Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 294/657 | < Previous Page | 290 291 292 293 294 295 296 297 298 299 300 301  | Next Page >

  • How do I import service references to Unity3D?

    - by Timothy Williams
    I'm attempting access a service reference in Unity. I need two: the SOAP framework and a separate service called ContentVault. The respective service URL's are: SOAP: http://api.microsofttranslator.com/V2/Soap.svc ContentVault: http://ioun.wizards.com/ContentVault.svc Both services import fine in to Visual Studio. I've tried everything I can think of but they won't work with Unity. I just get various errors (changing depending on which solution I'm trying out). I've attempted using svcutil to export the services as external scripts, but all I got was a bunch of using errors. I've tried converting the code to work with .NET 2.0 to no avail, I've even tried making the services in to .DLL's to no success. How could get these services working with Unity?

    Read the article

  • Creating natural environments that can run on lower end computers in Unity3D/C#

    - by Timothy Williams
    So, I'm starting work on a project soon that will require me to create realistic environments that can preferably run on PC's besides high quality ones. The goal is to get as real an environment as possible while still being easy(ish) to run. The only problem is I've NEVER done anything with 3D environments, making trees sway, grass move, lighting, etc. Can anyone give me any help? Perhaps describe how it's done? Link me to articles? I'm just looking to be pointed in the right direction, not for you to write the code for me. Any help at all would be greatly appreciated, I'm using Unity3D and C# as my language. Thanks, Tim.

    Read the article

  • Arbitrary Rotation about a Sphere

    - by Der
    I'm coding a mechanic which allows a user to move around the surface of a sphere. The position on the sphere is currently stored as theta and phi, where theta is the angle between the z-axis and the xz projection of the current position (i.e. rotation about the y axis), and phi is the angle from the y-axis to the position. I explained that poorly, but it is essentially theta = yaw, phi = pitch Vector3 position = new Vector3(0,0,1); position.X = (float)Math.Sin(phi) * (float)Math.Sin(theta); position.Y = (float)Math.Sin(phi) * (float)Math.Cos(theta); position.Z = (float)Math.Cos(phi); position *= r; I believe this is accurate, however I could be wrong. I need to be able to move in an arbitrary pseudo two dimensional direction around the surface of a sphere at the origin of world space with radius r. For example, holding W should move around the sphere in an upwards direction relative to the orientation of the player. I believe I should be using a Quaternion to represent the position/orientation on the sphere, but I can't think of the correct way of doing it. Spherical geometry is not my strong suit. Essentially, I need to fill the following block: public void Move(Direction dir) { switch (dir) { case Direction.Left: // update quaternion to rotate left break; case Direction.Right: // update quaternion to rotate right break; case Direction.Up: // update quaternion to rotate upward break; case Direction.Down: // update quaternion to rotate downward break; } }

    Read the article

  • Alpha blend 3D png texture in XNA

    - by ProgrammerAtWork
    I'm trying to draw a partly transparent texture a plane, but the problem is that it's incorrectly displaying what is behind that texture. Pseudo code: vertices1 basiceffect1 // The vertices of vertices1 are located BEHIND vertices2 vertices2 basiceffect2 // The vertices of vertices2 are located IN FRONT vertices1 GraphicsDevice.Clear(Blue); PrimitiveBatch.Begin(); //if I draw like this: PrimitiveBatch.Draw(vertices1, trianglestrip, basiceffect1) PrimitiveBatch.Draw(vertices2, trianglestrip, basiceffect2) //Everything gets draw correctly, I can see the texture of vertices2 trough //the transparent parts of vertices1 //but if I draw like this: PrimitiveBatch.Draw(vertices2, trianglestrip, basiceffect2) PrimitiveBatch.Draw(vertices1, trianglestrip, basiceffect1) //I cannot see the texture of vertices1 in behind the texture of vertices2 //Instead, the texture vertices2 gets drawn, and the transparent parts are blue //The clear color PrimitiveBatch.Draw(vertice PrimitiveBatch.End(); My question is, Why does the order in which I call draw matter?

    Read the article

  • Unity: Spin wheels to move vehicle

    - by Paul Manta
    I am just getting started with Unity and I'd like to ask a question. If I have a "Vehicle" object that has two children: "FrontWheel" and "BackWheel" (both 'wheels' are cylinders), how should I set everything up such that I can move the entire vehicle by turning its wheels? When I apply a torque to "FrontWheel", the vehicle starts to move, but instead of the whole thing the moving together, the chassis is rolling on the cylinders and eventually falls off. How can I prevent it from doing that?

    Read the article

  • Trouble with UV Mapping Blender => Unity 3

    - by Lea Hayes
    For some reason I am getting nasty grey edges around the edges of rendered 3D models that are not present in Blender. I seem to be able to solve the problem by reducing the size of the UV coordinates within the part of the texture that is to be mapped. But this means that: I am wasting valuable texture space Loss of accuracy in drawn UV maps Could I be doing something wrong, perhaps a setting in Unity that needs changing? I have watched countless tutorials which demonstrate Blender default generated UV coordinates with "Texture Paint" which are perfectly aligned in Unity. Here is an illustration of the problem: Left: approximately 15 pixels of margin on each side of UV coordinates Right: Approximately 3 pixels of margin on each side of UV coordinates Note: Texture image resolution is 1024x1024

    Read the article

  • SFML programs fails to debug with glslDevil

    - by Zhen
    I'm testing the glslDevil debugger with a simple (and working) SFML application in Linux + NVidia. But it always fails in the window creation step: W! Program Start | glXGetConfig(0x86a50b0, 0x86acef8, 4, 0xbf8228c4) | glXGetConfig(0x86a50b0, 0x86acef8, 5, 0xbf8228c8) | glXGetConfig(0x86a50b0, 0x86acef8, 8, 0xbf8228cc) | glXGetConfig(0x86a50b0, 0x86acef8, 9, 0xbf8228d0) | glXGetConfig(0x86a50b0, 0x86acef8, 10, 0xbf8228d4) | glXGetConfig(0x86a50b0, 0x86acef8, 11, 0xbf8228d8) | glXGetConfig(0x86a50b0, 0x86acef8, 12, 0xbf8228dc) | glXGetConfig(0x86a50b0, 0x86acef8, 13, 0xbf8228e0) | glXGetConfig(0x86a50b0, 0x86acef8, 100000, 0xbf8228e4) | glXGetConfig(0x86a50b0, 0x86acef8, 100001, 0xbf8228e8) | glXCreateContext(0x86a50b0, 0x86acef8, (nil), 1) E! Child process exited W! Program termination forced! And the code that fails: #include <SFML/Graphics.hpp> #define GL_GLEXT_PROTOTYPES 1 #define GL3_PROTOTYPES 1 #include <GL/gl.h> #include <GL/glu.h> #include <GL/glext.h> int main(){ sf::RenderWindow window{ sf::VideoMode(800, 600), "Test SFML+GL" }; bool running = true; while( running ){ sf::Event event; while( window.pollEvent(event) ){ if( event.type == sf::Event::Closed ){ running = false; }else if(event.type == sf::Event::Resized){ glViewport(0, 0, event.size.width, event.size.height); } } window.display(); } return 0; } Is It posible to solve this problem? or get around the problem to continue the gslsDevil use?.

    Read the article

  • How do I add shadow mapping?

    - by Jasper Creyf
    How do I add shadow mapping? I don't care if it uses GLSL it just has to work. I have been searching on stencil shadows and shadow mapping, all the examples given did nothing, if you don't understand that it means not even a single shadow is even being rendered. If you know how to add stencil shadows or shadow mapping, then please show some java code and if you're using GLSL then please show the code for them too.

    Read the article

  • How do I draw a scene with 2 nested frames

    - by Guido Granobles
    I have been trying for long time to figure out this: I have loaded a model from a directx file (I am using opengl and Java) the model have a hierarchical system of nested reference frames (there are not bones). There are just 2 frames, one of them is called x3ds_Torso and it has a child frame called x3ds_Arm_01. Each one of them has a mesh. The thing is that I can't draw the arm connected to the body. Sometimes the body is in the center of the screen and the arm is at the top. Sometimes they are both in the center. I know that I have to multiply the matrix transformation of every frame by its parent frame starting from the top to the bottom and after that I have to multiply every vertex of every mesh by its final transformation matrix. So I have this: public void calculeFinalMatrixPosition(Bone boneParent, Bone bone) { System.out.println("-->" + bone.name); if (boneParent != null) { bone.matrixCombined = bone.matrixTransform.multiply(boneParent.matrixCombined); } else { bone.matrixCombined = bone.matrixTransform; } bone.matrixFinal = bone.matrixCombined; for (Bone childBone : bone.boneChilds) { calculeFinalMatrixPosition(bone, childBone); } } Then I have to multiply every vertex of the mesh: public void transformVertex(Bone bone) { for (Iterator<Mesh> iterator = meshes.iterator(); iterator.hasNext();) { Mesh mesh = iterator.next(); if (mesh.boneName.equals(bone.name)) { float[] vertex = new float[4]; double[] newVertex = new double[3]; if (mesh.skinnedVertexBuffer == null) { mesh.skinnedVertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); } mesh.vertexBuffer.buffer.rewind(); while (mesh.vertexBuffer.buffer.hasRemaining()) { vertex[0] = mesh.vertexBuffer.buffer.get(); vertex[1] = mesh.vertexBuffer.buffer.get(); vertex[2] = mesh.vertexBuffer.buffer.get(); vertex[3] = 1; newVertex = bone.matrixFinal.transpose().multiply(vertex); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[0])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[1])); mesh.skinnedVertexBuffer.buffer.put(((float) newVertex[2])); } mesh.vertexBuffer = new FloatDataBuffer( mesh.numVertices, 3); mesh.skinnedVertexBuffer.buffer.rewind(); mesh.vertexBuffer.buffer.put(mesh.skinnedVertexBuffer.buffer); } } for (Bone childBone : bone.boneChilds) { transformVertex(childBone); } } I know this is not the more efficient code but by now I just want to understand exactly how a hierarchical model is organized and how I can draw it on the screen. Thanks in advance for your help.

    Read the article

  • How to fix bad Collada produced by FBX?

    - by David
    I tried to use the FBX SDK (2011.3.1) to load FBX files and save them as Collada files in order to be able to import FBX files in Panda3D. Unfortunately the resulting Collada files are not usable for several reasons, among them: There's a Maya specific extra technique diffuse <diffuse> <texture texture="Map__2-image" texcoord="CHANNEL0"> <extra> <technique profile="MAYA"> <wrapU sid="wrapU0">TRUE</wrapU> <wrapV sid="wrapV0">TRUE</wrapV> <blend_mode>ADD</blend_mode> </technique> </extra> </texture> </diffuse> It assigns a texcoord channel name that isn't referenced anywhere else in the file (in the previous code sample, no geometry uses "CHANNEL0"...) Every polygon is exported twice, a first time with a basic material (only diffuse color, specular color, etc.) and a second time with a textured material -- this doubles the number of polygons of each model without any valuable reason Anyway, the resulting Collada file cannot be opened correctly either with OpenCOLLADA or Panda3D's "dae2egg". Anyone has any experience on how to "fix" it and make it understandable by common and well-reputed Collada importers such as OpenCOLLADA?

    Read the article

  • How do I detect multiple sprite collisions when there are >10 sprites?

    - by yao jiang
    I making a small program to animate the astar algorithm. If you look at the image, there are lots of yellow cars moving around. Those can collide at any moment, could be just one or all of them could just stupidly crash into each other. How do I detect all of those collisions? How do I find out which specific car has crash into which other car? I understand that pygame has collision function, but it only detects one collision at a time and I'd have to specify which sprites. Right now I am just trying to iterate through each sprite to see if there is collision: for car1 in carlist: for car2 in carlist: collide(car1, car2); This can't be the proper way to do it, if the car list goes to a huge number, a double loop will be too slow.

    Read the article

  • Bad FPS for smaller size (OpenGL ES with SDL)

    - by ber4444
    If you saw my other question, well, there is still a little problem: Click here to watch on youtube Basically, the frame rate is very bad on the actual device, where for some reason the animation is scaled (it looks like the left side on the video). It is quite fast on the simulator where it is not scaled (right side). For a test, I submitted this new changeset that hard-codes the smaller size (plus increases the point size for HII regions to make the dust clouds more visible), and as you see in the video, now it is slow even in the simulator (left side shows the small size, right side shows the original size -- otherwise the code is the same). I'm clueless why it's soooo slow with a smaller galaxy, in fact it should be FASTER. As for general speed optimization (which is not strictly part of my question but is closely related to it, esp. if we need a workaround to speed things up), some initial ideas: reducing the number of items drawn may affect the appearance negatively but screen resolution could be reduced there are too many glBegin(GL_POINTS)/glEnd() blocks, we could draw more than just a single star at once

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to properly render a Frame Buffer to the BackBuffer in Stage3D / AGAL

    - by bigp
    After doing a render pass with RenderToTarget (RTT), how do you properly render that texture buffer to the screen while maintaining original scale / proportions so it doesn't stretch or lose quality? Can an AGAL VertexShader & FragmentShader be written so it's adaptable to any Texture size and Viewport dimensions? I find I'm getting some "blocky" effects in some of my first attempts at "ping-ponging" between two Texture buffers (to create trailing effects). Perhaps I'm not using the UVs correctly between the rendering-to-target and/or the backbuffer? Is there a simpler way just to "splash" the texture on the backbuffer, or is a Quad absolutely necessary (4 vertices, 2 triangles)? If it needs the Quad, should the Texture buffer be fully drawn (0.0 to 1.0 for vertical and horizontal UVs), or only a percentage of it should, like the example below? Texture Buffer U: 0.0 to viewport.width/texturebuffer.width; Texture Buffer V: 0.0 to viewport.height/texturebuffer.height; Thanks!

    Read the article

  • Mixing XNA and silverlight gives wierd graphics

    - by Mech0z
    I making a small 3dgame which is made as a Silverlight and XNA app, but when I draw the sprites the graphics becomes all wierd. All my primitive types are rendered correctly, but my 3d models are just wierd My Draw is like this when silverlight is set to draw private void OnDraw(object sender, GameTimerEventArgs e) { // Render the Silverlight controls using the UIElementRenderer elementRenderer.Render(); // Clear the screen to a solid color SharedGraphicsDeviceManager.Current.GraphicsDevice.Clear(Color.CornflowerBlue); switch (gameState) { case GameState.ChooseStarter: TextBlockStatus.Text = "Find Starting Player"; break; case GameState.PlaceBrick: TextBlockPlayer.Text = (playerTurn == PlayerTurn.PlayerOne) ? "Player One" : "Player Two"; TextBlockState.Text = "Place Brick"; foreach (IGraphicObject obj in _3dObjects) { obj.Draw(cameraPosition, e); } break; case GameState.GiveBrick: TextBlockState.Text = "Give Brick"; break; } spriteBatch.Begin(); // Using the texture from the UIElementRenderer, // draw the Silverlight controls to the screen spriteBatch.Draw(elementRenderer.Texture, cameraProjection, Color.White); spriteBatch.End(); } This gives me this output If I comment the spritebatch lines out I get the correct output, except the silverlight text is of course not shown I am not entirely sure what to look for except that zero vector I am giving to the spritebatch, but if thats the source I have no idea what I am supposed to set it as epspecially when its a 2d vector

    Read the article

  • apply non-hierarchial transforms to hierarchial skeleton?

    - by user975135
    I use Blender3D, but the answer might not API-exclusive. I have some matrices I need to assign to PoseBones. The resulting pose looks fine when there is no bone hierarchy (parenting) and messed up when there is. I've uploaded an archive with sample blend of the rigged models, text animation importer and a test animation file here: http://www.2shared.com/file/5qUjmnIs/sample_files.html Import the animation by selecting an Armature and running the importer on "sba" file. Do this for both Armatures. This is how I assign the poses in the real (complex) importer: matrix_bases = ... # matrix from file animation_matrix = matrix_basis * pose.bones['mybone'].matrix.copy() pose.bones[bonename].matrix = animation_matrix If I go to edit mode, select all bones and press Alt+P to undo parenting, the Pose looks fine again. The API documentation says the PoseBone.matrix is in "object space", but it seems clear to me from these tests that they are relative to parent bones. Final 4x4 matrix after constraints and drivers are applied (object space) I tried doing something like this: matrix_basis = ... # matrix from file animation_matrix = matrix_basis * (pose.bones['mybone'].matrix.copy() * pose.bones[bonename].bone.parent.matrix_local.copy().inverted()) pose.bones[bonename].matrix = animation_matrix But it looks worse. Experimented with order of operations, no luck with all. For the record, in the old 2.4 API this worked like a charm: matrix_basis = ... # matrix from file animation_matrix = armature.bones['mybone'].matrix['ARMATURESPACE'].copy() * matrix_basis pose.bones[bonename].poseMatrix = animation_matrix pose.update() Link to Blender API ref: http://www.blender.org/documentation/blender_python_api_2_63_17/bpy.types.BlendData.html#bpy.types.BlendData http://www.blender.org/documentation/blender_python_api_2_63_17/bpy.types.PoseBone.html#bpy.types.PoseBone

    Read the article

  • (Libgdx) Move Vector2 along angle?

    - by gemurdock
    I have seen several answers on here about moving along angle, but I can't seem to get this to work properly for me and I am new to LibGDX... just trying to learn. These are my Vector2's that I am using for this function. public Vector2 position = new Vector2(); public Vector2 velocity = new Vector2(); public Vector2 movement = new Vector2(); public Vector2 direction = new Vector2(); Here is the function that I use to move the position vector along an angle. setLocation() just sets the new location of the image. public void move(float delta, float degrees) { position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set((float) Math.cos(degrees), (float) Math.sin(degrees)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); // Sets location of image } I get a lot of different angles with this, just not the correct angles. How should I change this function to move a Vector2 along an angle using the Vector2 class from com.badlogic.gdx.math.Vector2 within the LibGDX library? I found this answer, but not sure how to implement it. Update: I figured out part of the issue. Should convert degrees to radians. However, the angle of 0 degrees is towards the right. Is there any way to fix this? As I shouldn't have to add 90 to degrees in order to have correct heading. New code is below public void move(float delta, float degrees) { degrees += 90; // Set degrees to correct heading, shouldn't have to do this position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set(MathUtils.cos(degrees * MathUtils.degreesToRadians), MathUtils.sin(degrees * MathUtils.degreesToRadians)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); }

    Read the article

  • Cocos2d-x 3.0 animation frame by frame

    - by Narek
    As I know animations are actions. Now I need to play animation frame by frame. Say I have an animation from N frames. each frame should be played after t delay. Now I want to play animation frame by frame, each frame advance the animation's state. How I can do this? And what about playing actions frame by frame advancing the state in general. I ask because I use ECS, and I deal with frames. P.S. I want to do something like this: Action * a = MoveTo(initialPoint, finalPoint, durationOfAnimation); a->play(0.001 seconds); a->play(0.003 seconds); a->play(0.02 seconds); a->play(0.67 seconds); a->play(0.06 seconds); And see the animation.

    Read the article

  • How to copy depth buffer to CPU memory in DirectX?

    - by Ashwin
    I have code in OpenGL that uses glReadPixels to copy the depth buffer to a CPU memory buffer: glReadPixels(0, 0, w, h, GL_DEPTH_COMPONENT, GL_FLOAT, dbuf); How do I achieve the same in DirectX? I have looked at a similar question which gives the solution to copy the RGB buffer. I've tried to write similar code to copy the depth buffer: IDirect3DSurface9* d3dSurface; d3dDevice->GetDepthStencilSurface(&d3dSurface); D3DSURFACE_DESC d3dSurfaceDesc; d3dSurface->GetDesc(&d3dSurfaceDesc); IDirect3DSurface9* d3dOffSurface; d3dDevice->CreateOffscreenPlainSurface( d3dSurfaceDesc.Width, d3dSurfaceDesc.Height, D3DFMT_D32F_LOCKABLE, D3DPOOL_SCRATCH, &d3dOffSurface, NULL); // FAILS: D3DERR_INVALIDCALL D3DXLoadSurfaceFromSurface( d3dOffSurface, NULL, NULL, d3dSurface, NULL, NULL, D3DX_FILTER_NONE, 0); // Copy from offscreen surface to CPU memory ... The code fails on the call to D3DXLoadSurfaceFromSurface. It returns the error value D3DERR_INVALIDCALL. What is wrong with my code?

    Read the article

  • Billboarding restricted to an axis (cylindrical)

    - by user8709
    I have succesfully created a GLSL shader for a billboarding effect. I want to tweak this to restrict the billboarding to an arbitrary axis, i.e. a billboarded quad only rotates itself about the y-axis. I use the y-axis as an example, but essentially I would like this to be an arbitrary axis. Can anyone show me how to modify my existing shader below, or if I need to start from scratch, point me towards some resources that could be helpful? precision mediump float; uniform mat4 u_modelViewProjectionMat; uniform mat4 u_modelMat; uniform mat4 u_viewTransposeMat; uniform vec3 u_axis; // <------------ !!! the arbitrary axis to restrict rotation around attribute vec3 a_position0; attribute vec2 a_texCoord0; varying vec2 v_texCoord0; void main() { vec3 pos = (a_position0.x * u_viewTransposeMat[0] + a_position0.y * u_viewTransposeMat[1]).xyz; vec4 position = vec4(pos, 1.0); v_texCoord0 = a_texCoord0; gl_Position = u_modelViewProjectionMat * position; }

    Read the article

  • Question about Target parameter of Matrix.CreateLookAt

    - by manning18
    I have a newbie question that's causing me a little bit of confusion when experimenting with cameras and reading other peoples implementations - does this parameter represent a point or a vector? In some examples I've seen people treat it like a specific point they are looking at (eg a position in the world), other times I see people caching the orientation of the camera in a rotation matrix and simply using the Matrix.Forward property as the "target", and other times it's a vector that's the result of targetPos - camPos and also I saw a camPos + orientation.Forward I was also just playing around with hard-coded target positions with same direction eg 1 to 10000 with no discernible difference in what I saw in the scene. Is the "Target" parameter actually a position or a direction (irrespective of magnitude)? Are there any subtle differences in behaviors, common mistakes or gotchas that are associated with what values you provide, or HOW you provide this paramter? Are all the methods I mentioned above equivalent? (sorry, I've only recently started and my math is still catching up)

    Read the article

  • Low-level GPU code and Shader Compilation

    - by ktodisco
    Bear with me, because I will raise several questions at once. I still feel, though, that overall this can be treated as one question that may be answered succinctly. I recently dove into solidifying my understanding of the assembly language, low-level memory operations, CPU structure, and program optimizations. This also sparked my interest in how higher-level shading languages, GLSL and HLSL in particular, are compiled and optimized, as well as what formats they are reduced to before machine code is generated (assuming they are not converted directly into machine code). After a bit of research into this, the best resource I've found is this presentation from ATI about the compilation of and optimizations for HLSL. I also found sample ARB assembly code. This sort of addressed my original curiosity, but it raised several other questions. The assembler code in the ATI presentation seems like it contains instructions specifically targeted for the GPU, but is this merely a hypothetical example created for the purpose of conceptual understanding, or is this code really generated during shader compilation? If so, is it possible to inspect it, or even write it in place of the higher-level syntax? My initial searches for an answer to the last question tell me that this may be disallowed, but I have not dug too deep yet. Also, along the same lines, are GLSL shader programs compiled into ARB assembly code before machine code is generated, and is it possible to write direct ARB assembly? Lastly, and perhaps what I am most interested in finding out: are there comprehensive resources on shader compilation and low-level GPU code? I have been unable to find any thus far. I ask simply because I am curious :)

    Read the article

  • 3DS Max exporting too many vertexes for model

    - by Juan Pablo
    I have a sample model of a cube and a buddha downloaded from internet in 3ds format which I can load correctly into my program and view them without problem, but wanted to try and create my own model. I created a simple box mesh in 3ds max, and exported it as .3ds (Converted to mesh - export as .3ds) When inspecting the .3ds file with a hex viewer, I was expecting to see 8 vertexes and 12 faces declared (as the model I downloaded from internet). But what i found was that it listed 26 vertexes, and 12 faces! And when I try to load that file with my .3ds viewer, my parser isn't detecting the face block (0x4120), which is strange because it worked for other objects downloaded from internet. Do I have to set any special property in order to export a 3ds file with minimum vertexes and a vertex-index list?

    Read the article

  • How to create a "retro" pixel shader for transformed 2D sprites that maintains pixel fidelity?

    - by David Gouveia
    The image below shows two sprites rendered with point sampling on top of a background: The left skull has no rotation/scaling applied to it, so every pixel matches perfectly with the background. The right skull is rotated/scaled, and this results in larger pixels that are no longer axis aligned. How could I develop a pixel shader that would render the transformed sprite on the right with axis aligned pixels of the same size as the rest of the scene? This might be related to how sprite scaling was implemented in old games such as Monkey Island, because that's the effect I'm trying to achieve, but with rotation added. Edit As per kaoD's suggestions, I tried to address the problem as a post-process. The easiest approach was to render to a separate render target first (downsampled to match the desired pixel size) and then upscale it when rendering a second time. It did address my requirements above. First I tried doing it Linear -> Point and the result was this: There's no distortion but the result looks blurred and it loses most of the highlights colors. In my opinion it breaks the retro look I needed. The second time I tried Point -> Point and the result was this: Despite the distortion, I think that might be good enough for my needs, although it does look better as a still image than in motion. To demonstrate, here's a video of the effect, although YouTube filtered the pixels out of it: http://youtu.be/hqokk58KFmI However, I'll leave the question open for a few more days in case someone comes up with a better sampling solution that maintains the crisp look while decreasing the amount of distortion when moving.

    Read the article

  • The View-Matrix and Alternative Calculations

    - by P. Avery
    I'm working on a radiosity processor in DirectX 9. The process requires that the camera be placed at the center of a mesh face and a 'screenshot' be taken facing 5 different directions...forward...up...down...left...right... ...The problem is that when the mesh face is facing up( look vector: 0, 1, 0 )...a view matrix cannot be determined using standard trigonometry functions: Matrix4 LookAt( Vector3 eye, Vector3 target, Vector3 up ) { // The "look-at" vector. Vector3 zaxis = normal(target - eye); // The "right" vector. Vector3 xaxis = normal(cross(up, zaxis)); // The "up" vector. Vector3 yaxis = cross(zaxis, xaxis); // Create a 4x4 orientation matrix from the right, up, and at vectors Matrix4 orientation = { xaxis.x, yaxis.x, zaxis.x, 0, xaxis.y, yaxis.y, zaxis.y, 0, xaxis.z, yaxis.z, zaxis.z, 0, 0, 0, 0, 1 }; // Create a 4x4 translation matrix by negating the eye position. Matrix4 translation = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -eye.x, -eye.y, -eye.z, 1 }; // Combine the orientation and translation to compute the view matrix return ( translation * orientation ); } The above function comes from http://3dgep.com/?p=1700... ...Is there a mathematical approach to this problem? Edit: A problem occurs when setting the view matrix to up or down directions, here is an example of the problem when facing down: D3DXVECTOR4 vPos( 3, 3, 3, 1 ), vEye( 1.5, 3, 3, 1 ), vLook( 0, -1, 0, 1 ), vRight( 1, 0, 0, 1 ), vUp( 0, 0, 1, 1 ); D3DXMATRIX mV, mP; D3DXMatrixPerspectiveFovLH( &mP, D3DX_PI / 2, 1, 0.5f, 2000.0f ); D3DXMatrixIdentity( &mV ); memcpy( ( void* )&mV._11, ( void* )&vRight, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._21, ( void* )&vUp, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._31, ( void* )&vLook, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._41, ( void* )&(-vEye), sizeof( D3DXVECTOR3 ) ); D3DXVec4Transform( &vPos, &vPos, &( mV * mP ) ); Results: vPos = D3DXVECTOR3( 1.5, -6, -0.5, 0 ) - this vertex is not properly processed by shader as the homogenous w value is 0 it cannot be normalized to a position within device space...

    Read the article

< Previous Page | 290 291 292 293 294 295 296 297 298 299 300 301  | Next Page >