Search Results

Search found 58009 results on 2321 pages for 'web template framework'.

Page 280/2321 | < Previous Page | 276 277 278 279 280 281 282 283 284 285 286 287  | Next Page >

  • Where to put a configuration file for an Axis2 web service?

    - by Jack BeNimble
    I'd like to have my Axis2 Web Service read from a configuration file, whose name is sent as a parameter to the service. Where is the best place to put this file? And How to best access it? Examples welcome. I've checked the current directory is the Apache/Tomcat/bin file, I could put it in the parent directory, or put it into a Apache/Tomcat/conf, although this looks like it's more reserved for apache configuration itself.

    Read the article

  • How to externalize web.xml servlet init-param? Spring DelegatingFilterProxy for Servlets?

    - by jnorris
    I have a 3rd-party servlet that I cannot modify. It accepts an init-param that I would like to externalize (from web.xml). I can externalize a servlet filter init-param using DelegatingFilterProxy. This effectively moves the servlet filter definition into Spring where there are much more powerful externalization tools (eg: PropertyPlaceholderConfigurer, environment variables, etc.) How can I do this for a servlet?

    Read the article

  • Best way to install web applications (e.g. Jira) on Unixes?

    - by gineer
    Can you throw some points on how it is a best way, best practice to install web application on Unixes? Like: where to place app and its bases and so for, how to configure to be secure and easy to backup, etc For example I know such suggestion -- to set uniq user for each app. App in question is Jira on FreeBSD, but more general suggestions are also welcomed.

    Read the article

  • JAVA: how to load database url from web.xml?

    - by user357255
    I'm using persistence API and want to load jdbc URL from web.xml. URL should be a context parameter of servlet. I can't find how to construct EntityManagerFactory not using persistence.xml. May be I should create PersistenceUnit in servlet and set some parameters? Can you give me some short example? Thank you

    Read the article

  • can the web.config be changed so roles wouldn't work any more?

    - by Scott J.
    I have had two instances of this problem, first on my local computer, now on the main site. Users can log in to the site, but it doesn't seem to recognize their roles. When I log in (which the database still recognizes as having the role admin), the code does not recognize it as being in the admin role. If there are other web.configs in subfolders, would that cause the problem? What could possibly cause this issue? Thanks! scojomodena

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • CascadingDropDown jQuery Plugin for ASP.NET MVC

    - by rajbk
    CascadingDropDown is a jQuery plugin that can be used by a select list to get automatic population using AJAX. A sample ASP.NET MVC project is attached at the bottom of this post.   Usage The code below shows two select lists : <select id="customerID" name="customerID"> <option value="ALFKI">Maria Anders</option> <option value="ANATR">Ana Trujillo</option> <option value="ANTON">Antonio Moreno</option> </select>   <select id="orderID" name="orderID"> </select> When a customer is selected in the first select list, the second list will auto populate itself with the following code: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders'); Internally, an AJAX post is made to ‘/Sales/AsyncOrders’ with the post body containing  customerID=[selectedCustomerID]. This executes the action AsyncOrders on the SalesController with signature AsyncOrders(string customerID).  The AsyncOrders method returns JSON which is then used to populate the select list. The JSON format expected is shown below : [{ "Text": "John", "Value": "10326" }, { "Text": "Jane", "Value": "10801" }] Details $(targetID).CascadingDropDown(sourceID, url, settings) targetID The ID of the select list that will auto populate.  sourceID The ID of the select list, which, on change, causes the targetID to auto populate. url The url to post to Options promptText Text for the first item in the select list Default : -- Select -- loadingText Optional text to display in the select list while it is being loaded. Default : Loading.. errorText Optional text to display if an error occurs while populating the list Default: Error loading data. postData Data you want posted to the url in place of the default Example : { postData : { customerID : $(‘#custID’), orderID : $(‘#orderID’) }} will cause customerID=ALFKI&orderID=2343 to be sent as the POST body. Default: A text string obtained by calling serialize on the sourceID onLoading (event) Raised before the list is populated. onLoaded (event) Raised after the list is populated, The code below shows how to “animate” the  select list after load. Example using custom options: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders', { promptText: '-- Pick an Order--', onLoading: function () { $(this).css("background-color", "#ff3"); }, onLoaded: function () { $(this).animate({ backgroundColor: '#ffffff' }, 300); } }); To return JSON from our action method, we use the Json ActionResult passing in an IEnumerable<SelectListItem>. public ActionResult AsyncOrders(string customerID) { var orders = repository.GetOrders(customerID).ToList().Select(a => new SelectListItem() { Text = a.OrderDate.HasValue ? a.OrderDate.Value.ToString("MM/dd/yyyy") : "[ No Date ]", Value = a.OrderID.ToString(), }); return Json(orders); } Sample Project using VS 2010 RTM NorthwindCascading.zip

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Tellago is still hiring….

    - by gsusx
    Tellago 's SOA practice is rapidly growing and we are still hiring. In that sense, we are looking to for Connected Systems (WCF, BizTalk, WF) experts who are passionate about building game changing solutions with the latest Microsoft technologies. You will be working alongside technology gurus like DonXml , Pablo Cibraro or Dwight Goins . If you are interested and not afraid of working with a bunch of crazy people ;)please drop me a line at jesus dot rodriguez at tellago dot com. Hope to hear from...(read more)

    Read the article

  • LINQ Query using Multiple From and Multiple Collections

    1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:  6: namespace ConsoleApplication2 7: { 8: class Program 9: { 10: static void Main(string[] args) 11: { 12: var emps = GetEmployees(); 13: var deps = GetDepartments(); 14:  15: var results = from e in emps 16: from d in deps 17: where e.EmpNo >= 1 && d.DeptNo <= 30 18: select new { Emp = e, Dept = d }; 19: 20: foreach (var item in results) 21: { 22: Console.WriteLine("{0},{1},{2},{3}", item.Dept.DeptNo, item.Dept.DName, item.Emp.EmpNo, item.Emp.EmpName); 23: } 24: } 25:  26: private static List<Emp> GetEmployees() 27: { 28: return new List<Emp>() { 29: new Emp() { EmpNo = 1, EmpName = "Smith", DeptNo = 10 }, 30: new Emp() { EmpNo = 2, EmpName = "Narayan", DeptNo = 20 }, 31: new Emp() { EmpNo = 3, EmpName = "Rishi", DeptNo = 30 }, 32: new Emp() { EmpNo = 4, EmpName = "Guru", DeptNo = 10 }, 33: new Emp() { EmpNo = 5, EmpName = "Priya", DeptNo = 20 }, 34: new Emp() { EmpNo = 6, EmpName = "Riya", DeptNo = 10 } 35: }; 36: } 37:  38: private static List<Department> GetDepartments() 39: { 40: return new List<Department>() { 41: new Department() { DeptNo=10, DName="Accounts" }, 42: new Department() { DeptNo=20, DName="Finance" }, 43: new Department() { DeptNo=30, DName="Travel" } 44: }; 45: } 46: } 47:  48: class Emp 49: { 50: public int EmpNo { get; set; } 51: public string EmpName { get; set; } 52: public int DeptNo { get; set; } 53: } 54:  55: class Department 56: { 57: public int DeptNo { get; set; } 58: public String DName { get; set; } 59: } 60: } span.fullpost {display:none;}

    Read the article

  • Bootstrap responsive CSS [migrated]

    - by savolai
    I have a four column design and I am using Bootstrap. The design renders fine in a single column in mobile devices, but in "(min-width: 768px) and (max-width: 979px)", I get four columns though there is room for only two. So clearly, the rows/spans setup would need to be rethought for those sizes. The only way I can imagine of doing this is to have semantic CSS classes used in the HTML and only including grid classes in the CSS using LESS, and then depending on screen size, including different grid classes to achieve four or two column layout. Not sure if this would work either though. Is this the way to go with, or am I thinking this too complicatedly? Thanks! Also at: https://groups.google.com/forum/#!topic/twitter-bootstrap/R5jEp0oQ_-E

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 2

    - by rajbk
    We continue building our report in this three part series. Creating an ASP.NET report using Visual Studio 2010 - Part 1 Creating an ASP.NET report using Visual Studio 2010 - Part 3 Creating the Client Report Definition file (RDLC) Add a folder called “RDLC”. This will hold our RDLC report.   Right click on the RDLC folder, select “Add new item..” and add an “RDLC” name of “Products”. We will use the “Report Wizard” to walk us through the steps of creating the RDLC.   In the next dialog, give the dataset a name called “ProductDataSet”. Change the data source to “NorthwindReports.DAL” and select “ProductRepository(GetProductsProjected)”. The fields that are returned from the method are shown on the right. Click next.   Drag and drop the ProductName, CategoryName, UnitPrice and Discontinued into the Values container. Note that you can create much more complex grouping using this UI. Click Next.   Most of the selections on this screen are grayed out because we did not choose a grouping in the previous screen. Click next. Choose a style for your report. Click next. The report graphic design surface is now visible. Right click on the report and add a page header and page footer. With the report design surface active, drag and drop a TextBox from the tool box to the page header. Drag one more textbox to the page header. We will use the text boxes to add some header text as shown in the next figure. You can change the font size and other properties of the textboxes using the formatting tool bar (marked in red). You can also resize the columns by moving your cursor in between columns and dragging. Adding Expressions Add two more text boxes to the page footer. We will use these to add the time the report was generated and page numbers. Right click on the first textbox in the page footer and select “Expression”. Add the following expression for the print date (note the = sign at the left of the expression in the dialog below) "© Northwind Traders " & Format(Now(),"MM/dd/yyyy hh:mm tt") Right click on the second text box and add the following for the page count.   Globals.PageNumber & " of " & Globals.TotalPages Formatting the page footer is complete.   We are now going to format the “Unit Price” column so it displays the number in currency format.  Right click on the [UnitPrice] column (not header) and select “Text Box Properties..” Under “Number”, select “Currency”. Hit OK. Adding a chart With the design surface active, go to the toolbox and drag and drop a chart control. You will need to move the product list table down first to make space for the chart contorl. The document can also be resized by dragging on the corner or at the page header/footer separator. In the next dialog, pick the first chart type. This can be changed later if needed. Click OK. The chart gets added to the design surface.   Click on the blue bars in the chart (not legend). This will bring up drop locations for dropping the fields. Drag and drop the UnitPrice and CategoryName into the top (y axis) and bottom (x axis) as shown below. This will give us the total unit prices for a given category. That is the best I could come up with as far as what report to render, sorry :-) Delete the legend area to get more screen estate. Resize the chart to your liking. Change the header, x axis and y axis text by double clicking on those areas. We made it this far. Let’s impress the client by adding a gradient to the bar graph :-) Right click on the blue bar and select “Series properties”. Under “Fill”, add a color and secondary color and select the Gradient style. We are done designing our report. In the next section you will see how to add the report to the report viewer control, bind to the data and make it refresh when the filter criteria are changed.   Creating an ASP.NET report using Visual Studio 2010 - Part 3

    Read the article

  • LLBLGen Pro feature highlights: automatic element name construction

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) One of the things one might take for granted but which has a huge impact on the time spent in an entity modeling environment is the way the system creates names for elements out of the information provided, in short: automatic element name construction. Element names are created in both directions of modeling: database first and model first and the more names the system can create for you without you having to rename them, the better. LLBLGen Pro has a rich, fine grained system for creating element names out of the meta-data available, which I'll describe more in detail below. First the model element related element naming features are highlighted, in the section Automatic model element naming features and after that I'll go more into detail about the relational model element naming features LLBLGen Pro has to offer in the section Automatic relational model element naming features. Automatic model element naming features When working database first, the element names in the model, e.g. entity names, entity field names and so on, are in general determined from the relational model element (e.g. table, table field) they're mapped on, as the model elements are reverse engineered from these relational model elements. It doesn't take rocket science to automatically name an entity Customer if the entity was created after reverse engineering a table named Customer. It gets a little trickier when the entity which was created by reverse engineering a table called TBL_ORDER_LINES has to be named 'OrderLine' automatically. Automatic model element naming also takes into effect with model first development, where some settings are used to provide you with a default name, e.g. in the case of navigator name creation when you create a new relationship. The features below are available to you in the Project Settings. Open Project Settings on a loaded project and navigate to Conventions -> Element Name Construction. Strippers! The above example 'TBL_ORDER_LINES' shows that some parts of the table name might not be needed for name creation, in this case the 'TBL_' prefix. Some 'brilliant' DBAs even add suffixes to table names, fragments you might not want to appear in the entity names. LLBLGen Pro offers you to define both prefix and suffix fragments to strip off of table, view, stored procedure, parameter, table field and view field names. In the example above, the fragment 'TBL_' is a good candidate for such a strip pattern. You can specify more than one pattern for e.g. the table prefix strip pattern, so even a really messy schema can still be used to produce clean names. Underscores Be Gone Another thing you might get rid of are underscores. After all, most naming schemes for entities and their classes use PasCal casing rules and don't allow for underscores to appear. LLBLGen Pro can automatically strip out underscores for you. It's an optional feature, so if you like the underscores, you're not forced to see them go: LLBLGen Pro will leave them alone when ordered to to so. PasCal everywhere... or not, your call LLBLGen Pro can automatically PasCal case names on word breaks. It determines word breaks in a couple of ways: a space marks a word break, an underscore marks a word break and a case difference marks a word break. It will remove spaces in all cases, and based on the underscore removal setting, keep or remove the underscores, and upper-case the first character of a word break fragment, and lower case the rest. Say, we keep the defaults, which is remove underscores and PasCal case always and strip the TBL_ fragment, we get with our example TBL_ORDER_LINES, after stripping TBL_ from the table name two word fragments: ORDER and LINES. The underscores are removed, the first character of each fragment is upper-cased, the rest lower-cased, so this results in OrderLines. Almost there! Pluralization and Singularization In general entity names are singular, like Customer or OrderLine so LLBLGen Pro offers a way to singularize the names. This will convert OrderLines, the result we got after the PasCal casing functionality, into OrderLine, exactly what we're after. Show me the patterns! There are other situations in which you want more flexibility. Say, you have an entity Customer and an entity Order and there's a foreign key constraint defined from the target of Order and the target of Customer. This foreign key constraint results in a 1:n relationship between the entities Customer and Order. A relationship has navigators mapped onto the relationship in both entities the relationship is between. For this particular relationship we'd like to have Customer as navigator in Order and Orders as navigator in Customer, so the relationship becomes Customer.Orders 1:n Order.Customer. To control the naming of these navigators for the various relationship types, LLBLGen Pro defines a set of patterns which allow you, using macros, to define how the auto-created navigator names will look like. For example, if you rather have Customer.OrderCollection, you can do so, by changing the pattern from {$EndEntityName$P} to {$EndEntityName}Collection. The $P directive makes sure the name is pluralized, which is not what you want if you're going for <EntityName>Collection, hence it's removed. When working model first, it's a given you'll create foreign key fields along the way when you define relationships. For example, you've defined two entities: Customer and Order, and they have their fields setup properly. Now you want to define a relationship between them. This will automatically create a foreign key field in the Order entity, which reflects the value of the PK field in Customer. (No worries if you hate the foreign key fields in your classes, on NHibernate and EF these can be hidden in the generated code if you want to). A specific pattern is available for you to direct LLBLGen Pro how to name this foreign key field. For example, if all your entities have Id as PK field, you might want to have a different name than Id as foreign key field. In our Customer - Order example, you might want to have CustomerId instead as foreign key name in Order. The pattern for foreign key fields gives you that freedom. Abbreviations... make sense of OrdNr and friends I already described word breaks in the PasCal casing paragraph, how they're used for the PasCal casing in the constructed name. Word breaks are used for another neat feature LLBLGen Pro has to offer: abbreviation support. Burt, your friendly DBA in the dungeons below the office has a hate-hate relationship with his keyboard: he can't stand it: typing is something he avoids like the plague. This has resulted in tables and fields which have names which are very short, but also very unreadable. Example: our TBL_ORDER_LINES example has a lovely field called ORD_NR. What you would like to see in your fancy new OrderLine entity mapped onto this table is a field called OrderNumber, not a field called OrdNr. What you also like is to not have to rename that field manually. There are better things to do with your time, after all. LLBLGen Pro has you covered. All it takes is to define some abbreviation - full word pairs and during reverse engineering model elements from tables/views, LLBLGen Pro will take care of the rest. For the ORD_NR field, you need two values: ORD as abbreviation and Order as full word, and NR as abbreviation and Number as full word. LLBLGen Pro will now convert every word fragment found with the word breaks which matches an abbreviation to the given full word. They're case sensitive and can be found in the Project Settings: Navigate to Conventions -> Element Name Construction -> Abbreviations. Automatic relational model element naming features Not everyone works database first: it may very well be the case you start from scratch, or have to add additional tables to an existing database. For these situations, it's key you have the flexibility that you can control the created table names and table fields without any work: let the designer create these names based on the entity model you defined and a set of rules. LLBLGen Pro offers several features in this area, which are described in more detail below. These features are found in Project Settings: navigate to Conventions -> Model First Development. Underscores, welcome back! Not every database is case insensitive, and not every organization requires PasCal cased table/field names, some demand all lower or all uppercase names with underscores at word breaks. Say you create an entity model with an entity called OrderLine. You work with Oracle and your organization requires underscores at word breaks: a table created from OrderLine should be called ORDER_LINE. LLBLGen Pro allows you to do that: with a simple checkbox you can order LLBLGen Pro to insert an underscore at each word break for the type of database you're working with: case sensitive or case insensitive. Checking the checkbox Insert underscore at word break case insensitive dbs will let LLBLGen Pro create a table from the entity called Order_Line. Half-way there, as there are still lower case characters there and you need all caps. No worries, see below Casing directives so everyone can sleep well at night For case sensitive databases and case insensitive databases there is one setting for each of them which controls the casing of the name created from a model element (e.g. a table created from an entity definition using the auto-mapping feature). The settings can have the following values: AsProjectElement, AllUpperCase or AllLowerCase. AsProjectElement is the default, and it keeps the casing as-is. In our example, we need to get all upper case characters, so we select AllUpperCase for the setting for case sensitive databases. This will produce the name ORDER_LINE. Sequence naming after a pattern Some databases support sequences, and using model-first development it's key to have sequences, when needed, to be created automatically and if possible using a name which shows where they're used. Say you have an entity Order and you want to have the PK values be created by the database using a sequence. The database you're using supports sequences (e.g. Oracle) and as you want all numeric PK fields to be sequenced, you have enabled this by the setting Auto assign sequences to integer pks. When you're using LLBLGen Pro's auto-map feature, to create new tables and constraints from the model, it will create a new table, ORDER, based on your settings I previously discussed above, with a PK field ID and it also creates a sequence, SEQ_ORDER, which is auto-assigns to the ID field mapping. The name of the sequence is created by using a pattern, defined in the Model First Development setting Sequence pattern, which uses plain text and macros like with the other patterns previously discussed. Grouping and schemas When you start from scratch, and you're working model first, the tables created by LLBLGen Pro will be in a catalog and / or schema created by LLBLGen Pro as well. If you use LLBLGen Pro's grouping feature, which allows you to group entities and other model elements into groups in the project (described in a future blog post), you might want to have that group name reflected in the schema name the targets of the model elements are in. Say you have a model with a group CRM and a group HRM, both with entities unique for these groups, e.g. Employee in HRM, Customer in CRM. When auto-mapping this model to create tables, you might want to have the table created for Employee in the HRM schema but the table created for Customer in the CRM schema. LLBLGen Pro will do just that when you check the setting Set schema name after group name to true (default). This gives you total control over where what is placed in the database from your model. But I want plural table names... and TBL_ prefixes! For now we follow best practices which suggest singular table names and no prefixes/suffixes for names. Of course that won't keep everyone happy, so we're looking into making it possible to have that in a future version. Conclusion LLBLGen Pro offers a variety of options to let the modeling system do as much work for you as possible. Hopefully you enjoyed this little highlight post and that it has given you new insights in the smaller features available to you in LLBLGen Pro, ones you might not have thought off in the first place. Enjoy!

    Read the article

< Previous Page | 276 277 278 279 280 281 282 283 284 285 286 287  | Next Page >