wind...Live-Exchange Calendar Sync: Installer: Alpha release of Live-Exchange Calendar SyncMAPILab Explorer for SharePoint: MAPILab Explorer for SharePoint ver 2.1.0: 1) Get settings form old versions 2) Rules added to display enumerable object items. 3) Bug fixed with remove persisted object How to install:Do...MapWindow6: MapWindow 6.0 msi May 6, 2010: This release enables output .prj files to also show the ESRI names for the PRJCS, GEOCS, and the DATUM. It also fixes a bug that was preventing th...MOSS 2007 - Excel Services: Calculator using Excel Services: Simple calculator using Excel ServicesMvcMaps - Unified Bing/Google Mapping API for ASP.NET MVC: MvcMaps Preview 1 for ASP.NET 4.0 and VS'2010: There was a change in ASP.NET 4.0 that broke the release, so a small modification needed to be made to the reflection code. This release fixes that...NazTek.Extension.Clr35: NazTek.Extension.Clr35 Binary Cab: Binary cab fileNazTek.Extension.Clr35: NazTek.Extension.Clr35 Source Cab: Source codePDF Renderer for BlackBerry.: PDF Renderer 0.1 for BlackBerry: This library requires a BlackBerry Signing Key in order to compile for use on a BlackBerry device. Signing keys can be obtained at BlackBerry Code ...Pomodoro Tool: PomodoroTool Clickonce installer: PomodoroTool Clickonce installerPOS for .Net Handheld Products Service Object: POS for .Net Handheld Products Service Object 1002: New version (1.0.0.2) which should support 64 bit platforms (see ReadMe.txt included with source for details). Source code only.QuestTracker: QuestTracker 0.4: What's New in QuestTracker 0.4 - - You can now drag and drop the quests on the left pane to rearrange or move quests from one group to another. - D...RDA Collaboration Team Projects: Property Bag Cmdlet: This cmdlet allows to retrieve, insert and update property bag values at farm, web app, site and web scope. The same operations can be in code usi...Ril#: Rilsharp 1.0: The first version of the Ril# (Readitlater sharp) library.Scrum Sprint Monitor: v1.0.0.47911 (.NET 4-TFS 2010): What is new in this release? Migrated to .NET Framework 4 RTM; Compiled against TFS 2010 RTM Client DLLs; Smoother animations with easing funct...SCSM Incident SLA Management: SCSM Incident SLA Management Version 0.1: This is the first release of the SCSM SLA Management solution. It is an 'alpha' release and has only been tested by the developers on the project....StackOverflow Desktop Client in C# and WPF: StackOverflow Client 0.4: Shows a popup that displays all the new questions and allows you to navigate between them. Fixed a bug that showed incorrect views and answers in t...Transcriber: Transcriber V0.1: Pre-release, usable but very rough.VCC: Latest build, v2.1.30506.0: Automatic drop of latest buildVisual Studio CSLA Extension for ADO.NET Entity Framework: CslaExtension Beta1: Requirements Visual Studio 2010 CSLA 4.0. Beta 1 Installation Download VSIX file and double click to install. Open Visual Studio -> Tools -> Exte...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight Toolkitpatterns & practices – Enterprise LibraryWindows Presentation Foundation (WPF)ASP.NETDotNetNuke® Community EditionMicrosoft SQL Server Community & SamplesMost Active Projectspatterns & practices – Enterprise LibraryAJAX Control FrameworkIonics Isapi Rewrite FilterRawrpatterns & practices: Azure Security GuidanceCaliburn: An Application Framework for WPF and SilverlightBlogEngine.NETTweetSharpNB_Store - Free DotNetNuke Ecommerce Catalog ModuleTinyProject

    Read the article

  • Expanding the Oracle Enterprise Repository with functional documentation by Marc Kuijpers

    - by JuergenKress
    Introduction Have you ever experienced the challenge to map both your functional and technical assets in one software package? Finding a software package that is able to describe the metadata about these assets and their mutual relationships? And if you found the correct software package, was it maintainable? The Oracle Enterprise Repository (OER) is a powerful SOA repository. Its core task is to map and visualize the interaction between technical assets generated by the SOA Suite and OSB. However, OER can be configured to not only contain these technical assets, but also to contain functional assets, i.e.: functional designs, use cases and a logical data model. Now that’s interesting! OER is able to show all the assets in your system and, if necessary, zoom in on one of the assets and their mutual relationships (Figure 1). This opens a set of doors to powerful features, e.g.: Impact analsysis If a functional design is adjusted, which other functional designs and use cases do I need to adjust? Traceability If a web service generates an error, in which functional and technical designs is the web service described This sounds great, but how do we get all the functional and technical documents in OER, and how are we going to keep this repository up-to-date? Read the full article. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: OER,SOA Governance,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Formalizing a requirements spec written in narrative English

    - by ProfK
    I have a fairly technical functionality requirements spec, expressed in English prose, produced by my project manager. It is structured as a collection of UI tabs, where the requirements for each tab are expressed as a lit of UI fields and a list of business rules for the tab. Most business rules are for UI fields on a tab, e.g: a) Must be alphanumeric, max length 20. b) Must be a dropdown, with values from table x. c) Is mandatory. d) Is mandatory under certain conditions, e.g. another field is just populated, or has a specific value. Then other business rules get a little more complex. The spec is for a job application, so the central business object (table) is the Applicant, and we have several other tables with one-to-many relationships with applicant, such as Degree, HighSchool, PreviousEmployer, Diploma, etc. e) One such complex rule says a status field can only be assigned a certain value if a many-side record exists in at least one of the many-side tables. E.g. the Applicant has at least one HighSchool or at least one Diploma record. I am looking for advice on how to codify these requirements into a more structured specification defined in terms of tables, fields, and relationships, especially for the conditional rules for fields and for the presence of related records. Any suggestions and advice will be most welcome, but I would be overjoyed if i could find an already defined system or structure for expressing things like this.

    Read the article

  • Watch @marcorus and @ferrarialberto sessions online #teched #msteched #tee2012

    - by Marco Russo (SQLBI)
    In June I participated to two TechEd editions (North America and Europe). I and Alberto delivered a Pre Conference and two sessions about Tabular. Both conferences provides recorded sessions freely available on Channel 9 so that you can compare which one has been delivered in the best way! If you have to choose between the two versions, consider that in North America we receive more questions during and after the session (still recording), increasing the interaction, whereas in Europe questions usually comes after the session finished (so no recording available). If you’re curious, watch both and let me know which version you prefer, especially for Multidimensional vs Tabular! BISM: Multidimensional vs. Tabular (TechEd North America 2012) BISM: Multidimensional vs. Tabular (TechEd Europe 2012) Many-to-Many Relationships in BISM Tabular (TechEd North America 2012) Many-to-Many Relationships in BISM Tabular (TechEd Europe 2012) If you are interested to learn SSAS Tabular, don’t miss the next SSAS Tabular Workshop online on September 3-4, 2012. We are also planning dates for another roadshow in Europe this fall and I’m happy to announce we’ll have two dates in Germany, too. More updates in the coming weeks.

    Read the article

  • Watch @marcorus and @ferrarialberto sessions online #teched #msteched #tee2012

    - by Marco Russo (SQLBI)
    In June I participated to two TechEd editions (North America and Europe). I and Alberto delivered a Pre Conference and two sessions about Tabular. Both conferences provides recorded sessions freely available on Channel 9 so that you can compare which one has been delivered in the best way! If you have to choose between the two versions, consider that in North America we receive more questions during and after the session (still recording), increasing the interaction, whereas in Europe questions usually comes after the session finished (so no recording available). If you’re curious, watch both and let me know which version you prefer, especially for Multidimensional vs Tabular! BISM: Multidimensional vs. Tabular (TechEd North America 2012) BISM: Multidimensional vs. Tabular (TechEd Europe 2012) Many-to-Many Relationships in BISM Tabular (TechEd North America 2012) Many-to-Many Relationships in BISM Tabular (TechEd Europe 2012) If you are interested to learn SSAS Tabular, don’t miss the next SSAS Tabular Workshop online on September 3-4, 2012. We are also planning dates for another roadshow in Europe this fall and I’m happy to announce we’ll have two dates in Germany, too. More updates in the coming weeks.

    Read the article

  • Codifying a natural language requirements spec

    - by ProfK
    I have a fairly technical functionality requirements spec, expressed in English prose, produced by my project manager. It is structured as a collection of UI tabs, where the requirements for each tab are expressed as a lit of UI fields and a list of business rules for the tab. Most business rules are for UI fields on a tab, e.g: a) Must be alphanumeric, max length 20. b) Must be a dropdown, with values from table x. c) Is mandatory. d) Is mandatory under certain conditions, e.g. another field is just populated, or has a specific value. Then other business rules get a little more complex. The spec is for a job application, so the central business object (table) is the Applicant, and we have several other tables with one-to-many relationships with applicant, such as Degree, HighSchool, PreviousEmployer, Diploma, etc. e) One such complex rule says a status field can only be assigned a certain value if a many-side record exists in at least one of the many-side tables. E.g. the Applicant has at least one HighSchool or at least one Diploma record. I am looking for advice on how to codify these requirements into a more structured specification defined in terms of tables, fields, and relationships, especially for the conditional rules for fields and for the presence of related records. Any suggestions and advice will be most welcome, but I would be overjoyed if i could find an already defined system or structure for expressing things like this.

    Read the article

  • Taking our Friendships to the next level.

    - by RedAndTheCommunity
    Red Gate have been running the Friends of Red Gate program for years now, and over that time we've built some great relationships with some truly awesome members of the SQL and .NET communities. When I took over the running of the program from Annabel in 2011, I was overwhelmed by the enthusiasm and commitment of our Friends. There were just so many of them, however, that it was hard to make the most of the relationships we had with people, and I wanted to fix that. I decided to survey all our Friends, to find out what they wanted to get out of, and put into, being in the Friends of Red Gate (FoRG) program. From the results of that survey, I identified 30 FoRGs that were really willing and able to go that step further to help Red Gate improve their tools, improve their relationship with the community, and improve the Friends of Red Gate program. Those 30 Friends of Red Gate have been awarded 'FoRG+' status. That means they'll: Have a closer relationship with the product teams, by getting involved in projects Have even more access to the inside track about the tools they're interested in Get the opportunity to come visit us at the Red Gate office and really influence the development of the tools. Plus more, depending on how the individual FoRG+ wants to work with us. This doesn't mean I've forgotten our other Friends; I'm working on ways to improve their experience of the Friends of Red Gate program. I'll write about them in another post. If you're an existing Friend of Red Gate, and you're interested in finding out how to get involved in the FoRG+ program, then I'd love to chat to you. For anyone that's interested in joining the Friend of Red Gate program, take a look at the web page dedicated to the program, and get in touch at [email protected] to be put on the waiting list for our 2013 program.

    Read the article

  • What are some of the benefits of a "Micro-ORM"?

    - by Wayne M
    I've been looking into the so-called "Micro ORMs" like Dapper and (to a lesser extent as it relies on .NET 4.0) Massive as these might be easier to implement at work than a full-blown ORM since our current system is highly reliant on stored procedures and would require significant refactoring to work with an ORM like NHibernate or EF. What is the benefit of using one of these over a full-featured ORM? It seems like just a thin layer around a database connection that still forces you to write raw SQL - perhaps I'm wrong but I was always told the reason for ORMs in the first place is so you didn't have to write SQL, it could be automatically generated; especially for multi-table joins and mapping relationships between tables which are a pain to do in pure SQL but trivial with an ORM. For instance, looking at an example of Dapper: var connection = new SqlConnection(); // setup here... var person = connection.Query<Person>("select * from people where PersonId = @personId", new { PersonId = 42 }); How is that any different than using a handrolled ADO.NET data layer, except that you don't have to write the command, set the parameters and I suppose map the entity back using a Builder. It looks like you could even use a stored procedure call as the SQL string. Are there other tangible benefits that I'm missing here where a Micro ORM makes sense to use? I'm not really seeing how it's saving anything over the "old" way of using ADO.NET except maybe a few lines of code - you still have to write to figure out what SQL you need to execute (which can get hairy) and you still have to map relationships between tables (the part that IMHO ORMs help the most with).

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • How Visual Studio 2010 and Team Foundation Server enable Compliance

    - by Martin Hinshelwood
    One of the things that makes Team Foundation Server (TFS) the most powerful Application Lifecycle Management (ALM) platform is the traceability it provides to those that use it. This traceability is crucial to enable many companies to adhere to many of the Compliance regulations to which they are bound (e.g. CFR 21 Part 11 or Sarbanes–Oxley.)   From something as simple as relating Tasks to Check-in’s or being able to see the top 10 files in your codebase that are causing the most Bugs, to identifying which Bugs and Requirements are in which Release. All that information is available and more in TFS. Although all of this tradability is available within TFS you do need to understand that it is not for free. Well… I say that, but if you are using TFS properly you will have this information with no additional work except for firing up the reporting. Using Visual Studio ALM and Team Foundation Server you can relate every line of code changes all the way up to requirements and back down through Test Cases to the Test Results. Figure: The only thing missing is Build In order to build the relationship model below we need to examine how each of the relationships get there. Each member of your team from programmer to tester and Business Analyst to Business have their roll to play to knit this together. Figure: The relationships required to make this work can get a little confusing If Build is added to this to relate Work Items to Builds and with knowledge of which builds are in which environments you can easily identify what is contained within a Release. Figure: How are things progressing Along with the ability to produce the progress and trend reports the tractability that is built into TFS can be used to fulfil most audit requirements out of the box, and augmented to fulfil the rest. In order to understand the relationships, lets look at each of the important Artifacts and how they are associated with each other… Requirements – The root of all knowledge Requirements are the thing that the business cares about delivering. These could be derived as User Stories or Business Requirements Documents (BRD’s) but they should be what the Business asks for. Requirements can be related to many of the Artifacts in TFS, so lets look at the model: Figure: If the centre of the world was a requirement We can track which releases Requirements were scheduled in, but this can change over time as more details come to light. Figure: Who edited the Requirement and when There is also the ability to query Work Items based on the History of changed that were made to it. This is particularly important with Requirements. It might not be enough to say what Requirements were completed in a given but also to know which Requirements were ever assigned to a particular release. Figure: Some magic required, but result still achieved As an augmentation to this it is also possible to run a query that shows results from the past, just as if we had a time machine. You can take any Query in the system and add a “Asof” clause at the end to query historical data in the operational store for TFS. select <fields> from WorkItems [where <condition>] [order by <fields>] [asof <date>] Figure: Work Item Query Language (WIQL) format In order to achieve this you do need to save the query as a *.wiql file to your local computer and edit it in notepad, but one imported into TFS you run it any time you want. Figure: Saving Queries locally can be useful All of these Audit features are available throughout the Work Item Tracking (WIT) system within TFS. Tasks – Where the real work gets done Tasks are the work horse of the development team, but they only as useful as Excel if you do not relate them properly to other Artifacts. Figure: The Task Work Item Type has its own relationships Requirements should be broken down into Tasks that the development team work from to build what is required by the business. This may be done by a small dedicated group or by everyone that will be working on the software team but however it happens all of the Tasks create should be a Child of a Requirement Work Item Type. Figure: Tasks are related to the Requirement Tasks should be used to track the day-to-day activities of the team working to complete the software and as such they should be kept simple and short lest developers think they are more trouble than they are worth. Figure: Task Work Item Type has a narrower purpose Although the Task Work Item Type describes the work that will be done the actual development work involves making changes to files that are under Source Control. These changes are bundled together in a single atomic unit called a Changeset which is committed to TFS in a single operation. During this operation developers can associate Work Item with the Changeset. Figure: Tasks are associated with Changesets   Changesets – Who wrote this crap Changesets themselves are just an inventory of the changes that were made to a number of files to complete a Task. Figure: Changesets are linked by Tasks and Builds   Figure: Changesets tell us what happened to the files in Version Control Although comments can be changed after the fact, the inventory and Work Item associations are permanent which allows us to Audit all the way down to the individual change level. Figure: On Check-in you can resolve a Task which automatically associates it Because of this we can view the history on any file within the system and see how many changes have been made and what Changesets they belong to. Figure: Changes are tracked at the File level What would be even more powerful would be if we could view these changes super imposed over the top of the lines of code. Some people call this a blame tool because it is commonly used to find out which of the developers introduced a bug, but it can also be used as another method of Auditing changes to the system. Figure: Annotate shows the lines the Annotate functionality allows us to visualise the relationship between the individual lines of code and the Changesets. In addition to this you can create a Label and apply it to a version of your version control. The problem with Label’s is that they can be changed after they have been created with no tractability. This makes them practically useless for any sort of compliance audit. So what do you use? Branches – And why we need them Branches are a really powerful tool for development and release management, but they are most important for audits. Figure: One way to Audit releases The R1.0 branch can be created from the Label that the Build creates on the R1 line when a Release build was created. It can be created as soon as the Build has been signed of for release. However it is still possible that someone changed the Label between this time and its creation. Another better method can be to explicitly link the Build output to the Build. Builds – Lets tie some more of this together Builds are the glue that helps us enable the next level of tractability by tying everything together. Figure: The dashed pieces are not out of the box but can be enabled When the Build is called and starts it looks at what it has been asked to build and determines what code it is going to get and build. Figure: The folder identifies what changes are included in the build The Build sets a Label on the Source with the same name as the Build, but the Build itself also includes the latest Changeset ID that it will be building. At the end of the Build the Build Agent identifies the new Changesets it is building by looking at the Check-ins that have occurred since the last Build. Figure: What changes have been made since the last successful Build It will then use that information to identify the Work Items that are associated with all of the Changesets Changesets are associated with Build and change the “Integrated In” field of those Work Items . Figure: Find all of the Work Items to associate with The “Integrated In” field of all of the Work Items identified by the Build Agent as being integrated into the completed Build are updated to reflect the Build number that successfully integrated that change. Figure: Now we know which Work Items were completed in a build Now that we can link a single line of code changed all the way back through the Task that initiated the action to the Requirement that started the whole thing and back down to the Build that contains the finished Requirement. But how do we know wither that Requirement has been fully tested or even meets the original Requirements? Test Cases – How we know we are done The only way we can know wither a Requirement has been completed to the required specification is to Test that Requirement. In TFS there is a Work Item type called a Test Case Test Cases enable two scenarios. The first scenario is the ability to track and validate Acceptance Criteria in the form of a Test Case. If you agree with the Business a set of goals that must be met for a Requirement to be accepted by them it makes it both difficult for them to reject a Requirement when it passes all of the tests, but also provides a level of tractability and validation for audit that a feature has been built and tested to order. Figure: You can have many Acceptance Criteria for a single Requirement It is crucial for this to work that someone from the Business has to sign-off on the Test Case moving from the  “Design” to “Ready” states. The Second is the ability to associate an MS Test test with the Test Case thereby tracking the automated test. This is useful in the circumstance when you want to Track a test and the test results of a Unit Test designed to test the existence of and then re-existence of a a Bug. Figure: Associating a Test Case with an automated Test Although it is possible it may not make sense to track the execution of every Unit Test in your system, there are many Integration and Regression tests that may be automated that it would make sense to track in this way. Bug – Lets not have regressions In order to know wither a Bug in the application has been fixed and to make sure that it does not reoccur it needs to be tracked. Figure: Bugs are the centre of their own world If the fix to a Bug is big enough to require that it is broken down into Tasks then it is probably a Requirement. You can associate a check-in with a Bug and have it tracked against a Build. You would also have one or more Test Cases to prove the fix for the Bug. Figure: Bugs have many associations This allows you to track Bugs / Defects in your system effectively and report on them. Change Request – I am not a feature In the CMMI Process template Change Requests can also be easily tracked through the system. In some cases it can be very important to track Change Requests separately as an Auditor may want to know what was changed and who authorised it. Again and similar to Bugs, if the Change Request is big enough that it would require to be broken down into Tasks it is in reality a new feature and should be tracked as a Requirement. Figure: Make sure your Change Requests only Affect Requirements and not rewrite them Conclusion Visual Studio 2010 and Team Foundation Server together provide an exceptional Application Lifecycle Management platform that can help your team comply with even the harshest of Compliance requirements while still enabling them to be Agile. Most Audits are heavy on required documentation but most of that information is captured for you as long a you do it right. You don’t even need every team member to understand it all as each of the Artifacts are relevant to a different type of team member. Business Analysts manage Requirements and Change Requests Programmers manage Tasks and check-in against Change Requests and Bugs Testers manage Bugs and Test Cases Build Masters manage Builds Although there is some crossover there are still rolls or “hats” that are worn. Do you thing this is all achievable? Have I missed anything that you think should be there?

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • How to show or direct a business analyst to a data modelling subject?

    - by AaronLS
    Our business analysts pushed hard to collect data through a spreadsheet. I am the programmer responsible for importing that data. Usually when they push hard for something like this, I never know how well it will work out until a few weeks later when I have time assigned to work on the task of programming the import of the data. I have tried to do as much as possible along the way, named ranges, data validations, etc. But I usually don't have time to take a detailed look at all the data and compare to the destination in the database to determine how well it matches up. A lot of times there will be maybe a little table of items that somehow I have to relate to something else in the database, but there are not natural or business keys present that would allow me to do so. Make the best of this, trying to write something that can compare strings and make a best guess at it and then go through the effort of creating interfaces for a user to match the imported data to the destination. I feel like if the business analyst was actually creating a data model, they would be forced to think about these relationships, and have an appreciation for the need of natural or business keys to be part of the spreadsheet for the purposes of smoothly importing the data. The closest they come to business analysis is a big flat list of fields, and that would be fine if it were like any other data dictionary and include data types+relationships, but it isn't. They are just a bunch of names. No indication of what type of data they might hold, and it is up to me to guess. When I have pushed for more detail, they say that it is just busy work. How can I explain the importance of data modelling? How can I tell them what it is and how to do it? It feels impossible, because they don't have an appreciation for its importance. They do however, usually have an interest in helping out in whatever way they can, it's just this in particular has never gotten a motivated response.

    Read the article

  • Finding a way to simplify complex queries on legacy application

    - by glenatron
    I am working with an existing application built on Rails 3.1/MySql with much of the work taking place in a JavaScript interface, although the actual platforms are not tremendously relevant here, except in that they give context. The application is powerful, handles a reasonable amount of data and works well. As the number of customers using it and the complexity of the projects they create increases, however, we are starting to run into a few performance problems. As far as I can tell, the source of these problems is that the data represents a tree and it is very hard for ActiveRecord to deterministically know what data it should be retrieving. My model has many relationships like this: Project has_many Nodes has_many GlobalConditions Node has_one Parent has_many Nodes has_many WeightingFactors through NodeFactors has_many Tags through NodeTags GlobalCondition has_many Nodes ( referenced by Id, rather than replicating tree ) WeightingFactor has_many Nodes through NodeFactors Tag has_many Nodes through NodeTags The whole system has something in the region of thirty types which optionally hang off one or many nodes in the tree. My question is: What can I do to retrieve and construct this data faster? Having worked a lot with .Net, if I was in a similar situation there, I would look at building up a Stored Procedure to pull everything out of the database in one go but I would prefer to keep my logic in the application and from what I can tell it would be hard to take the queried data and build ActiveRecord objects from it without losing their integrity, which would cause more problems than it solves. It has also occurred to me that I could bunch the data up and send some of it across asynchronously, which would not improve performance but would improve the user perception of performance. However if sections of the data appeared after page load that could also be quite confusing. I am wondering whether it would be a useful strategy to make everything aware of it's parent project, so that one could pull all the records for that project and then build up the relationships later, but given the ubiquity of complex trees in day to day programming life I wouldn't be surprised if there were some better design patterns or standard approaches to this type of situation that I am not well versed in.

    Read the article

  • Example of persisting an inheritance relationship using ORM

    - by Schemer
    I have some experience with OOP and RDBs, but very little exposure to web programming. I am trying to understand what non-trivial types of problems are solved by ORM. Of course, I am familiar with the need for data persistence, but I have never encountered a need for persisting relationships between objects, a situation which is indicated in many online articles about ORM. I am not asking about the process of persisting a POJO to a database and restoring it later. Nor am I asking about why ORM frameworks are useful -- or a pain in the butt -- for doing so. I am particularly interested in how the need arises to persist and restore relationships between objects. In various documentation, I have seen many examples of persisting POJOs to a database, but the examples have all been for only very simple objects that are essentially nothing more than records anyway: a constructor, some private fields, and getter/setter methods. The motivation for persisting such an "object-record" seems obvious and trivial. This example: Hibernate ORM Tutorial offers such an example, but goes on to discuss mismatch issues of granularity, inheritance, identity, associations, and navigation that are not motivated by the example. If someone could offer a toy example of an instance where, say, the need arises to persist an inheritance relationship, I would be grateful. This might be blindingly obvious for anyone who has already encountered this situation but I have not and a great deal of searching and reading have not turned up any examples.

    Read the article

  • How to show or direct a business analyst to do data modelling?

    - by AaronLS
    Our business analysts pushed hard to collect data through a spreadsheet. I am the programmer responsible for importing that data. Usually when they push hard for something like this, I never know how well it will work out until a few weeks later when I have time assigned to work on the task of programming the import of the data. I have tried to do as much as possible along the way, named ranges, data validations, etc. But I usually don't have time to take a detailed look at all the data and compare to the destination in the database to determine how well it matches up. A lot of times there will be maybe a little table of items that somehow I have to relate to something else in the database, but there are not natural or business keys present that would allow me to do so. Make the best of this, trying to write something that can compare strings and make a best guess at it and then go through the effort of creating interfaces for a user to match the imported data to the destination. I feel like if the business analyst was actually creating a data model, they would be forced to think about these relationships, and have an appreciation for the need of natural or business keys to be part of the spreadsheet for the purposes of smoothly importing the data. The closest they come to business analysis is a big flat list of fields, and that would be fine if it were like any other data dictionary and include data types+relationships, but it isn't. They are just a bunch of names. No indication of what type of data they might hold, and it is up to me to guess. When I have pushed for more detail, they say that it is just busy work. How can I explain the importance of data modelling? How can I tell them what it is and how to do it? It feels impossible, because they don't have an appreciation for its importance. They do however, usually have an interest in helping out in whatever way they can, it's just this in particular has never gotten a motivated response.

    Read the article

< Previous Page | 267 268 269 270 271 272 273 274 275 276 277 278  | Next Page >