Search Results

Search found 33336 results on 1334 pages for 'factory method'.

Page 284/1334 | < Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Quickly and Easily Create Folders in Windows By Dragging and Dropping Files

    - by Lori Kaufman
    If you use iOS or Android devices, you’re familiar with the drag-and-drop method of creating folders. If you like that method of grouping files, you can get the same functionality on your Windows PC using a free utility, called Smart Folders. Smart Folders helps you quickly organize your files, such as images, documents, and audio files, without having to create separate folders before you move the files. Simply drag one file on top of another file to create a new folder. To use Smart Folders to easily create folders, double-click on the .exe file you downloaded (see the link at the end of this article). Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It How To Delete, Move, or Rename Locked Files in Windows

    Read the article

  • JavaScript : jQuery UI 1.8 est disponible avec 5 nouveaux plug-ins, 1 nouvel effet et des centaines

    jQuery UI 1.8 est disponible L'équipe de jQuery UI annonce la sortie de jQuery UI 1.8, cette version apporte 5 nouveaux plug-ins, 1 nouvel effet, et des centaines de corrections de bogues et d'améliorations. Pour une liste complète de tous les changements entre jQuery UI 1.7.2 et jQuery UI 1.8, voir le Changelog 1.8. Les développeurs ont travaillé très dur pour rendre jQuery UI plus léger et plus modulaire avec un noyau encore plus flexible et extensible. Il est désormais encore plus facile de créer vos propres widgets ou d'étendre ceux de jQuery UI, si vous utilisez l'interface utilisateur JQuery Widget Factory, la jQuery UI CSS Framework, ou les deux.

    Read the article

  • Internationalize WebCenter Portal - Content Presenter

    - by Stefan Krantz
    Lately we have been involved in engagements where internationalization has been holding the project back from success. In this post we are going to explain how to get Content Presenter and its editorials to comply with the current selected locale for the WebCenter Portal session. As you probably know by now WebCenter Portal leverages the Localization support from Java Server Faces (JSF), in this post we will assume that the localization is controlled and enforced by switching the current browsers locale between English and Spanish. There is two main scenarios in internationalization of a content enabled pages, since Content Presenter offers both presentation of information as well as contribution of information, in this post we will look at how to enable seamless integration of correct localized version of the back end content file and how to enable the editor/author to edit the correct localized version of the file based on the current browser locale. Solution Scenario 1 - Localization aware content presentation Due to the amount of steps required to implement the enclosed solution proposal I have decided to share the solution with you in group components for each facet of the solution. If you want to get more details on each step, you can review the enclosed components. This post will guide you through the steps of enabling each component and what it enables/changes in each section of the system. Enable Content Presenter Customization By leveraging a predictable naming convention of the data files used to hold the content for the Content Presenter instance we can easily develop a component that will dynamically switch the name out before presenting the information. The naming convention we have leverage is the industry best practice by having a shared identifier as prefix (ContentABC) and a language enabled suffix (_EN) (_ES). So the assumption is that each file pair in above example should look like following:- English version - (ContentABC_EN)- Spanish version - (ContentABC_ES) Based on above theory we can now easily regardless of the primary version assigned to the content presenter instance switch the language out by using the localization support from JSF. Below java bean (oracle.webcenter.doclib.internal.view.presenter.NLSHelperBean) is enclosed in the customization project available for download at the bottom of the post: 1: public static final String CP_D_DOCNAME_FORMAT = "%s_%s"; 2: public static final int CP_UNIQUE_ID_INDEX = 0; 3: private ContentPresenter presenter = null; 4:   5:   6: public NLSHelperBean() { 7: super(); 8: } 9:   10: /** 11: * This method updates the configuration for the pageFlowScope to have the correct datafile 12: * for the current Locale 13: */ 14: public void initLocaleForDataFile() { 15: String dataFile = null; 16: // Checking that state of presenter is present, also make sure the item is eligible for localization by locating the "_" in the name 17: if(presenter.getConfiguration().getDatasource() != null && 18: presenter.getConfiguration().getDatasource().isNodeDatasource() && 19: presenter.getConfiguration().getDatasource().getNodeIdDatasource() != null && 20: !presenter.getConfiguration().getDatasource().getNodeIdDatasource().equals("") && 21: presenter.getConfiguration().getDatasource().getNodeIdDatasource().indexOf("_") > 0) { 22: dataFile = presenter.getConfiguration().getDatasource().getNodeIdDatasource(); 23: FacesContext fc = FacesContext.getCurrentInstance(); 24: //Leveraging the current faces contenxt to get current localization language 25: String currentLocale = fc.getViewRoot().getLocale().getLanguage().toUpperCase(); 26: String newDataFile = dataFile; 27: String [] uniqueIdArr = dataFile.split("_"); 28: if(uniqueIdArr.length > 0) { 29: newDataFile = String.format(CP_D_DOCNAME_FORMAT, uniqueIdArr[CP_UNIQUE_ID_INDEX], currentLocale); 30: } 31: //Replacing the current Node datasource with localized datafile. 32: presenter.getConfiguration().getDatasource().setNodeIdDatasource(newDataFile); 33: } 34: } With this bean code available to our WebCenter Portal implementation we can start the next step, by overriding the standard behavior in content presenter by applying a MDS Taskflow customization to the content presenter taskflow, following taskflow customization has been applied to the customization project attached to this post:- Library: WebCenter Document Library Service View- Path: oracle.webcenter.doclib.view.jsf.taskflows.presenter- File: contentPresenter.xml Changes made in above customization view:1. A new method invocation activity has been added (initLocaleForDataFile)2. The method invocation invokes the new NLSHelperBean3. The default activity is moved to the new Method invocation (initLocaleForDataFile)4. The outcome from the method invocation goes to determine-navigation (original default activity) The above changes concludes the presentation modification to support a compatible localization scenario for a content driven page. In addition this customization do not limit or disables the out of the box capabilities of WebCenter Portal. Steps to enable above customization Start JDeveloper and open your WebCenter Portal Application Select "Open Project" and include the extracted project you downloaded (CPNLSCustomizations.zip) Make sure the build out put from CPNLSCustomizations project is a dependency to your Portal project Deploy your Portal Application to your WC_CustomPortal managed server Make sure your naming convention of the two data files follow above recommendation Example result of the solution: Solution Scenario 2 - Localization aware content creation and authoring As you could see from Solution Scenario 1 we require the naming convention to be strictly followed, this means in the hands of a user with limited technology knowledge this can be one of the failing links in this solutions. Therefore I strongly recommend that you also follow this part since this will eliminate this risk and also increase the editors/authors usability with a magnitude. The current WebCenter Portal Architecture leverages WebCenter Content today to maintain, publish and manage content, therefore we need to make few efforts in making sure this part of the architecture is on board with our new naming practice and also simplifies the creation of content for our end users. As you probably remember the naming convention required a prefix to be common so I propose we enable a new component that help you auto name the content items dDocName (this means that the readable title can still be in a human readable format). The new component (WCP-LocalizationSupport.zip) built for this scenario will enable a couple of things: 1. A new service where a sequential number can be generate on request - service name: GET_WCP_LOCALE_CONTENTID 2. The content presenter is leveraging a specific function when launching the content creation wizard from within Content Presenter. Assumption is that users will create the content by clicking "Create Web Content" button. When clicking the button the wizard opened is actually running in side of WebCenter Content server, file executed (contentwizard.hcsp). This file uses JSON commands that will generate operations in the content server, I have extend this file to create two identical data files instead of one.- First it creates the English version by leveraging the new Service and a Global Rule to set the dDocName on the original check in screen, this global rule is available in a configuration package attached to this blog (NLSContentProfileRule.zip)- Secondly we run a set of JSON javascripts to create the Spanish version with the same details except for the name where we replace the suffix with (_ES)- Then content creation wizard ends with its out of the box behavior and assigns the Content Presenter instance the English versionSee Javascript markup below - this can be changed in the (WCP-LocalizationSupport.zip/component/WCP-LocalizationSupport/publish/webcenter) 1: //---------------------------------------A-TEAM--------------------------------------- 2: WCM.ContentWizard.CheckinContentPage.OnCheckinComplete = function(returnParams) 3: { 4: var callback = WCM.ContentWizard.CheckinContentPage.checkinCompleteCallback; 5: WCM.ContentWizard.ChooseContentPage.OnSelectionComplete(returnParams, callback); 6: // Load latest DOC_INFO_SIMPLE 7: var cgiPath = DOCLIB.config.httpCgiPath; 8: var jsonBinder = new WCM.Idc.JSONBinder(); 9: jsonBinder.SetLocalDataValue('IdcService', 'DOC_INFO_SIMPLE'); 10: jsonBinder.SetLocalDataValue('dID', returnParams.dID); 11: jsonBinder.Send(cgiPath, $CB(this, function(http) { 12: var ret = http.GetResponseText(); 13: var binder = new WCM.Idc.JSONBinder(ret); 14: var dDocName = binder.GetResultSetValue('DOC_INFO', 'dDocName', 0); 15: if(dDocName.indexOf("_") > 0){ 16: var ssBinder = new WCM.Idc.JSONBinder(); 17: ssBinder.SetLocalDataValue('IdcService', 'SS_CHECKIN_NEW'); 18: //Additional Localization dDocName generated 19: ssBinder.SetLocalDataValue('dDocName', getLocalizedDocName(dDocName, "es")); 20: ssBinder.SetLocalDataValue('primaryFile', 'default.xml'); 21: ssBinder.SetLocalDataValue('ssDefaultDocumentToken', 'SSContributorDataFile'); 22:   23: for(var n = 0 ; n < binder.GetResultSetFields('DOC_INFO').length ; n++) { 24: var field = binder.GetResultSetFields('DOC_INFO')[n]; 25: if(field != 'dID' && 26: field != 'dDocName' && 27: field != 'dID' && 28: field != 'dReleaseState' && 29: field != 'dRevClassID' && 30: field != 'dRevisionID' && 31: field != 'dRevLabel') { 32: ssBinder.SetLocalDataValue(field, binder.GetResultSetValue('DOC_INFO', field, 0)); 33: } 34: } 35: ssBinder.Send(cgiPath, $CB(this, function(http) {})); 36: } 37: })); 38: } 39:   40: //Support function to create localized dDocNames 41: function getLocalizedDocName(dDocName, lang) { 42: var result = dDocName.replace("_EN", ("_" + lang)); 43: return result; 44: } 45: //---------------------------------------A-TEAM--------------------------------------- 3. By applying the enclosed NLSContentProfileRule.zip, the check in screen for DataFile creation will have auto naming enabled with localization suffix (default is English)You can change the default language by updating the GlobalNlsRule and assign preferred prefix.See Rule markup for dDocName field below: <$executeService("GET_WCP_LOCALE_CONTENTID")$><$dprDefaultValue=WCP_LOCALE.LocaleContentId & "_EN"$> Steps to enable above extensions and configurations Install WebCenter Component (WCP-LocalizationSupport.zip), via the AdminServer in WebCenter Content Administration menus Enable the component and restart the content server Apply the configuration bundle to enable the new Global Rule (GlobalNlsRule), via the WebCenter Content Administration/Config Migration Admin New Content Creation Experience Result Content EditingContent editing will by default be enabled for authoring in the current select locale since the content file is selected by (Solution Scenario 1), this means that a user can switch his browser locale and then get the editing experience adaptable to the current selected locale. NotesA-Team are planning to post a solution on how to inline switch the locale of the WebCenter Portal Session, so the Content Presenter, Navigation Model and other Face related features are localized accordingly. Content Presenter examples used in this post is an extension to following post:https://blogs.oracle.com/ATEAM_WEBCENTER/entry/enable_content_editing_of_iterative Downloads CPNLSCustomizations.zip - WebCenter Portal, Content Presenter Customization https://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/CPNLSCustomizations.zip WCP-LocalizationSupport.zip - WebCenter Content, Extension Component to enable localization creation of files with compliant auto naminghttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/WCP-LocalizationSupport.zip NLSContentProfileRule.zip - WebCenter Content, Configuration Update Bundle to enable Global rule for new check in naming of data fileshttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/NLSContentProfileRule.zip

    Read the article

  • Transactional Messaging in the Windows Azure Service Bus

    - by Alan Smith
    Introduction I’m currently working on broadening the content in the Windows Azure Service Bus Developer Guide. One of the features I have been looking at over the past week is the support for transactional messaging. When using the direct programming model and the WCF interface some, but not all, messaging operations can participate in transactions. This allows developers to improve the reliability of messaging systems. There are some limitations in the transactional model, transactions can only include one top level messaging entity (such as a queue or topic, subscriptions are no top level entities), and transactions cannot include other systems, such as databases. As the transaction model is currently not well documented I have had to figure out how things work through experimentation, with some help from the development team to confirm any questions I had. Hopefully I’ve got the content mostly correct, I will update the content in the e-book if I find any errors or improvements that can be made (any feedback would be very welcome). I’ve not had a chance to look into the code for transactions and asynchronous operations, maybe that would make a nice challenge lab for my Windows Azure Service Bus course. Transactional Messaging Messaging entities in the Windows Azure Service Bus provide support for participation in transactions. This allows developers to perform several messaging operations within a transactional scope, and ensure that all the actions are committed or, if there is a failure, none of the actions are committed. There are a number of scenarios where the use of transactions can increase the reliability of messaging systems. Using TransactionScope In .NET the TransactionScope class can be used to perform a series of actions in a transaction. The using declaration is typically used de define the scope of the transaction. Any transactional operations that are contained within the scope can be committed by calling the Complete method. If the Complete method is not called, any transactional methods in the scope will not commit.   // Create a transactional scope. using (TransactionScope scope = new TransactionScope()) {     // Do something.       // Do something else.       // Commit the transaction.     scope.Complete(); }     In order for methods to participate in the transaction, they must provide support for transactional operations. Database and message queue operations typically provide support for transactions. Transactions in Brokered Messaging Transaction support in Service Bus Brokered Messaging allows message operations to be performed within a transactional scope; however there are some limitations around what operations can be performed within the transaction. In the current release, only one top level messaging entity, such as a queue or topic can participate in a transaction, and the transaction cannot include any other transaction resource managers, making transactions spanning a messaging entity and a database not possible. When sending messages, the send operations can participate in a transaction allowing multiple messages to be sent within a transactional scope. This allows for “all or nothing” delivery of a series of messages to a single queue or topic. When receiving messages, messages that are received in the peek-lock receive mode can be completed, deadlettered or deferred within a transactional scope. In the current release the Abandon method will not participate in a transaction. The same restrictions of only one top level messaging entity applies here, so the Complete method can be called transitionally on messages received from the same queue, or messages received from one or more subscriptions in the same topic. Sending Multiple Messages in a Transaction A transactional scope can be used to send multiple messages to a queue or topic. This will ensure that all the messages will be enqueued or, if the transaction fails to commit, no messages will be enqueued.     An example of the code used to send 10 messages to a queue as a single transaction from a console application is shown below.   QueueClient queueClient = messagingFactory.CreateQueueClient(Queue1);   Console.Write("Sending");   // Create a transaction scope. using (TransactionScope scope = new TransactionScope()) {     for (int i = 0; i < 10; i++)     {         // Send a message         BrokeredMessage msg = new BrokeredMessage("Message: " + i);         queueClient.Send(msg);         Console.Write(".");     }     Console.WriteLine("Done!");     Console.WriteLine();       // Should we commit the transaction?     Console.WriteLine("Commit send 10 messages? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     } } Console.WriteLine(); messagingFactory.Close();     The transaction scope is used to wrap the sending of 10 messages. Once the messages have been sent the user has the option to either commit the transaction or abandon the transaction. If the user enters “yes”, the Complete method is called on the scope, which will commit the transaction and result in the messages being enqueued. If the user enters anything other than “yes”, the transaction will not commit, and the messages will not be enqueued. Receiving Multiple Messages in a Transaction The receiving of multiple messages is another scenario where the use of transactions can improve reliability. When receiving a group of messages that are related together, maybe in the same message session, it is possible to receive the messages in the peek-lock receive mode, and then complete, defer, or deadletter the messages in one transaction. (In the current version of Service Bus, abandon is not transactional.)   The following code shows how this can be achieved. using (TransactionScope scope = new TransactionScope()) {       while (true)     {         // Receive a message.         BrokeredMessage msg = q1Client.Receive(TimeSpan.FromSeconds(1));         if (msg != null)         {             // Wrote message body and complete message.             string text = msg.GetBody<string>();             Console.WriteLine("Received: " + text);             msg.Complete();         }         else         {             break;         }     }     Console.WriteLine();       // Should we commit?     Console.WriteLine("Commit receive? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     }     Console.WriteLine(); }     Note that if there are a large number of messages to be received, there will be a chance that the transaction may time out before it can be committed. It is possible to specify a longer timeout when the transaction is created, but It may be better to receive and commit smaller amounts of messages within the transaction. It is also possible to complete, defer, or deadletter messages received from more than one subscription, as long as all the subscriptions are contained in the same topic. As subscriptions are not top level messaging entities this scenarios will work. The following code shows how this can be achieved. try {     using (TransactionScope scope = new TransactionScope())     {         // Receive one message from each subscription.         BrokeredMessage msg1 = subscriptionClient1.Receive();         BrokeredMessage msg2 = subscriptionClient2.Receive();           // Complete the message receives.         msg1.Complete();         msg2.Complete();           Console.WriteLine("Msg1: " + msg1.GetBody<string>());         Console.WriteLine("Msg2: " + msg2.GetBody<string>());           // Commit the transaction.         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     Unsupported Scenarios The restriction of only one top level messaging entity being able to participate in a transaction makes some useful scenarios unsupported. As the Windows Azure Service Bus is under continuous development and new releases are expected to be frequent it is possible that this restriction may not be present in future releases. The first is the scenario where messages are to be routed to two different systems. The following code attempts to do this.   try {     // Create a transaction scope.     using (TransactionScope scope = new TransactionScope())     {         BrokeredMessage msg1 = new BrokeredMessage("Message1");         BrokeredMessage msg2 = new BrokeredMessage("Message2");           // Send a message to Queue1         Console.WriteLine("Sending Message1");         queue1Client.Send(msg1);           // Send a message to Queue2         Console.WriteLine("Sending Message2");         queue2Client.Send(msg2);           // Commit the transaction.         Console.WriteLine("Committing transaction...");         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     The results of running the code are shown below. When attempting to send a message to the second queue the following exception is thrown: No active Transaction was found for ID '35ad2495-ee8a-4956-bbad-eb4fedf4a96e:1'. The Transaction may have timed out or attempted to span multiple top-level entities such as Queue or Topic. The server Transaction timeout is: 00:01:00..TrackingId:947b8c4b-7754-4044-b91b-4a959c3f9192_3_3,TimeStamp:3/29/2012 7:47:32 AM.   Another scenario where transactional support could be useful is when forwarding messages from one queue to another queue. This would also involve more than one top level messaging entity, and is therefore not supported.   Another scenario that developers may wish to implement is performing transactions across messaging entities and other transactional systems, such as an on-premise database. In the current release this is not supported.   Workarounds for Unsupported Scenarios There are some techniques that developers can use to work around the one top level entity limitation of transactions. When sending two messages to two systems, topics and subscriptions can be used. If the same message is to be sent to two destinations then the subscriptions would have the default subscriptions, and the client would only send one message. If two different messages are to be sent, then filters on the subscriptions can route the messages to the appropriate destination. The client can then send the two messages to the topic in the same transaction.   In scenarios where a message needs to be received and then forwarded to another system within the same transaction topics and subscriptions can also be used. A message can be received from a subscription, and then sent to a topic within the same transaction. As a topic is a top level messaging entity, and a subscription is not, this scenario will work.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Updating the managed debugging API for .NET v4

    - by Brian Donahue
    In any successful investigation, the right tools play a big part in collecting evidence about the state of the "crime scene" as it was before the detectives arrived. Unfortunately for the Crash Scene Investigator, we don't have the budget to fly out to the customer's site, chalk the outline, and eat their doughnuts. We have to rely on the end-user to collect the evidence for us, which means giving them the fingerprint dust and the evidence baggies and leaving them to it. With that in mind, the Red Gate support team have been writing tools that can collect vital clues with a minimum of fuss. Years ago we would have asked for a memory dump, where we used to get the customer to run CDB.exe and produce dumps that we could analyze in-house, but those dumps were pretty unwieldy (500MB files) and the debugger often didn't dump exactly where we wanted, or made five or more dumps. What we wanted was just the minimum state information from the program at the time of failure, so we produced a managed debugger that captured every first and second-chance exception and logged the stack and a minimal amount of variables from the memory of the application, which could all be exported as XML. This caused less inconvenience to the end-user because it is much easier to send a 65KB XML file in an email than a 500MB file containing all of the application's memory. We don't need to have the entire victim shipped out to us when we just want to know what was under the fingernails. The thing that made creating a managed debugging tool possible was the MDbg Engine example written by Microsoft as part of the Debugging Tools for Windows distribution. Since the ICorDebug interface is a bit difficult to understand, they had kindly created some wrappers that provided an event-driven debugging model that was perfect for our needs, but .NET 4 applications under debugging started complaining that "The debugger's protocol is incompatible with the debuggee". The introduction of .NET Framework v4 had changed the managed debugging API significantly, however, without an update for the MDbg Engine code! After a few hours of research, I had finally worked out that most of the version 4 ICorDebug interface still works much the same way in "legacy" v2 mode and there was a relatively easy fix for the problem in that you can still get a reference to legacy ICorDebug by changing the way the interface is created. In .NET v2, the interface was acquired using the CreateDebuggingInterfaceFromVersion method in mscoree.dll. In v4, you must first create IClrMetaHost, enumerate the runtimes, get an ICLRRuntimeInfo interface to the .NET 4 runtime from that, and use the GetInterface method in mscoree.dll to return a "legacy" ICorDebug interface. The rest of the MDbg Engine will continue working the old way. Here is how I had changed the MDbg Engine code to support .NET v4: private void InitFromVersion(string debuggerVersion){if( debuggerVersion.StartsWith("v1") ){throw new ArgumentException( "Can't debug a version 1 CLR process (\"" + debuggerVersion + "\"). Run application in a version 2 CLR, or use a version 1 debugger instead." );} ICorDebug rawDebuggingAPI=null;if (debuggerVersion.StartsWith("v4")){Guid CLSID_MetaHost = new Guid("9280188D-0E8E-4867-B30C-7FA83884E8DE"); Guid IID_MetaHost = new Guid("D332DB9E-B9B3-4125-8207-A14884F53216"); ICLRMetaHost metahost = (ICLRMetaHost)NativeMethods.ClrCreateInterface(CLSID_MetaHost, IID_MetaHost); IEnumUnknown runtimes = metahost.EnumerateInstalledRuntimes(); ICLRRuntimeInfo runtime = GetRuntime(runtimes, debuggerVersion); //Defined in metahost.hGuid CLSID_CLRDebuggingLegacy = new Guid(0xDF8395B5, 0xA4BA, 0x450b, 0xA7, 0x7C, 0xA9, 0xA4, 0x77, 0x62, 0xC5, 0x20);Guid IID_ICorDebug = new Guid("3D6F5F61-7538-11D3-8D5B-00104B35E7EF"); Object res;runtime.GetInterface(ref CLSID_CLRDebuggingLegacy, ref IID_ICorDebug, out res); rawDebuggingAPI = (ICorDebug)res; }elserawDebuggingAPI = NativeMethods.CreateDebuggingInterfaceFromVersion((int)CorDebuggerVersion.Whidbey,debuggerVersion);if (rawDebuggingAPI != null)InitFromICorDebug(rawDebuggingAPI);elsethrow new ArgumentException("Support for debugging version " + debuggerVersion + " is not yet implemented");} The changes above will ensure that the debugger can support .NET Framework v2 and v4 applications with the same codebase, but we do compile two different applications: one targeting v2 and the other v4. As a footnote I need to add that some missing native methods and wrappers, along with the EnumerateRuntimes method code, came from the Mindbg project on Codeplex. Another change is that when using the MDbgEngine.CreateProcess to launch a process in the debugger, do not supply a null as the final argument. This does not work any more because GetCORVersion always returns "v2.0.50727" as the function has been deprecated in .NET v4. What's worse is that on a system with only .NET 4, the user will be prompted to download and install .NET v2! Not nice! This works much better: proc = m_Debugger.CreateProcess(ProcessName, ProcessArgs, DebugModeFlag.Default,String.Format("v{0}.{1}.{2}",System.Environment.Version.Major,System.Environment.Version.Minor,System.Environment.Version.Build)); Microsoft "unofficially" plan on updating the MDbg samples soon, but if you have an MDbg-based application, you can get it working right now by changing one method a bit and adding a few new interfaces (ICLRMetaHost, IEnumUnknown, and ICLRRuntimeInfo). The new, non-legacy implementation of MDbg Engine will add new, interesting features like dump-file support and by association I assume garbage-collection/managed object stats, so it will be well worth looking into if you want to extend the functionality of a managed debugger going forward.

    Read the article

  • ASP.NET MVC 3 Release Candidate 2 Released

    - by shiju
    Microsoft has shipped Release Candidate version 2 for ASP.NET MVC 3. You can download the  ASP.NET MVC 3 Release Candidate 2 from here . If you have installed Visual Studio Service Pack 1 Beta, you must install ASP.NET MVC 3 RC 2. Otherwise it will break the IntelliSense feature in the Razor views of ASP.NET MVC 3 RC1. The following are the some of the new changes in ASP.NET MVC 3 RC 2. Added Html.Raw Method Renamed "Controller.ViewModel" Property and the "View" Property To "ViewBag" Renamed "ControllerSessionStateAttribute" Class to "SessionStateAttribute" Fixed "RenderAction" Method to Give Explicit Values Precedence During Model Binding You can read more details from ScottGu’s blog post Announcing ASP.NET MVC 3 (Release Candidate 2)

    Read the article

  • Console keyboard input OOP

    - by Alexandre P. Levasseur
    I am trying to build a very simple console-based game with a focus on using OOP instead of procedural programming because I intend to build up on that code for more complex projects. I am wondering if there is a design pattern that nicely handles this use case: There is a Player class with a MakeMove() method interacting with the board game. The MakeMove() method has to somehow get the user input yet I do not want to code it into the Player class as this would reduce cohesion and augment coupling. I was thinking of maybe having some controller class handle the sequence of events and thus the calls to keyboard input. However, that controller class would need to be able to handle differently the subclasses of Player (e.g. the AI class does not require keyboard input). Thoughts ?

    Read the article

  • User generated articles, how to do meta description?

    - by Tom Gullen
    If users submit a lot of good quality articles on the site, what is the best way to approach the meta description tag? I see two options: Have a description box and rely on them to fill it sensibly and in a good quality way Just exclude the meta description Method 1 is bad initially, but I'm willing to put time in going through and editing/checking all of them on a permanent basis. Method 2 is employed by the stack exchange site, and lets the search bots extract the best part of the page in the SERP. Thoughts? Ideas? I'm thinking a badly formed description tag is more damaging than not having one at all at the end of the day. I don't expect content to ever become unwieldy and too much to manage.

    Read the article

  • Using RIA DomainServices with ASP.NET and MVC 2

    - by Bobby Diaz
    Recently, I started working on a new ASP.NET MVC 2 project and I wanted to reuse the data access (LINQ to SQL) and business logic methods (WCF RIA Services) that had been developed for a previous project that used Silverlight for the front-end.  I figured that I would be able to instantiate the various DomainService classes from within my controller’s action methods, because after all, the code for those services didn’t look very complicated.  WRONG!  I didn’t realize at first that some of the functionality is handled automatically by the framework when the domain services are hosted as WCF services.  After some initial searching, I came across an invaluable post by Joe McBride, which described how to get RIA Service .svc files to work in an MVC 2 Web Application, and another by Brad Abrams.  Unfortunately, Brad’s solution was for an earlier preview release of RIA Services and no longer works with the version that I am running (PDC Preview). I have not tried the RC version of WCF RIA Services, so I am not sure if any of the issues I am having have been resolved, but I wanted to come up with a way to reuse the shared libraries so I wouldn’t have to write a non-RIA version that basically did the same thing.  The classes I came up with work with the scenarios I have encountered so far, but I wanted to go ahead and post the code in case someone else is having the same trouble I had.  Hopefully this will save you a few headaches! 1. Querying When I first tried to use a DomainService class to perform a query inside one of my controller’s action methods, I got an error stating that “This DomainService has not been initialized.”  To solve this issue, I created an extension method for all DomainServices that creates the required DomainServiceContext and passes it to the service’s Initialize() method.  Here is the code for the extension method; notice that I am creating a sort of mock HttpContext for those cases when the service is running outside of IIS, such as during unit testing!     public static class ServiceExtensions     {         /// <summary>         /// Initializes the domain service by creating a new <see cref="DomainServiceContext"/>         /// and calling the base DomainService.Initialize(DomainServiceContext) method.         /// </summary>         /// <typeparam name="TService">The type of the service.</typeparam>         /// <param name="service">The service.</param>         /// <returns></returns>         public static TService Initialize<TService>(this TService service)             where TService : DomainService         {             var context = CreateDomainServiceContext();             service.Initialize(context);             return service;         }           private static DomainServiceContext CreateDomainServiceContext()         {             var provider = new ServiceProvider(new HttpContextWrapper(GetHttpContext()));             return new DomainServiceContext(provider, DomainOperationType.Query);         }           private static HttpContext GetHttpContext()         {             var context = HttpContext.Current;   #if DEBUG             // create a mock HttpContext to use during unit testing...             if ( context == null )             {                 var writer = new StringWriter();                 var request = new SimpleWorkerRequest("/", "/",                     String.Empty, String.Empty, writer);                   context = new HttpContext(request)                 {                     User = new GenericPrincipal(new GenericIdentity("debug"), null)                 };             } #endif               return context;         }     }   With that in place, I can use it almost as normally as my first attempt, except with a call to Initialize():     public ActionResult Index()     {         var service = new NorthwindService().Initialize();         var customers = service.GetCustomers();           return View(customers);     } 2. Insert / Update / Delete Once I got the records showing up, I was trying to insert new records or update existing data when I ran into the next issue.  I say issue because I wasn’t getting any kind of error, which made it a little difficult to track down.  But once I realized that that the DataContext.SubmitChanges() method gets called automatically at the end of each domain service submit operation, I could start working on a way to mimic the behavior of a hosted domain service.  What I came up with, was a base class called LinqToSqlRepository<T> that basically sits between your implementation and the default LinqToSqlDomainService<T> class.     [EnableClientAccess()]     public class NorthwindService : LinqToSqlRepository<NorthwindDataContext>     {         public IQueryable<Customer> GetCustomers()         {             return this.DataContext.Customers;         }           public void InsertCustomer(Customer customer)         {             this.DataContext.Customers.InsertOnSubmit(customer);         }           public void UpdateCustomer(Customer currentCustomer)         {             this.DataContext.Customers.TryAttach(currentCustomer,                 this.ChangeSet.GetOriginal(currentCustomer));         }           public void DeleteCustomer(Customer customer)         {             this.DataContext.Customers.TryAttach(customer);             this.DataContext.Customers.DeleteOnSubmit(customer);         }     } Notice the new base class name (just change LinqToSqlDomainService to LinqToSqlRepository).  I also added a couple of DataContext (for Table<T>) extension methods called TryAttach that will check to see if the supplied entity is already attached before attempting to attach it, which would cause an error! 3. LinqToSqlRepository<T> Below is the code for the LinqToSqlRepository class.  The comments are pretty self explanatory, but be aware of the [IgnoreOperation] attributes on the generic repository methods, which ensures that they will be ignored by the code generator and not available in the Silverlight client application.     /// <summary>     /// Provides generic repository methods on top of the standard     /// <see cref="LinqToSqlDomainService&lt;TContext&gt;"/> functionality.     /// </summary>     /// <typeparam name="TContext">The type of the context.</typeparam>     public abstract class LinqToSqlRepository<TContext> : LinqToSqlDomainService<TContext>         where TContext : System.Data.Linq.DataContext, new()     {         /// <summary>         /// Retrieves an instance of an entity using it's unique identifier.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="keyValues">The key values.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual TEntity GetById<TEntity>(params object[] keyValues) where TEntity : class         {             var table = this.DataContext.GetTable<TEntity>();             var mapping = this.DataContext.Mapping.GetTable(typeof(TEntity));               var keys = mapping.RowType.IdentityMembers                 .Select((m, i) => m.Name + " = @" + i)                 .ToArray();               return table.Where(String.Join(" && ", keys), keyValues).FirstOrDefault();         }           /// <summary>         /// Creates a new query that can be executed to retrieve a collection         /// of entities from the <see cref="DataContext"/>.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <returns></returns>         [IgnoreOperation]         public virtual IQueryable<TEntity> GetEntityQuery<TEntity>() where TEntity : class         {             return this.DataContext.GetTable<TEntity>();         }           /// <summary>         /// Inserts the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Insert<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.InsertOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Insert);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity) where TEntity : class         {             return this.Update(entity, null);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <param name="original">The original.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity, TEntity original)             where TEntity : class         {             if ( original == null )             {                 original = GetOriginal(entity);             }               var table = this.DataContext.GetTable<TEntity>();             table.TryAttach(entity, original);               return this.Submit(entity, original, DomainOperation.Update);         }           /// <summary>         /// Deletes the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Delete<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.TryAttach(entity);             //table.DeleteOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Delete);         }           protected virtual bool Submit(Object entity, Object original, DomainOperation operation)         {             var entry = new ChangeSetEntry(0, entity, original, operation);             var changes = new ChangeSet(new ChangeSetEntry[] { entry });             return base.Submit(changes);         }           private TEntity GetOriginal<TEntity>(TEntity entity) where TEntity : class         {             var context = CreateDataContext();             var table = context.GetTable<TEntity>();             return table.FirstOrDefault(e => e == entity);         }     } 4. Conclusion So there you have it, a fully functional Repository implementation for your RIA Domain Services that can be consumed by your ASP.NET and MVC applications.  I have uploaded the source code along with unit tests and a sample web application that queries the Customers table from inside a Controller, as well as a Silverlight usage example. As always, I welcome any comments or suggestions on the approach I have taken.  If there is enough interest, I plan on contacting Colin Blair or maybe even the man himself, Brad Abrams, to see if this is something worthy of inclusion in the WCF RIA Services Contrib project.  What do you think? Enjoy!

    Read the article

  • The Best Free Online First Person Shooter (FPS) Games

    - by Lori Kaufman
    First Person Shooter (FPS) games are action games centered around gun and projectile weapon-based combat. As the player, you experience the action directly through the eyes of the protagonist. FPS games have become a very popular type of game online. A lot of FPS games are paid, but there are many you can play for free. Most FPS games have online versions where you play in a supported browser or download a program for your PC that allows you to connect to the game online. We have collected links and information about some of the more popular free FPS games available. All the games listed here are free to play, but there may be some limitations, and you have to register for many of them and download game clients to your computer to be able to connect to the game online. Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot

    Read the article

  • Solar Case Mod Powers Raspberry Pi FTP Server with Sunshine

    - by Jason Fitzpatrick
    This project combines a solar panel, Raspberry Pi, and a bit of code for the Pi to turn the whole array into a solar powered server (you could easily modify the project to become a solar powered music player or other device). The case mod comes to us courtesy of tinker CottonPickers–he shares the build and offers the cases for sale here. Building off the solar case, David Hayward at CNET UK added on an FTP server so that the Pi can serve as a tiny, take-anywhere, power-outlet optional, file sharing hub. Hit up the link below for the FTP configuration instructions. How to Make a Raspberry Pi Solar-Powered FTP Server [CNET UK] How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • Security considerations for my first eStore.

    - by RPK
    I have a website through which I am going to sell few products. It is hosted on a simple shared-hosting and does not have SSL. On the products page, each product has a Buy Now button created from my PayPal Merchant account. PayPal recommends to use it's Button Factory to create secure buttons and save it inside PayPal itself. I have followed the same advice and the code of any button is secure and does not disclose any information on either a product or it's price. When the user clicks on a Buy Now button, he/she is taken to PayPal site where a page is opened in SSL for the user to fill in the credit card and shipping details. After a successful transaction, the control is passed back to my site. I want to know whether there is still any chance when security could be compromised.

    Read the article

  • String Format for DateTime in C#

    - by SAMIR BHOGAYTA
    String Format for DateTime [C#] This example shows how to format DateTime using String.Format method. All formatting can be done also using DateTime.ToString method. Custom DateTime Formatting There are following custom format specifiers y (year), M (month), d (day), h (hour 12), H (hour 24), m (minute), s (second), f (second fraction), F (second fraction, trailing zeroes are trimmed), t (P.M or A.M) and z (time zone). Following examples demonstrate how are the format specifiers rewritten to the output. [C#] // create date time 2008-03-09 16:05:07.123 DateTime dt = new DateTime(2008, 3, 9, 16, 5, 7, 123); String.Format("{0:y yy yyy yyyy}", dt); // "8 08 008 2008" year String.Format("{0:M MM MMM MMMM}", dt); // "3 03 Mar March" month String.Format("{0:d dd ddd dddd}", dt); // "9 09 Sun Sunday" day String.Format("{0:h hh H HH}", dt); // "4 04 16 16" hour 12/24 String.Format("{0:m mm}", dt); // "5 05" minute String.Format("{0:s ss}", dt); // "7 07" second String.Format("{0:f ff fff ffff}", dt); // "1 12 123 1230" sec.fraction String.Format("{0:F FF FFF FFFF}", dt); // "1 12 123 123" without zeroes String.Format("{0:t tt}", dt); // "P PM" A.M. or P.M. String.Format("{0:z zz zzz}", dt); // "-6 -06 -06:00" time zone You can use also date separator / (slash) and time sepatator : (colon). These characters will be rewritten to characters defined in the current DateTimeForma­tInfo.DateSepa­rator and DateTimeForma­tInfo.TimeSepa­rator. [C#] // date separator in german culture is "." (so "/" changes to ".") String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9/3/2008 16:05:07" - english (en-US) String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9.3.2008 16:05:07" - german (de-DE) Here are some examples of custom date and time formatting: [C#] // month/day numbers without/with leading zeroes String.Format("{0:M/d/yyyy}", dt); // "3/9/2008" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" // day/month names String.Format("{0:ddd, MMM d, yyyy}", dt); // "Sun, Mar 9, 2008" String.Format("{0:dddd, MMMM d, yyyy}", dt); // "Sunday, March 9, 2008" // two/four digit year String.Format("{0:MM/dd/yy}", dt); // "03/09/08" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" Standard DateTime Formatting In DateTimeForma­tInfo there are defined standard patterns for the current culture. For example property ShortTimePattern is string that contains value h:mm tt for en-US culture and value HH:mm for de-DE culture. Following table shows patterns defined in DateTimeForma­tInfo and their values for en-US culture. First column contains format specifiers for the String.Format method. Specifier DateTimeFormatInfo property Pattern value (for en-US culture) t ShortTimePattern h:mm tt d ShortDatePattern M/d/yyyy T LongTimePattern h:mm:ss tt D LongDatePattern dddd, MMMM dd, yyyy f (combination of D and t) dddd, MMMM dd, yyyy h:mm tt F FullDateTimePattern dddd, MMMM dd, yyyy h:mm:ss tt g (combination of d and t) M/d/yyyy h:mm tt G (combination of d and T) M/d/yyyy h:mm:ss tt m, M MonthDayPattern MMMM dd y, Y YearMonthPattern MMMM, yyyy r, R RFC1123Pattern ddd, dd MMM yyyy HH':'mm':'ss 'GMT' (*) s SortableDateTi­mePattern yyyy'-'MM'-'dd'T'HH':'mm':'ss (*) u UniversalSorta­bleDateTimePat­tern yyyy'-'MM'-'dd HH':'mm':'ss'Z' (*) (*) = culture independent Following examples show usage of standard format specifiers in String.Format method and the resulting output. [C#] String.Format("{0:t}", dt); // "4:05 PM" ShortTime String.Format("{0:d}", dt); // "3/9/2008" ShortDate String.Format("{0:T}", dt); // "4:05:07 PM" LongTime String.Format("{0:D}", dt); // "Sunday, March 09, 2008" LongDate String.Format("{0:f}", dt); // "Sunday, March 09, 2008 4:05 PM" LongDate+ShortTime String.Format("{0:F}", dt); // "Sunday, March 09, 2008 4:05:07 PM" FullDateTime String.Format("{0:g}", dt); // "3/9/2008 4:05 PM" ShortDate+ShortTime String.Format("{0:G}", dt); // "3/9/2008 4:05:07 PM" ShortDate+LongTime String.Format("{0:m}", dt); // "March 09" MonthDay String.Format("{0:y}", dt); // "March, 2008" YearMonth String.Format("{0:r}", dt); // "Sun, 09 Mar 2008 16:05:07 GMT" RFC1123 String.Format("{0:s}", dt); // "2008-03-09T16:05:07" SortableDateTime String.Format("{0:u}", dt); // "2008-03-09 16:05:07Z" UniversalSortableDateTime

    Read the article

  • Best methods for Lazy Initialization with properties

    - by Stuart Pegg
    I'm currently altering a widely used class to move as much of the expensive initialization from the class constructor into Lazy Initialized properties. Below is an example (in c#): Before: public class ClassA { public readonly ClassB B; public void ClassA() { B = new ClassB(); } } After: public class ClassA { private ClassB _b; public ClassB B { get { if (_b == null) { _b = new ClassB(); } return _b; } } } There are a fair few more of these properties in the class I'm altering, and some are not used in certain contexts (hence the Laziness), but if they are used they're likely to be called repeatedly. Unfortunately, the properties are often also used inside the class. This means there is a potential for the private variable (_b) to be used directly by a method without it being initialized. Is there a way to make only the public property (B) available inside the class, or even an alternative method with the same initialized-when-needed?

    Read the article

  • Static vs Singleton in C# (Difference between Singleton and Static)

    - by Jalpesh P. Vadgama
    Recently I have came across a question what is the difference between Static and Singleton classes. So I thought it will be a good idea to share blog post about it.Difference between Static and Singleton classes:A singleton classes allowed to create a only single instance or particular class. That instance can be treated as normal object. You can pass that object to a method as parameter or you can call the class method with that Singleton object. While static class can have only static methods and you can not pass static class as parameter.We can implement the interfaces with the Singleton class while we can not implement the interfaces with static classes.We can clone the object of Singleton classes we can not clone the object of static classes.Singleton objects stored on heap while static class stored in stack.more at my personal blog: dotnetjalps.com

    Read the article

  • What You Said: What’s on Your Geeky Christmas List

    - by Jason Fitzpatrick
    Earlier this week we asked you to share what’s on your geeky Christmas list; you responded and we’re back to share your longed for tech goodies. The most requested item was this year’s hot introduction to the project board market: the Raspberry Pi. Dave writes: A Rapsberry Pi to tinker with, especially to see if I can get it up and running with OpenElec/Raspbmc and a torrent client for a low power media centre/htpc We just finished setting up a batch of new 512MB Raspberry Pi systems running the newest release of Rasbmbc and can’t recommend it enough–new refinements in Raspbmc and the extra 256MB of RAM really improve the media center experience. All John wants is a real keyboard so he can escape the torture of using a touch screen: How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • So Your Laptop’s Fan Has Stopped Working Then? [Humorous Image]

    - by Asian Angel
    There is such a thing as dust build-up and then there are the odd cases of dust-ball evolution… What is the worst case of dust build-up that you have dealt with? Make sure to share your stories with your fellow readers in the comments! Help, my laptop’s fan is not working! [via Reddit Tech Support Gore] Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot

    Read the article

  • Posting from ASP.NET WebForms page to another URL

    - by hajan
    Few days ago I had a case when I needed to make FORM POST from my ASP.NET WebForms page to an external site URL. More specifically, I was working on implementing Simple Payment System (like Amazon, PayPal, MoneyBookers). The operator asks to make FORM POST request to a given URL in their website, sending parameters together with the post which are computed on my application level (access keys, secret keys, signature, return-URL… etc). So, since we are not allowed nesting another form inside the <form runat=”server”> … </form>, which is required because other controls in my ASPX code work on server-side, I thought to inject the HTML and create FORM with method=”POST”. After making some proof of concept and testing some scenarios, I’ve concluded that I can do this very fast in two ways: Using jQuery to create form on fly with the needed parameters and make submit() Using HttpContext.Current.Response.Write to write the form on server-side (code-behind) and embed JavaScript code that will do the post Both ways seemed fine. 1. Using jQuery to create FORM html code and Submit it. Let’s say we have ‘PAY NOW’ button in our ASPX code: <asp:Button ID="btnPayNow" runat="server" Text="Pay Now" /> Now, if we want to make this button submit a FORM using POST method to another website, the jQuery way should be as follows: <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.js" type="text/javascript"></script> <script type="text/javascript">     $(function () {         $("#btnPayNow").click(function (event) {             event.preventDefault();             //construct htmlForm string             var htmlForm = "<form id='myform' method='POST' action='http://www.microsoft.com'>" +                 "<input type='hidden' id='name' value='hajan' />" +             "</form>";             //Submit the form             $(htmlForm).appendTo("body").submit();         });     }); </script> Yes, as you see, the code fires on btnPayNow click. It removes the default button behavior, then creates htmlForm string. After that using jQuery we append the form to the body and submit it. Inside the form, you can see I have set the htttp://www.microsoft.com URL, so after clicking the button you should be automatically redirected to the Microsoft website (just for test, of course for Payment I’m using Operator's URL). 2. Using HttpContext.Current.Response.Write to write the form on server-side (code-behind) and embed JavaScript code that will do the post The C# code behind should be something like this: public void btnPayNow_Click(object sender, EventArgs e) {     string Url = "http://www.microsoft.com";     string formId = "myForm1";     StringBuilder htmlForm = new StringBuilder();     htmlForm.AppendLine("<html>");     htmlForm.AppendLine(String.Format("<body onload='document.forms[\"{0}\"].submit()'>",formId));     htmlForm.AppendLine(String.Format("<form id='{0}' method='POST' action='{1}'>", formId, Url));     htmlForm.AppendLine("<input type='hidden' id='name' value='hajan' />");     htmlForm.AppendLine("</form>");     htmlForm.AppendLine("</body>");     htmlForm.AppendLine("</html>");     HttpContext.Current.Response.Clear();     HttpContext.Current.Response.Write(htmlForm.ToString());     HttpContext.Current.Response.End();             } So, with this code we create htmlForm string using StringBuilder class and then just write the html to the page using HttpContext.Current.Response.Write. The interesting part here is that we submit the form using JavaScript code: document.forms["myForm1"].submit() This code runs on body load event, which means once the body is loaded the form is automatically submitted. Note: In order to test both solutions, create two applications on your web server and post the form from first to the second website, then get the values in the second website using Request.Form[“input-field-id”] I hope this was useful post for you. Regards, Hajan

    Read the article

  • Oracle Database 12c: Oracle Multitenant Option

    - by hamsun
    1. Why ? 2. What is it ? 3. How ? 1. Why ? The main idea of the 'grid' is to share resources, to make better use of storage, CPU and memory. If a database administrator wishes to implement this idea, he or she must consolidate many databases to one database. One of the concerns of running many applications together in one database is: ‚what will happen, if one of the applications must be restored because of a human error?‘ Tablespace point in time recovery can be used for this purpose, but there are a few prerequisites. Most importantly the tablespaces are strictly separated for each application. Another reason for creating separated databases is security: each customer has his own database. Therefore, there is often a proliferation of smaller databases. Each of them must be maintained, upgraded, each allocates virtual memory and runs background processes thereby wasting resources. Oracle 12c offers another possibility for virtualization, providing isolation at the database level: the multitenant container database holding pluggable databases. 2. What ? Pluggable databases are logical units inside a multitenant container database, which consists of one multitenant container database and up to 252 pluggable databases. The SGA is shared as are the background processes. The multitenant container database holds metadata information common for pluggable databases inside the System and the Sysaux tablespace, and there is just one Undo tablespace. The pluggable databases have smaller System and Sysaux tablespaces, containing just their 'personal' metadata. New data dictionary views will make the information available either on pdb (dba_views) or container level (cdb_views). There are local users, which are known in specific pluggable databases and common users known in all containers. Pluggable databases can be easily plugged to another multitenant container database and converted from a non-CDB. They can undergo point in time recovery. 3. How ? Creating a multitenant container database can be done using the database configuration assistant: There you find the new option: Create as Container Database. If you prefer ‚hand made‘ databases you can execute the command from a instance in nomount state: CREATE DATABASE cdb1 ENABLE PLUGGABLE DATABASE …. And of course this can also be achieved through Enterprise Manager Cloud. A freshly created multitenant container database consists of two containers: the root container as the 'rack' and a seed container, a template for future pluggable databases. There are 4 ways to create other pluggable databases: 1. Create an empty pdb from seed 2. Plug in a non-CDB 3. Move a pdb from another pdb 4. Copy a pdb from another pdb We will discuss option2: how to plug in a non_CDB into a multitenant container database. Three different methods are available : 1. Create an empty pdb and use Datapump in traditional export/import mode or with Transportable Tablespace or Database mode. This method is suitable for pre 12c databases. 2. Create an empty pdb and use GoldenGate replication. When the pdb catches up with the non-CDB, you fail over to the pdb. 3. Databases of Version 12c or higher can be plugged in with the help of the new dbms_pdb Package. This is a demonstration for method 3: Step1: Connect to the non-CDB to be plugged in and create an xml File with description of the database. The xml file is written to $ORACLE_HOME/dbs per default and contains mainly information about the datafiles. Step 2: Check if the non-CDB is pluggable in the multitenant container database: Step 3: Create the pluggable database, connected to the Multitenant container database. With nocopy option the files will be reused, but the tempfile is created anew: A service is created and registered automatically with the listener: Step 4: Delete unnecessary metadata from PDB SYSTEM tablespace: To connect to newly created pdb, edit tnsnames.ora and add entry for new pdb. Connect to plugged-in non_CDB and clean up Data Dictionary to remove entries now maintained in multitenant container database. As all kept objects have to be recompiled it will take a few minutes. Step 5: The plugged-in database will be automatically synchronised by creating common users and roles when opened the first time in read write mode. Step 6: Verify tablespaces and users: There is only one local tablespace (users) and one local user (scott) in the plugged-in non_CDB pdb_orcl. This method of creating plugged_in non_CDB from is fast and easy for 12c databases. The method for deplugging a pluggable database from a CDB is to create a new non_CDB and use the the new full transportable feature of Datapump and drop the pluggable database. About the Author: Gerlinde has been working for Oracle University Germany as one of our Principal Instructors for over 14 years. She started with Oracle 7 and became an Oracle Certified Master for Oracle 10g and 11c. She is a specialist in Database Core Technologies, with profound knowledge in Backup & Recovery, Performance Tuning for DBAs and Application Developers, Datawarehouse Administration, Data Guard and Real Application Clusters.

    Read the article

  • Do You Know How OUM defines the four, basic types of business system testing performed on a project? Why not test your knowledge?

    - by user713452
    Testing is perhaps the most important process in the Oracle® Unified Method (OUM). That makes it all the more important for practitioners to have a common understanding of the various types of functional testing referenced in the method, and to use the proper terminology when communicating with each other about testing activities. OUM identifies four basic types of functional testing, which is sometimes referred to as business system testing.  The basic functional testing types referenced by OUM include: Unit Testing Integration Testing System Testing, and  Systems Integration Testing See if you can match the following definitions with the appropriate type above? A.  This type of functional testing is focused on verifying that interfaces/integration between the system being implemented (i.e. System under Discussion (SuD)) and external systems functions as expected. B.     This type of functional testing is performed for custom software components only, is typically performed by the developer of the custom software, and is focused on verifying that the several custom components developed to satisfy a given requirement (e.g. screen, program, report, etc.) interact with one another as designed. C.  This type of functional testing is focused on verifying that the functionality within the system being implemented (i.e. System under Discussion (SuD)), functions as expected.  This includes out-of-the -box functionality delivered with Commercial Off-The-Shelf (COTS) applications, as well as, any custom components developed to address gaps in functionality.  D.  This type of functional testing is performed for custom software components only, is typically performed by the developer of the custom software, and is focused on verifying that the individual custom components developed to satisfy a given requirement  (e.g. screen, program, report, etc.) functions as designed.   Check your answers below: (D) (B) (C) (A) If you matched all of the functional testing types to their definitions correctly, then congratulations!  If not, you can find more information in the Testing Process Overview and Testing Task Overviews in the OUM Method Pack.

    Read the article

  • ASP.NET MVC localization DisplayNameAttribute alternatives: a better way

    - by Brian Schroer
    In my last post, I talked bout creating a custom class inheriting from System.ComponentModel.DisplayNameAttribute to retrieve display names from resource files: [LocalizedDisplayName("RememberMe")] public bool RememberMe { get; set; } That’s a lot of work to put an attribute on all of my model properties though. It would be nice if I could intercept the ASP.NET MVC code that analyzes the model metadata to retrieve display names to make it automatically get localized text from my resource files. That way, I could just set up resource file entries where the keys are the property names, and not have to put attributes on all of my properties. That’s done by creating a custom class inheriting from System.Web.Mvc.DataAnnotationsModelMetadataProvider: 1: public class LocalizedDataAnnotationsModelMetadataProvider : 2: DataAnnotationsModelMetadataProvider 3: { 4: protected override ModelMetadata CreateMetadata( 5: IEnumerable<Attribute> attributes, 6: Type containerType, 7: Func<object> modelAccessor, 8: Type modelType, 9: string propertyName) 10: { 11: var meta = base.CreateMetadata 12: (attributes, containerType, modelAccessor, modelType, propertyName); 13:   14: if (string.IsNullOrEmpty(propertyName)) 15: return meta; 16:   17: if (meta.DisplayName == null) 18: GetLocalizedDisplayName(meta, propertyName); 19:   20: if (string.IsNullOrEmpty(meta.DisplayName)) 21: meta.DisplayName = string.Format("[[{0}]]", propertyName); 22:   23: return meta; 24: } 25:   26: private static void GetLocalizedDisplayName(ModelMetadata meta, string propertyName) 27: { 28: ResourceManager resourceManager = MyResource.ResourceManager; 29: CultureInfo culture = Thread.CurrentThread.CurrentUICulture; 30:   31: meta.DisplayName = resourceManager.GetString(propertyName, culture); 32: } 33: } Line 11 calls the base CreateMetadata method. Line 17 checks whether the metadata DisplayName property has already been populated by a DisplayNameAttribute (or my LocalizedDisplayNameAttribute). If so, it respects that and doesn’t use my custom localized text lookup. The GetLocalizedDisplayName method checks for the property name as a resource file key. If found, it uses the localized text from the resource files. If the key is not found in the resource file, as with my LocalizedDisplayNameAttribute, I return a formatted string containing the property name (e.g. “[[RememberMe]]”) so I can tell by looking at my web pages which resource keys I haven’t defined yet. It’s hooked up with this code in the Application_Start method of Global.asax: ModelMetadataProviders.Current = new LocalizedDataAnnotationsModelMetadataProvider();

    Read the article

< Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >