Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 280/657 | < Previous Page | 276 277 278 279 280 281 282 283 284 285 286 287  | Next Page >

  • Isometric screen to 3D world coordinates efficiently

    - by Justin
    Been having a difficult time transforming 2D screen coordinates to 3D isometric space. This is the situation where I am working in 3D but I have an orthographic camera. Then my camera is positioned at (100, 200, 100), Where the xz plane is flat and y is up and down. I've been able to get a sort of working solution, but I feel like there must be a better way. Here's what I'm doing: With my camera at (0, 1, 0) I can translate my screen coordinates directly to 3D coordinates by doing: mouse2D.z = (( event.clientX / window.innerWidth ) * 2 - 1) * -(window.innerWidth /2); mouse2D.x = (( event.clientY / window.innerHeight) * 2 + 1) * -(window.innerHeight); mouse2D.y = 0; Everything okay so far. Now when I change my camera back to (100, 200, 100) my 3D space has been rotated 45 degrees around the y axis and then rotated about 54 degrees around a vector Q that runs along the xz plane at a 45 degree angle between the positive z axis and the negative x axis. So what I do to find the point is first rotate my point by 45 degrees using a matrix around the y axis. Now I'm close. So then I rotate my point around the vector Q. But my point is closer to the origin than it should be, since the Y value is not 0 anymore. What I want is that after the rotation my Y value is 0. So now I exchange my X and Z coordinates of my rotated vector with the X and Z coordinates of my non-rotated vector. So basically I have my old vector but it's y value is at an appropriate rotated amount. Now I use another matrix to rotate my point around the vector Q in the opposite direction, and I end up with the point where I clicked. Is there a better way? I feel like I must be missing something. Also my method isn't completely accurate. I feel like it's within 5-10 coordinates of where I click, maybe because of rounding from many calculations. Sorry for such a long question.

    Read the article

  • How do I implement a quaternion based camera?

    - by kudor gyozo
    I looked at several tutorials about this and when I thought I understood I tried to implement a quaternion based camera. The problem is it doesn't work correctly, after rotating for approx. 10 degrees it jumps back to -10 degrees. I have no idea what's wrong. I'm using openTK and it already has a quaternion class. I'm a noob at opengl, I'm doing this just for fun, and don't really understand quaternions, so probably I'm doing something stupid here. Here is some code: (Actually almost all the code except the methods that load and draw a vbo (it is taken from an OpenTK sample that demonstrates vbo-s)) I load a cube into a vbo and initialize the quaternion for the camera protected override void OnLoad(EventArgs e) { base.OnLoad(e); cameraPos = new Vector3(0, 0, 7); cameraRot = Quaternion.FromAxisAngle(new Vector3(0,0,-1), 0); GL.ClearColor(System.Drawing.Color.MidnightBlue); GL.Enable(EnableCap.DepthTest); vbo = LoadVBO(CubeVertices, CubeElements); } I load a perspective projection here. This is loaded at the beginning and every time I resize the window. protected override void OnResize(EventArgs e) { base.OnResize(e); GL.Viewport(0, 0, Width, Height); float aspect_ratio = Width / (float)Height; Matrix4 perpective = Matrix4.CreatePerspectiveFieldOfView(MathHelper.PiOver4, aspect_ratio, 1, 64); GL.MatrixMode(MatrixMode.Projection); GL.LoadMatrix(ref perpective); } Here I get the last rotation value and create a new quaternion that represents only the last rotation and multiply it with the camera quaternion. After this I transform this into axis-angle so that opengl can use it. (This is how I understood it from several online quaternion tutorials) protected override void OnRenderFrame(FrameEventArgs e) { base.OnRenderFrame(e); GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); double speed = 1; double rx = 0, ry = 0; if (Keyboard[Key.A]) { ry = -speed * e.Time; } if (Keyboard[Key.D]) { ry = +speed * e.Time; } if (Keyboard[Key.W]) { rx = +speed * e.Time; } if (Keyboard[Key.S]) { rx = -speed * e.Time; } Quaternion tmpQuat = Quaternion.FromAxisAngle(new Vector3(0,1,0), (float)ry); cameraRot = tmpQuat * cameraRot; cameraRot.Normalize(); GL.MatrixMode(MatrixMode.Modelview); GL.LoadIdentity(); Vector3 axis; float angle; cameraRot.ToAxisAngle(out axis, out angle); GL.Rotate(angle, axis); GL.Translate(-cameraPos); Draw(vbo); SwapBuffers(); } Here are 2 images to explain better: I rotate a while and from this: it jumps into this Any help is appreciated. Update1: I add these to a streamwriter that writes into a file: sw.WriteLine("camerarot: X:{0} Y:{1} Z:{2} W:{3} L:{4}", cameraRot.X, cameraRot.Y, cameraRot.Z, cameraRot.W, cameraRot.Length); sw.WriteLine("ry: {0}", ry); The log is available here: http://www.pasteall.org/26133/text. At line 770 the cube jumps from right to left, when camerarot.Y changes signs. I don't know if this is normal. Update2 Here is the complete project.

    Read the article

  • Giving a Bomberman AI intelligent bomb placement

    - by Paul Manta
    I'm trying to implement an AI algorithm for Bomberman. Currently I have a working but not very smart rudimentary implementation (the current AI is overzealous in placing bombs). This is the first AI I've ever tried implementing and I'm a bit stuck. The more sophisticated algorithms I have in mind (the ones that I expect to make better decisions) are too convoluted to be good solutions. What general tips do you have for implementing a Bomberman AI? Are there radically different approaches for making the bot either more defensive or offensive? Edit: Current algorithm My current algorithm goes something like this (pseudo-code): 1) Try to place a bomb and then find a cell that is safe from all the bombs, including the one that you just placed. To find that cell, iterate over the four directions; if you can find any safe divergent cell and reach it in time (eg. if the direction is up or down, look for a cell that is found to the left or right of this path), then it's safe to place a bomb and move in that direction. 2) If you can't find and safe divergent cells, try NOT placing a bomb and look again. This time you'll only need to look for a safe cell in only one direction (you don't have to diverge from it). 3) If you still can't find a safe cell, don't do anything. for $(direction) in (up, down, left, right): place bomb at current location if (can find and reach divergent safe cell in current $(direction)): bomb = true move = $(direction) return for $(direction) in (up, down, left, right): do not place bomb at current location if (any safe cell in the current $(direction)): bomb = false move = $(direction) return else: bomb = false move = stay_put This algorithm makes the bot very trigger-happy (it'll place bombs very frequently). It doesn't kill itself, but it does have a habit of making itself vulnerable by going into dead ends where it can be blocked and killed by the other players. Do you have any suggestions on how I might improve this algorithm? Or maybe I should try something completely different? One of the problems with this algorithm is that it tends to leave the bot with very few (frequently just one) safe cells on which it can stand. This is because the bot leaves a trail of bombs behind it, as long as it doesn't kill itself. However, leaving a trail of bombs behind leaves few places where you can hide. If one of the other players or bots decide to place a bomb somewhere near you, it often happens that you have no place to hide and you die. I need a better way to decide when to place bombs.

    Read the article

  • Heightmap generation

    - by Ziaix
    I want to implement something like this to create a heightmap: 'Place a group of coordinates evenly across a map, and give them height values within a certain range. Repeatedly create coordinates between all of those coordinates, setting their height by deriving a value that was a mean value of all the surrounding coordinates.' However, I'm not sure how I would go about it - I'm not sure how I could code the part where I place the coordinates in between the existing coordinates. Can anyone give any help/advice?

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • formula for replicating glTexGen in opengl es 2.0 glsl

    - by visualjc
    I also posted this on the main StackExchange, but this seems like a better place, but for give me for the double post if it shows up twice. I have been trying for several hours to implement a GLSL replacement for glTexGen with GL_OBJECT_LINEAR. For OpenGL ES 2.0. In Ogl GLSL there is the gl_TextureMatrix that makes this easier, but thats not available on OpenGL ES 2.0 / OpenGL ES Shader Language 1.0 Several sites have mentioned that this should be "easy" to do in a GLSL vert shader. But I just can not get it to work. My hunch is that I'm not setting the planes up correctly, or I'm missing something in my understanding. I've pored over the web. But most sites are talking about projected textures, I'm just looking to create UV's based on planar projection. The models are being built in Maya, have 50k polygons and the modeler is using planer mapping, but Maya will not export the UV's. So I'm trying to figure this out. I've looked at the glTexGen manpage information: g = p1xo + p2yo + p3zo + p4wo What is g? Is g the value of s in the texture2d call? I've looked at the site: http://www.opengl.org/wiki/Mathematics_of_glTexGen Another size explains the same function: coord = P1*X + P2*Y + P3*Z + P4*W I don't get how coord (an UV vec2 in my mind) is equal to the dot product (a scalar value)? Same problem I had before with "g". What do I set the plane to be? In my opengl c++ 3.0 code, I set it to [0, 0, 1, 0] (basically unit z) and glTexGen works great. I'm still missing something. My vert shader looks basically like this: WVPMatrix = World View Project Matrix. POSITION is the model vertex position. varying vec4 kOutBaseTCoord; void main() { gl_Position = WVPMatrix * vec4(POSITION, 1.0); vec4 sPlane = vec4(1.0, 0.0, 0.0, 0.0); vec4 tPlane = vec4(0.0, 1.0, 0.0, 0.0); vec4 rPlane = vec4(0.0, 0.0, 0.0, 0.0); vec4 qPlane = vec4(0.0, 0.0, 0.0, 0.0); kOutBaseTCoord.s = dot(vec4(POSITION, 1.0), sPlane); kOutBaseTCoord.t = dot(vec4(POSITION, 1.0), tPlane); //kOutBaseTCoord.r = dot(vec4(POSITION, 1.0), rPlane); //kOutBaseTCoord.q = dot(vec4(POSITION, 1.0), qPlane); } The frag shader precision mediump float; uniform sampler2D BaseSampler; varying mediump vec4 kOutBaseTCoord; void main() { //gl_FragColor = vec4(kOutBaseTCoord.st, 0.0, 1.0); gl_FragColor = texture2D(BaseSampler, kOutBaseTCoord.st); } I've tried texture2DProj in frag shader Here are some of the other links I've looked up http://www.gamedev.net/topic/407961-texgen-not-working-with-glsl-with-fixed-pipeline-is-ok/ Thank you in advance.

    Read the article

  • Keeping crosshairs & GUI onscreen - SFML

    - by nihohit
    I read this question, but didn't understand the implementation suggestions with SFML on c#. For example, right now I'm just trying to make sure that the mouse crosshairs stay onscreen constatnly. I tried using this code: View lastView = this._mainWindow.GetView(); this._mainWindow.SetView(this._mainWindow.DefaultView); this._mainWindow.Draw(crosshair); this._mainWindow.SetView(lastView); after drawing all other sprites and before call this._mainWindow.display(), when beforehand I set crosshair.Position based on its position relative to the window, not the view. This just keeps the screen locked and prevents screen scrolling. Any suggestions?

    Read the article

  • Popular genres in Asian (non-Japanese) markets?

    - by mummey
    Hello, From time-to-time I've wondered what kind of games are popular in Asia (India, China, Korea, Singapore, etc...). I hear about developers in the US and UK who outsource work there, but what goes into the games they make for themselves? Related, you hear these days about how Japanese developers have been marketing their games more for American audiences these days (with mixed success). In what ways could American developers aim their development toward Asian audiences?

    Read the article

  • FBX 3ds max export, bad vertices

    - by instancedName
    I need to import model in OpenGL via Fbx SdK, and for testing purposes I created a simple box centered in the (0, 0, 0), length 3, in 3ds max. Here's the image: But when i exported it, and imported in the OpenGL it wasn't in the center. Then I exported it in ASCII format, and opened the file in Notepad, and really Z coordinates were 0, and 3. When I converted model to editable mesh and checked every vertex in 3ds max it had expected (+-1.5, +-1.5, +-1.5) coordinates. Can anyone help me with this one? I'm really stuck. I tried to change whole bunch of parameters in 3ds max export, but every time it changes Z koordinate.

    Read the article

  • Reading from a staging 2D texture array in DirectX10

    - by Don Reba
    I have a DX10 program, where I create an array of 3 16x16 textures, then map, read, and unmap each subresource in turn. I use a single mip level, set resource usage to staging and CPU access to read. Now, here is the problem: Subresource 0 contains 1024 bytes, pitch 64, as expected. Subresource 1 contains 512 bytes, pitch 64. Subresource 2 contains 256 bytes, pitch 64. I expect all three to be the same size. Debugging output is enabled, but not reporting any warnings or errors. Am I missing something, or might this be some sort of driver issue? Here is the code. The language is Nemerle, but C# and C++ would look almost the same. I have looked through the generated code, and am fairly confident the problem is not language-related. def cpuTexture = Texture2D ( device , Texture2DDescription() <- { Width = 16; Height = 16; MipLevels = 1; ArraySize = 3; Format = Format.R32_Float; Usage = ResourceUsage.Staging; CpuAccessFlags = CpuAccessFlags.Read; SampleDescription = SampleDescription(count = 1, quality = 0); } ); foreach (subresource in [0 .. 2]) { def data = cpuTexture.Map(subresource, MapMode.Read, MapFlags.None); Console.WriteLine($"subresource $subresource"); Console.WriteLine($"length = $(data.Data.Length)"); Console.WriteLine($"pitch = $(data.Pitch)"); cpuTexture.Unmap(subresource); }

    Read the article

  • How can I write only to the stencil buffer in OpenGL ES 2.0?

    - by stephelton
    I'd like to write to the stencil buffer without incurring the cost of my expensive shaders. As I understand it, I write to the stencil buffer as a 'side effect' of rendering something. In this first pass where I write to the stencil buffer, I don't want to write anything to the color or depth buffer, and I definitely don't want to run through my lighting equations in my shaders. Do I need to create no-op shaders for this (and can I just discard fragments), or is there a better way to do this? As the title says, I'm using OpenGL ES 2.0. I haven't used the stencil buffer before, so if I seem to be misunderstanding something, feel free to be verbose.

    Read the article

  • Morph a sphere to a cube and a cube to a sphere with GLSL

    - by nkint
    I'm getting started with GLSL with quartz composer. I have a patch with a particle system in which each particle is mapped into a sphere with a blend value. With blend=0 particles are in random positions, blend=1 particles are in the sphere. The code is here: vec3 sphere(vec2 domain) { vec3 range; range.x = radius * cos(domain.y) * sin(domain.x); range.y = radius * sin(domain.y) * sin(domain.x); range.z = radius * cos(domain.x); return range; } // in main: vec2 p0 = gl_Vertex.xy * twopi; vec3 normal = sphere(p0);; vec3 r0 = radius * normal; vec3 vertex = r0; normal = normal * blend + gl_Normal * (1.0 - blend); vertex = vertex * blend + gl_Vertex.xyz * (1.0 - blend); I'd like the particle to be on a cube if blend=0 I've tried to find but I can't figure out some parametric equation for the cube. Maybe it is not the right way?

    Read the article

  • Scene Graph for Deferred Rendering Engine

    - by Roy T.
    As a learning exercise I've written a deferred rendering engine. Now I'd like to add a scene graph to this engine but I'm a bit puzzled how to do this. On a normal (forward rendering engine) I would just add all items (All implementing IDrawable and IUpdateAble) to my scene graph, than travel the scene-graph breadth first and call Draw() everywhere. However in a deferred rendering engine I have to separate draw calls. First I have to draw the geometry, then the shadow casters and then the lights (all to different render targets), before I combine them all. So in this case I can't just travel over the scene graph and just call draw. The way I see it I either have to travel over the entire scene graph 3 times, checking what kind of object it is that has to be drawn, or I have to create 3 separate scene graphs that are somehow connected to each other. Both of these seem poor solutions, I'd like to handle scene objects more transparent. One other solution I've thought of was traveling trough the scene graph as normal and adding items to 3 separate lists, separating geometry, shadow casters and lights, and then iterating these lists to draw the correct stuff, is this better, and is it wise to repopulate 3 lists every frame?

    Read the article

  • How can I get the palette of an 8-bit surface in SDL.NET/Tao.SDL?

    - by lolmaster
    I'm looking to get the palette of an 8-bit surface in SDL.NET if possible, or (more than likely) using Tao.SDL. This is because I want to do palette swapping with the palette directly, instead of blitting surfaces together to replace colours like how you would do it with a 32-bit surface. I've gotten the SDL_Surface and the SDL_PixelFormat, however when I go to get the palette in the same way, I get a System.ExecutionEngineException: private Tao.Sdl.Sdl.SDL_Palette GetPalette(Surface surf) { // Get surface. Tao.Sdl.Sdl.SDL_Surface sdlSurface = (Tao.Sdl.Sdl.SDL_Surface)System.Runtime.InteropServices.Marshal.PtrToStructure(surf.Handle, typeof(Tao.Sdl.Sdl.SDL_Surface)); // Get pixel format. Tao.Sdl.Sdl.SDL_PixelFormat pixelFormat = (Tao.Sdl.Sdl.SDL_PixelFormat)System.Runtime.InteropServices.Marshal.PtrToStructure(sdlSurface.format, typeof(Tao.Sdl.Sdl.SDL_PixelFormat)); // Execution exception here. Tao.Sdl.Sdl.SDL_Palette palette = (Tao.Sdl.Sdl.SDL_Palette)System.Runtime.InteropServices.Marshal.PtrToStructure(pixelFormat.palette, typeof(Tao.Sdl.Sdl.SDL_Palette)); return palette; } When I used unsafe code to get the palette, I got a compile time error: "Cannot take the address of, get the size of, or declare a pointer to a managed type ('Tao.Sdl.Sdl.SDL_Palette')". My unsafe code to get the palette was this: unsafe { Tao.Sdl.Sdl.SDL_Palette* pal = (Tao.Sdl.Sdl.SDL_Palette*)pixelFormat.palette; } From what I've read, a managed type in this case is when a structure has some sort of reference inside it as a field. The SDL_Palette structure happens to have an array of SDL_Color's, so I'm assuming that's the reference type that is causing issues. However I'm still not sure how to work around that to get the underlying palette. So if anyone knows how to get the palette from an 8-bit surface, whether it's through safe or unsafe code, the help would be greatly appreciated.

    Read the article

  • Making a full-screen animation on Android? Should I use OPENGL?

    - by Roger Travis
    Say I need to make several full-screen animation that would consist of about 500+ frames each, similar to the TalkingTom app ( https://play.google.com/store/apps/details?id=com.outfit7.talkingtom2free ). Animation should be playing at a reasonable speed - supposedly not less, then 20fps - and pictures should be of a reasonable quality, not overly compressed. What method do you think should I use? So far I tried: storing each frame as a compressed JPEG before animation starts, loading each frame into a byteArray as the animation plays, decode corresponding byteArray into a bitmap and draw it on a surface view. Problem - speed is too low, usually about 5-10 FPS. I have thought of two other options. turning all animations into one movie file... but I guess there might be problems with starting, pausing and seeking to the exactly right frame... what do you think? another option I thought about was using OPENGL ( while I never worked with it before ), to play animation frame by frame. What do you think, would opengl be able to handle it? Thanks!

    Read the article

  • XNA `tex2Dlod` always returns transparent black

    - by feralin
    I want to sample a texture in a vertex shader, so at first I just tried using float2 texcoords = ...; color = tex2D(texture, texcoords); But apparently I cannot use tex2D in a vertex shader, and must use tex2Dlod. So then I changed the above code to color = tex2Dlod(texture, float4(texcoords, 0, 0)); But now color is always float4(0, 0, 0, 0) (i.e. transparent black). Why is this, and how can I fix it? EDIT: I know for a fact that the texture does not contain just transparent black pixels.

    Read the article

  • Depth interpolation for z-buffer, with scanline

    - by Twodordan
    I have to write my own software 3d rasterizer, and so far I am able to project my 3d model made of triangles into 2d space: I rotate, translate and project my points to get a 2d space representation of each triangle. Then, I take the 3 triangle points and I implement the scanline algorithm (using linear interpolation) to find all points[x][y] along the edges(left and right) of the triangles, so that I can scan the triangle horizontally, row by row, and fill it with pixels. This works. Except I have to also implement z-buffering. This means that knowing the rotated&translated z coordinates of the 3 vertices of the triangle, I must interpolate the z coordinate for all other points I find with my scanline algorithm. The concept seems clear enough, I first find Za and Zb with these calculations: var Z_Slope = (bottom_point_z - top_point_z) / (bottom_point_y - top_point_y); var Za = top_point_z + ((current_point_y - top_point_y) * Z_Slope); Then for each Zp I do the same interpolation horizontally: var Z_Slope = (right_z - left_z) / (right_x - left_x); var Zp = left_z + ((current_point_x - left_x) * Z_Slope); And of course I add to the zBuffer, if current z is closer to the viewer than the previous value at that index. (my coordinate system is x: left - right; y: top - bottom; z: your face - computer screen;) The problem is, it goes haywire. The project is here and if you select the "Z-Buffered" radio button, you'll see the results... (note that the rest of the options before "Z-Buffered" use the Painter's algorithm to correctly order the triangles. I also use the painter's algorithm -only- to draw the wireframe in "Z-Buffered" mode for debugging purposes) PS: I've read here that you must turn the z's into their reciprocals (meaning z = 1/z) before you interpolate. I tried that, and it appears that there's no change. What am I missing? (could anyone clarify, precisely where you must turn z into 1/z and where to turn it back?)

    Read the article

  • Java Slick2d - How to translate mouse coordinates to world coordinates

    - by Corey
    I am translating in my main class render. How do I get the mouse position where my mouse actually is after I scroll the screen public void render(GameContainer gc, Graphics g) throws SlickException { float centerX = 800/2; float centerY = 600/2; g.translate(centerX, centerY); g.translate(-player.playerX, -player.playerY); gen.render(g); player.render(g); } playerX = 800 /2 - sprite.getWidth(); playerY = 600 /2 - sprite.getHeight(); Image to help with explanation I tried implementing a camera but it seems no matter what I can't get the mouse position. I was told to do this worldX = mouseX + camX; but it didn't work the mouse was still off. Here is my Camera class if that helps: public class Camera { public float camX; public float camY; Player player; public void init() { player = new Player(); } public void update(GameContainer gc, int delta) { Input input = gc.getInput(); if(input.isKeyDown(Input.KEY_W)) { camY -= player.speed * delta; } if(input.isKeyDown(Input.KEY_S)) { camY += player.speed * delta; } if(input.isKeyDown(Input.KEY_A)) { camX -= player.speed * delta; } if(input.isKeyDown(Input.KEY_D)) { camX += player.speed * delta; } } Code used to convert mouse worldX = (int) (mouseX + cam.camX); worldY = (int) (mouseY + cam.camY);

    Read the article

  • java slick2D - problem using ScalableGame class

    - by nellykvist
    I have problem adjusting the size of the screen, using the ScalableGame class from Slick2D library. So, what I want to achieve, whenever I change display size, background should adjust to screen size, and objects (images, grahpic shapes) should fit (scale). Alright, so this is how state looks by default. I can change screen size, but images and graphic shapes does not appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth(), Settings.video.getHeight(), true) ); appGameContainer.setDisplayMode(Settings.video.getWidth(), Settings.video.getHeight(), Settings.video.isFullScreen()); appGameContainer.start(); If I assign to width/height +100, ScalableGame constructor: appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth() + 100, Settings.video.getHeight() + 100, true) ); appGameContainer.setDisplayMode(Settings.video.getWidth(), Settings.video.getHeight(), Settings.video.isFullScreen()); appGameContainer.start(); If I assign to width/height +100, to display: appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth(), Settings.video.getHeight(), true) ); appGameContainer.setDisplayMode(Settings.video.getWidth() + 100, Settings.video.getHeight() + 100, Settings.video.isFullScreen()); appGameContainer.start();

    Read the article

  • Marketing iOS games (and other mobile platforms)

    - by MrDatabase
    I'd like to market my existing and/or upcoming mobile games. Specifically I want to have a "revenue sharing" agreement w/ the "marketing company"... i.e. I don't want to pay anything up front... and I'm will to give the marketing company a sizable chunk of the revenue (say up to 50%). Is a publisher the only entity that does this? Or do marketing companies exist that would be interested in this type of arrangement?

    Read the article

  • How can I run the pixel shader effect?

    - by Yashwinder
    Stated below is the code for my pixel shader which I am rendering after the vertex shader. I have set the wordViewProjection matrix in my program but I don't know to set the progress variable i.e in my pixel shader file which will make the image displayed by the help of a quad to give out transition effect. Here is the code for my pixel shader program::: As my pixel shader is giving a static effect and now I want to use it to give some effect. So for this I have to add a progress variable in my pixel shader and initialize to the Constant table function i.e constantTable.SetValue(D3DDevice,"progress",progress ); I am having the problem in using this function for progress in my program. Anybody know how to set this variable in my program. And my new pixel shader code is float progress : register(C0); sampler2D implicitInput : register(s0); sampler2D oldInput : register(s1); struct VS_OUTPUT { float4 Position : POSITION; float4 Color : COLOR0; float2 UV : TEXCOORD 0; }; float4 Blinds(float2 uv) { if(frac(uv.y * 5) < progress) { return tex2D(implicitInput, uv); } else { return tex2D(oldInput, uv); } } // Pixel Shader { return Blinds(input.UV); }

    Read the article

  • OpenGL - Stack overflow if I do, Stack underflow if I don't!

    - by Wayne Werner
    Hi, I'm in a multimedia class in college, and we're "learning" OpenGL as part of the class. I'm trying to figure out how the OpenGL camera vs. modelview works, and so I found this example. I'm trying to port the example to Python using the OpenGL bindings - it starts up OpenGL much faster, so for testing purposes it's a lot nicer - but I keep running into a stack overflow error with the glPushMatrix in this code: def cube(): for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); According to this reference, that happens when the matrix stack is full. So I thought, "well, if it's full, let me just pop the matrix off the top of the stack, and there will be room". I modified the code to: def cube(): glPopMatrix() for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); And now I get a buffer underflow error - which apparently happens when the stack has only one matrix. So am I just waaay off base in my understanding? Or is there some way to increase the matrix stack size? Also, if anyone has some good (online) references (examples, etc.) for understanding how the camera/model matrices work together, I would sincerely appreciate them! Thanks!

    Read the article

  • XNA Skinning Sample - exporting from Blender recognize only first animation clip

    - by Taylor
    (and sorry for my English) I'm using animation components from XNA Skinning Sample. It works great but when I export a model from Blender, it does not recognize any other animation clips than the first one. So I have three animation clips, but XNA recognize only one. Also, when I looked up on Xml file of the model in Debug\Content\obj directory, there is only one animation clip, but when I check code directly from .fbx file, it seems to be alright. Link to my model files: https://skydrive.live.com/redir?resid=8480AF53198F0CF3!139 BIG Thanks in forward!

    Read the article

  • Do I need path finding to make AI avoid obstacles?

    - by yannicuLar
    How do you know when a path-finding algorithm is really needed? There are contexts, where you just want to improve AI navigation to avoid an object, like a space -ship that won't crash on a planet or a car that already knows where to steer, but needs small corrections to avoid a road bump. As I've seen on similar posts, the obvious solution is to implement some path-finding algorithm, most likely like A*, and let your AI-controlled object to navigate through the path. Now, I have the necessary skills to implement a path-finding algorithm, and I'm not being lazy here, but I'm still a bit skeptical on if this is really needed. I have the impression that path-finding is appropriate to navigate through a maze, or picking a path when there are many alternatives. But in obstacle avoidance, when you do know the path, but need to make slight corrections, is path finding really necessary? Even when the obstacles are too sparse or small ? I mean, in real life, when you're driving and notice a bump on the road, you will just have to pick between steering a bit on the left (and have the bump on your right side) or the other way around. You will not consider stopping, or going backwards. A path finding would be appropriate when you need to pick a route through the city, right ? So, are there any other methods to help AI navigation, except path-finding? And if there are, how do you know when path-fining is the appropriate algorithm ? Thanks for any thoughts

    Read the article

  • Networking for RTS games with lockstep using UDP

    - by user782220
    Apparently from what I can gather Starcraft 2 moved to UDP in a patch. Now obviously with fps games there is no dispute that UDP is the only way to go. But with RTS games what benefits does UDP give over TCP given that the network model is lockstep? I suppose another way to phrase this is: what features of TCP make TCP inferior compared to UDP with resend, etc. implemented in the context of rts lockstep networking model?

    Read the article

< Previous Page | 276 277 278 279 280 281 282 283 284 285 286 287  | Next Page >