Search Results

Search found 22447 results on 898 pages for 'cpu load'.

Page 281/898 | < Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >

  • Reading same file from multiple threads in C#

    - by Gustavo Rubio
    Hi. I was googling for some advise about this and I found some links. The most obvious was this one but in the end what im wondering is how well my code is implemented. I have basically two classes. One is the Converter and the other is ConverterThread I create an instance of this Converter class that has a property ThreadNumber that tells me how many threads should be run at the same time (this is read from user) since this application will be used on multi-cpu systems (physically, like 8 cpu) so it is suppossed that this will speed up the import The Converter instance reads a file that can range from 100mb to 800mb and each line of this file is a tab-delimitted value record that is imported to another destination like a database. The ConverterThread class simply runs inside the thread (new Thread(ConverterThread.StartThread)) and has event notification so when its work is done it can notify the Converter class and then I can sum up the progress for all these threads and notify the user (in the GUI for example) about how many of these records have been imported and how many bytes have been read. It seems, however that I'm having some trouble because I get random errors about the file not being able to be read or that the sum of the progress (percentage) went above 100% which is not possible and I think that happens because threads are not being well managed and probably the information returned by the event is malformed (since it "travels" from one thread to another) Do you have any advise on better practices of implementation of threads so I can accomplish this? Thanks in advance.

    Read the article

  • How to know if a device can be disabled or not?

    - by user326498
    I use the following code to enable/disable a device installed on my computer: SP_PROPCHANGE_PARAMS params; memset(&params, 0, sizeof(params)); devParams.cbSize = sizeof(devParams); params.ClassInstallHeader.cbSize = sizeof(params.ClassInstallHeader); params.ClassInstallHeader.InstallFunction = DIF_PROPERTYCHANGE; params.Scope = DICS_FLAG_GLOBAL; params.StateChange = DICS_DISABLE ; params.HwProfile = 0; // current profile if(!SetupDiSetClassInstallParams(m_hDev, &m_hDevInfo,&params.ClassInstallHeader,sizeof(SP_PROPCHANGE_PARAMS))) { dwErr = GetLastError(); return FALSE; } if(!SetupDiCallClassInstaller(DIF_PROPERTYCHANGE,m_hDev,&m_hDevInfo)) { dwErr = GetLastError(); return FALSE; } return TRUE; This code works perfectly only for those devices that can also be disabled by using Windows Device Manager, and won't work for some un-disabled devices such as my cpu device: Intel(R) Pentium(R) Dual CPU E2160 @ 1.80GHz. So the problem is how to determine if a device can be disabled or not programmatically? Is there any API to realize this goal? Thank you!

    Read the article

  • Parsing data with Clojure, interval problem.

    - by Andrea Di Persio
    Hello! I'm writing a little parser in clojure for learning purpose. basically is a TSV file parser that need to be put in a database, but I added a complication. The complication itself is that in the same file there are more intervals. The file look like this: ###andreadipersio 2010-03-19 16:10:00### USER COMM PID PPID %CPU %MEM TIME root launchd 1 0 0.0 0.0 2:46.97 root DirectoryService 11 1 0.0 0.2 0:34.59 root notifyd 12 1 0.0 0.0 0:20.83 root diskarbitrationd 13 1 0.0 0.0 0:02.84` .... ###andreadipersio 2010-03-19 16:20:00### USER COMM PID PPID %CPU %MEM TIME root launchd 1 0 0.0 0.0 2:46.97 root DirectoryService 11 1 0.0 0.2 0:34.59 root notifyd 12 1 0.0 0.0 0:20.83 root diskarbitrationd 13 1 0.0 0.0 0:02.84 I ended up with this code: (defn is-header? "Return true if a line is header" [line] (> (count (re-find #"^\#{3}" line)) 0)) (defn extract-fields "Return regex matches" [line pattern] (rest (re-find pattern line))) (defn process-lines [lines] (map process-line lines)) (defn process-line [line] (if (is-header? line) (extract-fields line header-pattern)) (extract-fields line data-pattern)) My idea is that in 'process-line' interval need to be merged with data so I have something like this: ('andreadipersio', '2010-03-19', '16:10:00', 'root', 'launchd', 1, 0, 0.0, 0.0, '2:46.97') for every row till the next interval, but I can't figure how to make this happen. I tried with something like this: (def process-line [line] (if is-header? line) (def header-data (extract-fields line header-pattern))) (cons header-data (extract-fields line data-pattern))) But this doesn't work as excepted. Any hints? Thanks!

    Read the article

  • Am I a discoverer of a bug in the WPF engine?

    - by bitbonk
    We have a MFC 8 application compiled with /CLR that contains a larger amount of Windows Forms UserControls wich again contain WPF user controls using ElementHost. Due to the architecture of our software we can not use HwndHost directly. We observed an extremely strange behavior here that we can not make any sense of: When the CPU load is very high during startup of the application and there are a lot live of ElementHost instances, the whole property engine completely stops working. For example animations that usually just work fine now never update the values of the bound properties, they just stay at some random value after startup. When I set a property that is not bound to anything the value is correctly stored in the dependency property (calling the getter returns the new value) but the visual representation never reflects that. I set the background to red but the background color does not change. We tested this on a lot of different machines all running Windows XP SP2 and it is pretty reproducible. The funny thing here is, that there is in fact one situation where the bound properties actually pickup a new value from the animation and the visual gets updated based on the property values. It is when I resize the ElementHost or when I hide and reshow the parent native control. As soon as I do this, properties that are bound to an animation pickup a new value and the visuals rerender based on the new property values - but just once - if I want to see another update I have to resize the ElementHost. Do you have any explanation of what could be happening here or how I could approach this problem to find it out? What can I do to debug this? Is there a way I can get more information about what WPF actually does or where WPF might have crashed? To me it currently seems like a bug in WPF itself since it only happens at high CPU load at startup.

    Read the article

  • Update SQL Server 2000 to SQL Server 2008: Benefits please?

    - by Ciaran Archer
    Hi there I'm looking for the benefits of upgrading from SQL Server 2000 to 2008. I was wondering: What database features can we leverage with 2008 that we can't now? What new TSQL features can we look forward to using? What performance benefits can we expect to see? What else will make management go for it? And the converse: What problems can we expect to encounter? What other problems have people found when migrating? Why fix something that isn't (technically) broken? We work in a Java shop, so any .NET / CLR stuff won't rock our world. We also use Eclipse as our main development so any integration with Visual Studio won't be a plus. We do use SQL Server Management Studio however. Some background: Our main database machine is a 32bit Dell Intel Xeon MP CPU 2.0GHz, 40MB of RAM with Physical Address Extension running Windows Server 2003 Enterprise Edition. We will not be changing our hardware. Our databases in total are under a TB with some having more than 200 tables. But they are busy and during busy times we see 60-80% CPU utilisation. Apart form the fact that SQL Server 2000 is coming close to end of life, why should we upgrade? Any and all contributions are appreciated!

    Read the article

  • Custom Controls Properties - C# , Forms - :(

    - by user353600
    Hi I m adding custom control to my flowlayoutpanel , its a sort of forex data , refresh every second , so on each timer tick , i m adding a control , changing controls button text , then adding it to flowlayout panel , i m doing it at each 100ms timer tick , it takeing tooo much CPU , here is my custom Control . public partial class UserControl1 : UserControl { public UserControl1() { InitializeComponent(); } private void UserControl1_Load(object sender, EventArgs e) { } public void displaydata(string name , string back3price , string back3 , string back2price , string back2 , string back1price , string back1 , string lay3price , string lay3 , string lay2price , string lay2 , string lay1price , string lay1 ) { lblrunnerName.Text = name.ToString(); btnback3.Text = back3.ToString() + "\n" + back3price.ToString(); btnback2.Text = back2.ToString() + "\n" + back2price.ToString(); btnback1.Text = back1.ToString() + "\n" + back1price.ToString(); btnlay1.Text = lay1.ToString() + "\n" + lay1price.ToString(); btnlay2.Text = lay2.ToString() + "\n" + lay2price.ToString(); btnlay3.Text = lay3.ToString() + "\n" + lay3price.ToString(); } and here is how i m adding control; private void timer1_Tick(object sender, EventArgs e) { localhost.marketData[] md; md = ser.getM1(); flowLayoutPanel1.Controls.Clear(); foreach (localhost.marketData item in md) { UserControl1 ur = new UserControl1(); ur.Name = item.runnerName + item.runnerID; ur.displaydata(item.runnerName, item.back3price, item.back3, item.back2price, item.back2, item.back1price, item.back1, item.lay3price, item.lay3, item.lay2price, item.lay2, item.lay1price, item.lay1); flowLayoutPanel1.SuspendLayout(); flowLayoutPanel1.Controls.Add(ur); flowLayoutPanel1.ResumeLayout(); } } now its happing on 10 times on each send , taking 60% of my Core2Duo cpu . is there any other way , i can just add contols first time , and then change the text of cutom controls buttons on runtime on each refresh or timer tick i m using c# .Net

    Read the article

  • Is there a reason why SSIS significantly slows down after a few minutes?

    - by Mark
    I'm running a fairly substantial SSIS package against SQL 2008 - and I'm getting the same results both in my dev environment (Win7-x64 + SQL-x64-Developer) and the production environment (Server 2008 x64 + SQL Std x64). The symptom is that initial data loading screams at between 50K - 500K records per second, but after a few minutes the speed drops off dramatically and eventually crawls embarrasingly slowly. The database is in Simple recovery model, the target tables are empty, and all of the prerequisites for minimally logged bulk inserts are being met. The data flow is a simple load from a RAW input file to a schema-matched table (i.e. no complex transforms of data, no sorting, no lookups, no SCDs, etc.) The problem has the following qualities and resiliences: Problem persists no matter what the target table is. RAM usage is lowish (45%) - there's plenty of spare RAM available for SSIS buffers or SQL Server to use. Perfmon shows buffers are not spooling, disk response times are normal, disk availability is high. CPU usage is low (hovers around 25% shared between sqlserver.exe and DtsDebugHost.exe) Disk activity primarily on TempDB.mdf, but I/O is very low (< 600 Kb/s) OLE DB destination and SQL Server Destination both exhibit this problem. To sum it up, I expect either disk, CPU or RAM to be exhausted before the package slows down, but instead its as if the SSIS package is taking an afternoon nap. SQL server remains responsive to other queries, and I can't find any performance counters or logged events that betray the cause of the problem. I'll gratefully reward any reasonable answers / suggestions.

    Read the article

  • What OpenGL functions are not GPU accelerated?

    - by Xavier Ho
    I was shocked when I read this (from the OpenGL wiki): glTranslate, glRotate, glScale Are these hardware accelerated? No, there are no known GPUs that execute this. The driver computes the matrix on the CPU and uploads it to the GPU. All the other matrix operations are done on the CPU as well : glPushMatrix, glPopMatrix, glLoadIdentity, glFrustum, glOrtho. This is the reason why these functions are considered deprecated in GL 3.0. You should have your own math library, build your own matrix, upload your matrix to the shader. For a very, very long time I thought most of the OpenGL functions use the GPU to do computation. I'm not sure if this is a common misconception, but after a while of thinking, this makes sense. Old OpenGL functions (2.x and older) are really not suitable for real-world applications, due to too many state switches. This makes me realise that, possibly, many OpenGL functions do not use the GPU at all. So, the question is: Which OpenGL function calls don't use the GPU? I believe knowing the answer to the above question would help me become a better programmer with OpenGL. Please do share some of your insights.

    Read the article

  • Boost threading/mutexs, why does this work?

    - by Flamewires
    Code: #include <iostream> #include "stdafx.h" #include <boost/thread.hpp> #include <boost/thread/mutex.hpp> using namespace std; boost::mutex mut; double results[10]; void doubler(int x) { //boost::mutex::scoped_lock lck(mut); results[x] = x*2; } int _tmain(int argc, _TCHAR* argv[]) { boost::thread_group thds; for (int x = 10; x>0; x--) { boost::thread *Thread = new boost::thread(&doubler, x); thds.add_thread(Thread); } thds.join_all(); for (int x = 0; x<10; x++) { cout << results[x] << endl; } return 0; } Output: 0 2 4 6 8 10 12 14 16 18 Press any key to continue . . . So...my question is why does this work(as far as i can tell, i ran it about 20 times), producing the above output, even with the locking commented out? I thought the general idea was: in each thread: calculate 2*x copy results to CPU register(s) store calculation in correct part of array copy results back to main(shared) memory I would think that under all but perfect conditions this would result in some part of the results array having 0 values. Is it only copying the required double of the array to a cpu register? Or is it just too short of a calculation to get preempted before it writes the result back to ram? Thanks.

    Read the article

  • What about parallelism across network using multiple PCs?

    - by MainMa
    Parallel computing is used more and more, and new framework features and shortcuts make it easier to use (for example Parallel extensions which are directly available in .NET 4). Now what about the parallelism across network? I mean, an abstraction of everything related to communications, creation of processes on remote machines, etc. Something like, in C#: NetworkParallel.ForEach(myEnumerable, () => { // Computing and/or access to web ressource or local network database here }); I understand that it is very different from the multi-core parallelism. The two most obvious differences would probably be: The fact that such parallel task will be limited to computing, without being able for example to use files stored locally (but why not a database?), or even to use local variables, because it would be rather two distinct applications than two threads of the same application, The very specific implementation, requiring not just a separate thread (which is quite easy), but spanning a process on different machines, then communicating with them over local network. Despite those differences, such parallelism is quite possible, even without speaking about distributed architecture. Do you think it will be implemented in a few years? Do you agree that it enables developers to easily develop extremely powerfull stuff with much less pain? Example: Think about a business application which extracts data from the database, transforms it, and displays statistics. Let's say this application takes ten seconds to load data, twenty seconds to transform data and ten seconds to build charts on a single machine in a company, using all the CPU, whereas ten other machines are used at 5% of CPU most of the time. In a such case, every action may be done in parallel, resulting in probably six to ten seconds for overall process instead of forty.

    Read the article

  • What's the most trivial function that would benfit from being computed on a GPU?

    - by hanDerPeder
    Hi. I'm just starting out learning OpenCL. I'm trying to get a feel for what performance gains to expect when moving functions/algorithms to the GPU. The most basic kernel given in most tutorials is a kernel that takes two arrays of numbers and sums the value at the corresponding indexes and adds them to a third array, like so: __kernel void add(__global float *a, __global float *b, __global float *answer) { int gid = get_global_id(0); answer[gid] = a[gid] + b[gid]; } __kernel void sub(__global float* n, __global float* answer) { int gid = get_global_id(0); answer[gid] = n[gid] - 2; } __kernel void ranksort(__global const float *a, __global float *answer) { int gid = get_global_id(0); int gSize = get_global_size(0); int x = 0; for(int i = 0; i < gSize; i++){ if(a[gid] > a[i]) x++; } answer[x] = a[gid]; } I am assuming that you could never justify computing this on the GPU, the memory transfer would out weight the time it would take computing this on the CPU by magnitudes (I might be wrong about this, hence this question). What I am wondering is what would be the most trivial example where you would expect significant speedup when using a OpenCL kernel instead of the CPU?

    Read the article

  • Recommendations for IPC between parent and child processes in .NET?

    - by Jeremy
    My .NET program needs to run an algorithm that makes heavy use of 3rd party libraries (32-bit), most of which are unmanaged code. I want to drive the CPU as hard as I can, so the code runs several threads in parallel to divide up the work. I find that running all these threads simultaneously results in temporary memory spikes, causing the process' virtual memory size to approach the 2 GB limit. This memory is released back pretty quickly, but occasionally if enough threads enter the wrong sections of code at once, the process crosses the "red line" and either the unmanaged code or the .NET code encounters an out of memory error. I can throttle back the number of threads but then my CPU usage is not as high as I would like. I am thinking of creating worker processes rather than worker threads to help avoid the out of memory errors, since doing so would give each thread of execution its own 2 GB of virtual address space (my box has lots of RAM). I am wondering what are the best/easiest methods to communicate the input and output between the processes in .NET? The file system is an obvious choice. I am used to shared memory, named pipes, and such from my UNIX background. Is there a Windows or .NET specific mechanism I should use?

    Read the article

  • Which OpenGL functions are not GPU-accelerated?

    - by Xavier Ho
    I was shocked when I read this (from the OpenGL wiki): glTranslate, glRotate, glScale Are these hardware accelerated? No, there are no known GPUs that execute this. The driver computes the matrix on the CPU and uploads it to the GPU. All the other matrix operations are done on the CPU as well : glPushMatrix, glPopMatrix, glLoadIdentity, glFrustum, glOrtho. This is the reason why these functions are considered deprecated in GL 3.0. You should have your own math library, build your own matrix, upload your matrix to the shader. For a very, very long time I thought most of the OpenGL functions use the GPU to do computation. I'm not sure if this is a common misconception, but after a while of thinking, this makes sense. Old OpenGL functions (2.x and older) are really not suitable for real-world applications, due to too many state switches. This makes me realise that, possibly, many OpenGL functions do not use the GPU at all. So, the question is: Which OpenGL function calls don't use the GPU? I believe knowing the answer to the above question would help me become a better programmer with OpenGL. Please do share some of your insights.

    Read the article

  • How to speed up drawing of scaled image? Audio playback chokes during window resize.

    - by Paperflyer
    I am writing an audio player for OSX. One view is a custom view that displays a waveform. The waveform is stored as a instance variable of type NSImage with an NSBitmapImageRep. The view also displays a progress indicator (a thick red line). Therefore, it is updated/redrawn every 30 milliseconds. Since it takes a rather long time to recalculate the image, I do that in a background thread after every window resize and update the displayed image once the new image is ready. In the meantime, the original image is scaled to fit the view like this: // The drawing rectangle is slightly smaller than the view, defined by // the two margins. NSRect drawingRect; drawingRect.origin = NSMakePoint(sideEdgeMarginWidth, topEdgeMarginHeight); drawingRect.size = NSMakeSize([self bounds].size.width-2*sideEdgeMarginWidth, [self bounds].size.height-2*topEdgeMarginHeight); [waveform drawInRect:drawingRect fromRect:NSZeroRect operation:NSCompositeSourceOver fraction:1]; The view makes up the biggest part of the window. During live resize, audio starts choking. Selecting the "big" graphic card on my Macbook Pro makes it less bad, but not by much. CPU utilization is somewhere around 20-40% during live resizes. Instruments suggests that rescaling/redrawing of the image is the problem. Once I stop resizing the window, CPU utilization goes down and audio stops glitching. I already tried to disable image interpolation to speed up the drawing like this: [[NSGraphicsContext currentContext] setImageInterpolation:NSImageInterpolationNone]; That helps, but audio still chokes during live resizes. Do you have an idea how to improve this? The main thing is to prevent the audio from choking.

    Read the article

  • Database tables with dynamic information

    - by Tim Fennis
    I've googled this and found that it's almost impossible to create a database with dynamic collumns. I'll explain my problem first. I am making a webshop for a customer. It has multiple computer products for sale. CPU's HDD's RAM ect. All these products have different properties, a CPU has an FSB, RAM has a CAS latency. But this is very inconvenient because my orders table needs foreign keys to different tables which is impossible. An other option is to store all the product specific information in a varchar or blob field and let PHP figure it out. The problem with this solution is that the website needs a PC builder. A step-by-step guide to building your PC. So for instance if a customer decides he wants a new "i7 920" or whatever i want to be able to sellect all motherboards for socket 1366, which is impossible because all the data is stored in one field. I know it's possible to select all motherboards form the DB and let PHP figure out which ones are for socket 1366 but i was wondering, is there a better solution?

    Read the article

  • android service using SystemClock.elapsedRealTime() instead of SystemClock.uptimeMillis() works in emulator but not in samsung captivate ?

    - by Aleadam
    First question here in stackoverflow :) I'm running a little android 2.2 app to log cpu frequency usage. It is set up as a service that will write the data every 10 seconds using a new thread. The code for that part is very basic (see below). It works fine, except that it would not keep track of time while the phone is asleep (which, I know, is the expected behavior). Thus, I changed the code to use SystemClock.elapsedRealTime() instead. Problem is, in emulator both commands are equivalent, but in the phone the app will start the thread but it will never execute the mHandler.postAtTime command. Any advice regarding why this is happening or how to overcome the issue is greatly appreciated. PS: stopLog() is not being called. That's not the problem. mUpdateTimeTask = new Runnable() { public void run() { long millis = SystemClock.uptimeMillis() - mStartTime; int seconds = (int) (millis / 1000); int minutes = seconds / 60; seconds = seconds % 60; String freq = readCPU (); if (freq == null) Toast.makeText(CPU_log_Service.this, "CPU frequency is unreadable.\nPlease make sure the file has read rights.", Toast.LENGTH_LONG).show(); String str = new String ((minutes*60 + seconds) + ", " + freq + "\n"); if (!writeLog (str)) stopLog(); mHandler.postAtTime(this, mStartTime + (((minutes * 60) + seconds + 10) * 1000)); }}; mStartTime = SystemClock.uptimeMillis(); mHandler.removeCallbacks(mUpdateTimeTask); mHandler.postDelayed(mUpdateTimeTask, 100);

    Read the article

  • Retrieving values from a table in HTML using jQuery?

    - by Mo
    Hi i was just wondering whats the best way to retrieve the following labels and values from this HTMl code using jquery and storing them in to a array or hash map of some sort where i have for e.g "DataSet:" : "prod" or ["Dataset", "Prod"]? <table id="metric_summary"> <tbody> <tr class="editable_metrics"> <td><label>DataSet:</label></td> <td><input name="DataSet" value="prod"></td> </tr> <tr class="editable_metrics"> <td><label>HostGroup:</label></td> <td><input name="HostGroup" value="MONITOR-PORTAL-IAD"></td> </tr> <tr class="editable_metrics"> <td><label>Host:</label></td> <td><input name="Host" value="ALL"></td> </tr> <tr class="editable_metrics"> <td><label>Class:</label></td> <td><input name="Class" value="CPU"></td> </tr> <tr class="editable_metrics"> <td><label>Object:</label></td> <td><input name="Object" value="cpu"></td> </tr> <tr class="editable_metrics"> <td><label>Metric:</label></td> <td><input name="Metric" value="CapacityCPUUtilization"></td> </tr> thanks

    Read the article

  • Java: GatheringByteChannel advantages?

    - by Jason S
    I'm wondering when the GatheringByteChannel's write methods (taking in an array of ByteBuffers) have advantages over the "regular" WritableByteChannel write methods. I tried a test where I could use the regular vs. the gathering write method on a FileChannel, with approx 400KB/sec total in ByteBuffers of between 23-27 bytes in length in both cases. Gathering writes used an array of 64. The regular method used up approx 12% of my CPU, and the gathering method used up approx 16% of my CPU (worse than the regular method!) This tells me it's NOT useful to use gathering writes on a FileChannel around this range of operating parameters. Why would this be the case, and when would you ever use GatheringByteChannel? (on network I/O?) Relevant differences here: public void log(Queue<Packet> packets) throws IOException { if (this.gather) { int Nbuf = 64; ByteBuffer[] bbufs = new ByteBuffer[Nbuf]; int i = 0; Packet p; while ((p = packets.poll()) != null) { bbufs[i++] = p.getBuffer(); if (i == Nbuf) { this.fc.write(bbufs); i = 0; } } if (i > 0) { this.fc.write(bbufs, 0, i); } } else { Packet p; while ((p = packets.poll()) != null) { this.fc.write(p.getBuffer()); } } }

    Read the article

  • while running mvn jetty:run showing the following error ..

    - by munna
    C:\source\myprojectmvn jetty:run [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building AppFuse Spring MVC Application [INFO] task-segment: [jetty:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing jetty:run [WARNING] POM for 'xfire:xfire-jsr181-api:pom:1.0-M1:compile' is invalid. Its dependencies (if any) will NOT be available to the current build. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [compiler:compile {execution: default-compile}] [INFO] Nothing to compile - all classes are up to date [INFO] [resources:testResources {execution: default-testResources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 4 resources [INFO] Copying 9 resources [INFO] Preparing hibernate3:hbm2ddl [WARNING] Removing: hbm2ddl from forked lifecycle, to prevent recursive invocati on. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [hibernate3:hbm2ddl {execution: default}] [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration Properties file loaded: C:\source\myproject\target\classes\ jdbc.properties alter table user_role drop foreign key FK143BF46A4FD90D75; alter table user_role drop foreign key FK143BF46AF503D155; drop table if exists app_user; drop table if exists role; drop table if exists user_role; create table app_user (id bigint not null auto_increment, account_expired bit no t null, account_locked bit not null, address varchar(150), city varchar(50) not null, country varchar(100), postal_code varchar(15) not null, province varchar(1 00), credentials_expired bit not null, email varchar(255) not null unique, accou nt_enabled bit, first_name varchar(50) not null, last_name varchar(50) not null, password varchar(255) not null, password_hint varchar(255), phone_number varcha r(255), username varchar(50) not null unique, version integer, website varchar(2 55), primary key (id)) ENGINE=InnoDB; create table role (id bigint not null auto_increment, description varchar(64), n ame varchar(20), primary key (id)) ENGINE=InnoDB; create table user_role (user_id bigint not null, role_id bigint not null, primar y key (user_id, role_id)) ENGINE=InnoDB; alter table user_role add index FK143BF46A4FD90D75 (role_id), add constraint FK1 43BF46A4FD90D75 foreign key (role_id) references role (id); alter table user_role add index FK143BF46AF503D155 (user_id), add constraint FK1 43BF46AF503D155 foreign key (user_id) references app_user (id); [INFO] [compiler:testCompile {execution: default-testCompile}] [INFO] Nothing to compile - all classes are up to date [INFO] [dbunit:operation {execution: test-compile}] [INFO] [jetty:run {execution: default-cli}] [INFO] Configuring Jetty for project: AppFuse Spring MVC Application [INFO] Webapp source directory = C:\source\myproject\src\main\webapp [INFO] web.xml file = C:\source\myproject\src\main\webapp\WEB-INF\web.xml [INFO] Classes = C:\source\myproject\target\classes [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext-validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\dispatcher-servlet.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\menu-config.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\urlrewrite.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules-custom.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\web.xml 2010-06-02 15:13:28.921::INFO: Logging to STDERR via org.mortbay.log.StdErrLog [INFO] Context path = / [INFO] Tmp directory = determined at runtime [INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml [INFO] Web overrides = none [INFO] Webapp directory = C:\source\myproject\src\main\webapp [INFO] Starting jetty 6.1.9 ... 2010-06-02 15:13:28.983::INFO: jetty-6.1.9 2010-06-02 15:13:28.248::INFO: No Transaction manager found - if your webapp re quires one, please configure one. 2010-06-02 15:13:28.482:/:INFO: Initializing Spring root WebApplicationContext [myproject] ERROR [main] ContextLoader.initWebApplicationContext(215) | Context initialization failed org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.919::WARN: Failed startup of context org.mortbay.jetty.plug in.Jetty6PluginWebAppContext@1ba4806{/,C:\source\myproject\src\main\webapp} org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.152::WARN: Nested in org.springframework.beans.factory.Bean DefinitionStoreException: IOException parsing XML document from ServletContext r esource [/WEB-INF/xfire-servlet.xml]; nested exception is java.io.FileNotFoundEx ception: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml]: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/ xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) 2010-06-02 15:13:29.417::INFO: Started [email protected]:8080 [INFO] Started Jetty Server [INFO] Starting scanner at interval of 3 seconds.

    Read the article

  • Dec 5th Links: ASP.NET, ASP.NET MVC, jQuery, Silverlight, Visual Studio

    - by ScottGu
    Here is the latest in my link-listing series.  Also check out my VS 2010 and .NET 4 series for another on-going blog series I’m working on. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET ASP.NET Code Samples Collection: J.D. Meier has a great post that provides a detailed round-up of ASP.NET code samples and tutorials from a wide variety of sources.  Lots of useful pointers. Slash your ASP.NET compile/load time without any hard work: Nice article that details a bunch of optimizations you can make to speed up ASP.NET project load and compile times. You might also want to read my previous blog post on this topic here. 10 Essential Tools for Building ASP.NET Websites: Great article by Stephen Walther on 10 great (and free) tools that enable you to more easily build great ASP.NET Websites.  Highly recommended reading. Optimize Images using the ASP.NET Sprite and Image Optimization Framework: A nice article by 4GuysFromRolla that discusses how to use the open-source ASP.NET Sprite and Image Optimization Framework (one of the tools recommended by Stephen in the previous article).  You can use this to significantly improve the load-time of your pages on the client. Formatting Dates, Times and Numbers in ASP.NET: Scott Mitchell has a great article that discusses formatting dates, times and numbers in ASP.NET.  A very useful link to bookmark.  Also check out James Michael’s DateTime is Packed with Goodies blog post for other DateTime tips. Examining ASP.NET’s Membership, Roles and Profile APIs (Part 18): Everything you could possibly want to known about ASP.NET’s built-in Membership, Roles and Profile APIs must surely be in this tutorial series. Part 18 covers how to store additional user info with Membership. ASP.NET with jQuery An Introduction to jQuery Templates: Stephen Walther has written an outstanding introduction and tutorial on the new jQuery Template plugin that the ASP.NET team has contributed to the jQuery project. Composition with jQuery Templates and jQuery Templates, Composite Rendering, and Remote Loading: Dave Ward has written two nice posts that talk about composition scenarios with jQuery Templates and some cool scenarios you can enable with them. Using jQuery and ASP.NET to Build a News Ticker: Scott Mitchell has a nice tutorial that demonstrates how to build a dynamically updated “news ticker” style UI with ASP.NET and jQuery. Checking All Checkboxes in a GridView using jQuery: Scott Mitchell has a nice post that covers how to use jQuery to enable a checkbox within a GridView’s header to automatically check/uncheck all checkboxes contained within rows of it. Using jQuery to POST Form Data to an ASP.NET AJAX Web Service: Rick Strahl has a nice post that discusses how to capture form variables and post them to an ASP.NET AJAX Web Service (.asmx). ASP.NET MVC ASP.NET MVC Diagnostics Using NuGet: Phil Haack has a nice post that demonstrates how to easily install a diagnostics page (using NuGet) that can help identify and diagnose common configuration issues within your apps. ASP.NET MVC 3 JsonValueProviderFactory: James Hughes has a nice post that discusses how to take advantage of the new JsonValueProviderFactory support built into ASP.NET MVC 3.  This makes it easy to post JSON payloads to MVC action methods. Practical jQuery Mobile with ASP.NET MVC: James Hughes has another nice post that discusses how to use the new jQuery Mobile library with ASP.NET MVC to build great mobile web applications. Credit Card Validator for ASP.NET MVC 3: Benjii Me has a nice post that demonstrates how to build a [CreditCard] validator attribute that can be used to easily validate credit card numbers are in the correct format with ASP.NET MVC. Silverlight Silverlight FireStarter Keynote and Sessions: A great blog post from John Papa that contains pointers and descriptions of all the great Silverlight content we published last week at the Silverlight FireStarter.  You can watch all of the talks online.  More details on my keynote and Silverlight 5 announcements can be found here. 31 Days of Windows Phone 7: 31 great tutorials on how to build Windows Phone 7 applications (using Silverlight).  Silverlight for Windows Phone Toolkit Update: David Anson has a nice post that discusses some of the additional controls provided with the Silverlight for Windows Phone Toolkit. Visual Studio JavaScript Editor Extensions: A nice (and free) Visual Studio plugin built by the web tools team that significantly improves the JavaScript intellisense support within Visual Studio. HTML5 Intellisense for Visual Studio: Gil has a blog post that discusses a new extension my team has posted to the Visual Studio Extension Gallery that adds HTML5 schema support to Visual Studio 2008 and 2010. Team Build + Web Deployment + Web Deploy + VS 2010 = Goodness: Visual blogs about how to enable a continuous deployment system with VS 2010, TFS 2010 and the Microsoft Web Deploy framework.  Visual Studio 2010 Emacs Emulation Extension and VIM Emulation Extension: Check out these two extensions if you are fond of Emacs and VIM key bindings and want to enable them within Visual Studio 2010. Hope this helps, Scott

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Installing Matlab on ubuntu 12.04 32 bits

    - by Amir
    I have been trying to install Matlab2012a, matlab2012b and Matlab2013a for like 4 hours, triedto fix my prospective errors regarding the posts 2012a, Ubuntu-Matlab Documentation and Matlab-central. But either i am recieving an error while the installation GUI pops-up with the error : The application encountered an unexpected error and needs to close. You may want to try re-installing your product(s). More information can be found at /tmp/mathworks_amir.log On the other hand for 2012a. and the errors for 2012b and 2013a is : `Installing ... Exception in thread "main" com.google.inject.ProvisionException: Guice provision errors: 1) Error in custom provider, java.lang.RuntimeException: java.lang.reflect.InvocationTargetException at com.mathworks.wizard.WizardModule.provideDisplayProperties(WizardModule.java:60) while locating com.mathworks.instutil.DisplayProperties at com.mathworks.wizard.ui.components.ComponentsModule.providePaintStrategy(ComponentsModule.java:76) while locating com.mathworks.wizard.ui.components.PaintStrategy for parameter 4 at com.mathworks.wizard.ui.components.SwingComponentFactoryImpl.(SwingComponentFactoryImpl.java:110) while locating com.mathworks.wizard.ui.components.SwingComponentFactoryImpl while locating com.mathworks.wizard.ui.components.SwingComponentFactory for parameter 1 at com.mathworks.wizard.ui.WizardUIImpl.(WizardUIImpl.java:65) while locating com.mathworks.wizard.ui.WizardUIImpl while locating com.mathworks.wizard.ui.WizardUI annotated with @com.google.inject.name.Named(value=BaseWizardUI) at com.mathworks.wizard.ui.UIModule.provideWizardUI(UIModule.java:50) while locating com.mathworks.wizard.ui.WizardUI for parameter 0 at com.mathworks.wizard.ExceptionHandlerImpl.(ExceptionHandlerImpl.java:22) while locating com.mathworks.wizard.ExceptionHandlerImpl while locating com.mathworks.wizard.ExceptionHandler 1 error at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:767) at com.google.inject.InjectorImpl.getInstance(InjectorImpl.java:793) at com.mathworks.wizard.WizardLauncher.startWizard(WizardLauncher.java:160) at com.mathworks.wizard.WizardLauncher.start(WizardLauncher.java:75) at com.mathworks.wizard.AbstractLauncher.launch(AbstractLauncher.java:27) at com.mathworks.wizard.AbstractLauncher.launchStandalone(AbstractLauncher.java:18) at com.mathworks.professionalinstaller.Launcher.main(Launcher.java:21) Caused by: java.lang.RuntimeException: java.lang.reflect.InvocationTargetException at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:106) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:95) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:95) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:804) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) ... 6 more Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:101) ... 54 more Caused by: com.mathworks.instutil.JNIException: java.lang.UnsatisfiedLinkError: Can't load library: /tmp/mathworks_7417/bin/glnxa64/libinstutil.so at com.mathworks.instutil.NativeUtility.loadNativeLibrary(NativeUtility.java:39) at com.mathworks.instutil.NativeUtility.(NativeUtility.java:24) at com.mathworks.instutil.DisplayPropertiesImpl.(DisplayPropertiesImpl.java:10) at com.mathworks.wizard.WizardModule.provideDisplayProperties(WizardModule.java:67) ... 59 more Caused by: java.lang.UnsatisfiedLinkError: Can't load library: /tmp/mathworks_7417/bin/glnxa64/libinstutil.so at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1842) at java.lang.Runtime.load0(Runtime.java:795) at java.lang.System.load(System.java:1061) at com.mathworks.instutil.NativeUtility.loadNativeLibrary(NativeUtility.java:37) ... 62 more Finished ` I have tried to 1- re-install java run-time 6 and then 7. 2- pass the java-path to the install with : -javadir 3- use the force to install on 32 bits as : sh install -glnx86 -v -javadir /usr/lib/jvm/java-7-openjdk-i386/jre But it seems none of them have worked so far. any ideas ??

    Read the article

  • Silverlight 5 Hosting :: Features in Silverlight 5 and Release Date

    - by mbridge
    Silverlight 5 is finally announced in the Silverlight FireStarter Event on the 2nd December, 2010. This new version of Silverlight which was earlier labeled as 'Future of Microsoft Silverlight' has now come much closer to go live as the first Silverlight 5 Beta version is expected to be shipped during the early months of 2011. However for the full fledged and the final release of Silverlight 5, we have to wait many more months as the same is likely to be made available within the Q3 2011. As would have been usually expected, this latest edition would feature many new capabilities thereby extending the developer productivity to a whole new dimension of premium media experience and feature-rich business applications. It comes along with many new feature updates as well as the inclusion of new technologies to improve the standard of the Silverlight applications which are now fine-tuned to produce next generation business and media solutions that is capable to meet the requirements of the advanced web-based app development. The Silverlight 5 is all set to replace the previous fourth version which now includes more than forty new features while also dropping various deprecated elements that was prevalent earlier. It has brought around some major performance enhancements and also included better support for various other tools and technologies. Following are some of the changes that are registered to be available under the Silverlight 5 Beta edition which is scheduled to be launched during the Q1 2011. Silverlight 5 : Premium Media Experiences The media features of Silverlight 5 has seen some major enhancements with a lot of optimizations being made to deliver richer solutions. It's capability has now been extended to make things easier, faster and capable of performing the desired tasks in the most efficient manner. The Silverlight media solutions has already been a part of many companies in the recent days where various on-demand Silverlight services were featured but with the arrival of the next generation premium media solution of Silverlight 5, it is expected to register new heights of success and global user acclamation for using it with many esteemed web-based projects and media solutions. - The most happening element in the new Silverlight 5 will be its support for utilizing the GPU based hardware acceleration which is intended to lower down the CPU load to a significant extent and thereby allowing faster rendering of media contents without consuming much resources. This feature is believed to be particularly helpful for low configured machines to run full HD media content without any lagging caused due to processor load. It will hence be one great feature to revolutionize the new generation high quality media contents to be available within the web in a more efficient manner with its hardware decoded video playback capabilities. - With the inclusion of hardware video decoding to minimize the processor load, the Silverlight 5 also comes with another optimization enhancement to also reduce the power consumption level by making new methods to deal with the power-saver settings. With this optimization in effect, the computer would be automatically allowed to switch to sleep mode while no video playback is in progress and also to prevent any screensavers to popup and cause annoyances during any video playback. There would also be other power saver options which will be made available to best suit the users requirements and purpose. - The Silverlight trickplay feature is another great way to tweak any silverlight powered media content as is used for many video tutorial sites or for dealing with any sort of presentations. This feature enables the user to modify the playback speed to either slowdown or speedup during the playback durations based on the requirements without compromising on the quality of output. Normally such manipulations always makes the content's audio to go off-pitch, but the same will not be the case with TrickPlay and the audio would seamlessly progress with the video without skipping any of its part. - In addition to all of the above, the new Silverlight 5 will be featuring wireless control of all the media contents by making use of remote controllers. With the use of such remote devices, it will be easier to handle the various media playback controls thereby providing more freedom while experiencing the premium media services. Silverlight 5 : Business Application Development The application development standard has been extended with more possibilities by bringing forth new and useful technologies and also reviving the existing methods to work better than what it was used to. From the UI improvements to advanced technical aspects, the Silverlight 5 scores high on all grounds to produce great next generation business delivered applications by putting in more creativity and resourceful touch to all the apps being produced with it. - The WPF feature of Silverlight is made more effective by introducing new standards of Databinding which is intended to improve the productivity standards of the Silverlight application developer. It brings in a lot of convenience in debugging the databinding components or expressions and hence making things work in a flawless manner. Some additional features related to databinding includes that of Ancestor RelativeSource, Implicit DataTemplates and Model View ViewModel (MVVM) support with DataContextChanged event and many other new features relating it. - It now comes with a refined text and printing service which facilitates better clarity of the text rendering and also many positive changes which are being applied to the layout pattern. New supports has been added to include OpenType font, multi-column text, linked-text containers and character leading support to name a few among the available features.This also includes some important printing aspects like that of Postscript Vector Printing API which allows to program our printing tasks in a user defined way and Pivot functionality for visualization concerns of informations. - The Graphics support is the key improvements being incorporated which now enables to utilize three dimensional graphics pattern using GPU acceleration. It can manage to provide some really cool visualizations being curved to provide media contents within the business apps with also the support for full HD contents at 1080p quality. - Silverlight 5 includes the support for 64-bit operating systems and relevant browsers and is also optimized to provide better performance. It can support the background thread for the networking which can reduce the latency of the network to a considerable extent. The Out-of-Browser functionality adds the support for utilizing various libraries and also the Win32 API. It also comes with testing support with VS 2010 which is mostly an automated procedure and has also enabled increased security aspects of all the Silverlight 5 developed applications by using the improved version of group policy support.

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • ODI 12c's Mapping Designer - Combining Flow Based and Expression Based Mapping

    - by Madhu Nair
    post by David Allan ODI is renowned for its declarative designer and minimal expression based paradigm. The new ODI 12c release has extended this even further to provide an extended declarative mapping designer. The ODI 12c mapper is a fusion of ODI's new declarative designer with the familiar flow based designer while retaining ODI’s key differentiators of: Minimal expression based definition, The ability to incrementally design an interface and to extract/load data from any combination of sources, and most importantly Backed by ODI’s extensible knowledge module framework. The declarative nature of the product has been extended to include an extensible library of common components that can be used to easily build simple to complex data integration solutions. Big usability improvements through consistent interactions of components and concepts all constructed around the familiar knowledge module framework provide the utmost flexibility. Here is a little taster: So what is a mapping? A mapping comprises of a logical design and at least one physical design, it may have many. A mapping can have many targets, of any technology and can be arbitrarily complex. You can build reusable mappings and use them in other mappings or other reusable mappings. In the example below all of the information from an Oracle bonus table and a bonus file are joined with an Oracle employees table before being written to a target. Some things that are cool include the one-click expression cross referencing so you can easily see what's used where within the design. The logical design in a mapping describes what you want to accomplish  (see the animated GIF here illustrating how the above mapping was designed) . The physical design lets you configure how it is to be accomplished. So you could have one logical design that is realized as an initial load in one physical design and as an incremental load in another. In the physical design below we can customize how the mapping is accomplished by picking Knowledge Modules, in ODI 12c you can pick multiple nodes (on logical or physical) and see common properties. This is useful as we can quickly compare property values across objects - below we can see knowledge modules settings on the access points between execution units side by side, in the example one table is retrieved via database links and the other is an external table. In the logical design I had selected an append mode for the integration type, so by default the IKM on the target will choose the most suitable/default IKM - which in this case is an in-built Oracle Insert IKM (see image below). This supports insert and select hints for the Oracle database (the ANSI SQL Insert IKM does not support these), so by default you will get direct path inserts with Oracle on this statement. In ODI 12c, the mapper is just that, a mapper. Design your mapping, write to multiple targets, the targets can be in the same data server, in different data servers or in totally different technologies - it does not matter. ODI 12c will derive and generate a plan that you can use or customize with knowledge modules. Some of the use cases which are greatly simplified include multiple heterogeneous targets, multi target inserts for Oracle and writing of XML. Let's switch it up now and look at a slightly different example to illustrate expression reuse. In ODI you can define reusable expressions using user functions. These can be reused across mappings and the implementations specialized per technology. So you can have common expressions across Oracle, SQL Server, Hive etc. shielding the design from the physical aspects of the generated language. Another way to reuse is within a mapping itself. In ODI 12c expressions can be defined and reused within a mapping. Rather than replicating the expression text in larger expressions you can decompose into smaller snippets, below you can see UNIT_TAX AMOUNT has been defined and is used in two downstream target columns - its used in the TOTAL_TAX_AMOUNT plus its used in the UNIT_TAX_AMOUNT (a recording of the calculation).  You can see the columns that the expressions depend on (upstream) and the columns the expression is used in (downstream) highlighted within the mapper. Also multi selecting attributes is a convenient way to see what's being used where, below I have selected the TOTAL_TAX_AMOUNT in the target datastore and the UNIT_TAX_AMOUNT in UNIT_CALC. You can now see many expressions at once now and understand much more at the once time without needlessly clicking around and memorizing information. Our mantra during development was to keep it simple and make the tool more powerful and do even more for the user. The development team was a fusion of many teams from Oracle Warehouse Builder, Sunopsis and BEA Aqualogic, debating and perfecting the mapper in ODI 12c. This was quite a project from supporting the capabilities of ODI in 11g to building the flow based mapping tool to support the future. I hope this was a useful insight, there is so much more to come on this topic, this is just a preview of much more that you will see of the mapper in ODI 12c.

    Read the article

< Previous Page | 277 278 279 280 281 282 283 284 285 286 287 288  | Next Page >