Search Results

Search found 343 results on 14 pages for 'subtract'.

Page 3/14 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Recursive String Function (Java)

    - by Jake Brooks
    Hi, I am trying to design a function that essentially does as follows: String s = "BLAH"; store the following to an array: blah lah bah blh bla bl ba bh ah al So basically what I did there was subtract each letter from it one at a time. Then subtract a combination of two letters at a time, until there's 2 characters remaining. Store each of these generations in an array. Hopefully this makes sense, Jake

    Read the article

  • How to insert time in SQl Derver 2005?

    - by sam
    i am creating windows application .In this i have to subtract two dates .i subtract it successfully ,i used TimeSpan to get subtracted value.But when i insert it in SQl Server 2005 db, it inserted with starting date i.e. 1/1/1900 and the calculated difference which format should i use to insert Time only? Thanks in advance

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • AD Password About to Expire check problem with ASP.Net

    - by Vince
    Hello everyone, I am trying to write some code to check the AD password age during a user login and notify them of the 15 remaining days. I am using the ASP.Net code that I found on the Microsoft MSDN site and I managed to add a function that checks the if the account is set to change password at next login. The login and the change password at next login works great but I am having some problems with the check for the password age. This is the VB.Net code for the DLL file: Imports System Imports System.Text Imports System.Collections Imports System.DirectoryServices Imports System.DirectoryServices.AccountManagement Imports System.Reflection 'Needed by the Password Expiration Class Only -Vince Namespace FormsAuth Public Class LdapAuthentication Dim _path As String Dim _filterAttribute As String 'Code added for the password expiration added by Vince Private _domain As DirectoryEntry Private _passwordAge As TimeSpan = TimeSpan.MinValue Const UF_DONT_EXPIRE_PASSWD As Integer = &H10000 'Function added by Vince Public Sub New() Dim root As New DirectoryEntry("LDAP://rootDSE") root.AuthenticationType = AuthenticationTypes.Secure _domain = New DirectoryEntry("LDAP://" & root.Properties("defaultNamingContext")(0).ToString()) _domain.AuthenticationType = AuthenticationTypes.Secure End Sub 'Function added by Vince Public ReadOnly Property PasswordAge() As TimeSpan Get If _passwordAge = TimeSpan.MinValue Then Dim ldate As Long = LongFromLargeInteger(_domain.Properties("maxPwdAge")(0)) _passwordAge = TimeSpan.FromTicks(ldate) End If Return _passwordAge End Get End Property Public Sub New(ByVal path As String) _path = path End Sub 'Function added by Vince Public Function DoesUserHaveToChangePassword(ByVal userName As String) As Boolean Dim ctx As PrincipalContext = New PrincipalContext(System.DirectoryServices.AccountManagement.ContextType.Domain) Dim up = UserPrincipal.FindByIdentity(ctx, userName) Return (Not up.LastPasswordSet.HasValue) 'returns true if last password set has no value. End Function Public Function IsAuthenticated(ByVal domain As String, ByVal username As String, ByVal pwd As String) As Boolean Dim domainAndUsername As String = domain & "\" & username Dim entry As DirectoryEntry = New DirectoryEntry(_path, domainAndUsername, pwd) Try 'Bind to the native AdsObject to force authentication. Dim obj As Object = entry.NativeObject Dim search As DirectorySearcher = New DirectorySearcher(entry) search.Filter = "(SAMAccountName=" & username & ")" search.PropertiesToLoad.Add("cn") Dim result As SearchResult = search.FindOne() If (result Is Nothing) Then Return False End If 'Update the new path to the user in the directory. _path = result.Path _filterAttribute = CType(result.Properties("cn")(0), String) Catch ex As Exception Throw New Exception("Error authenticating user. " & ex.Message) End Try Return True End Function Public Function GetGroups() As String Dim search As DirectorySearcher = New DirectorySearcher(_path) search.Filter = "(cn=" & _filterAttribute & ")" search.PropertiesToLoad.Add("memberOf") Dim groupNames As StringBuilder = New StringBuilder() Try Dim result As SearchResult = search.FindOne() Dim propertyCount As Integer = result.Properties("memberOf").Count Dim dn As String Dim equalsIndex, commaIndex Dim propertyCounter As Integer For propertyCounter = 0 To propertyCount - 1 dn = CType(result.Properties("memberOf")(propertyCounter), String) equalsIndex = dn.IndexOf("=", 1) commaIndex = dn.IndexOf(",", 1) If (equalsIndex = -1) Then Return Nothing End If groupNames.Append(dn.Substring((equalsIndex + 1), (commaIndex - equalsIndex) - 1)) groupNames.Append("|") Next Catch ex As Exception Throw New Exception("Error obtaining group names. " & ex.Message) End Try Return groupNames.ToString() End Function 'Function added by Vince Public Function WhenExpires(ByVal username As String) As TimeSpan Dim ds As New DirectorySearcher(_domain) ds.Filter = [String].Format("(&(objectClass=user)(objectCategory=person)(sAMAccountName={0}))", username) Dim sr As SearchResult = FindOne(ds) Dim user As DirectoryEntry = sr.GetDirectoryEntry() Dim flags As Integer = CInt(user.Properties("userAccountControl").Value) If Convert.ToBoolean(flags And UF_DONT_EXPIRE_PASSWD) Then 'password never expires Return TimeSpan.MaxValue End If 'get when they last set their password Dim pwdLastSet As DateTime = DateTime.FromFileTime(LongFromLargeInteger(user.Properties("pwdLastSet").Value)) ' return pwdLastSet.Add(PasswordAge).Subtract(DateTime.Now); If pwdLastSet.Subtract(PasswordAge).CompareTo(DateTime.Now) > 0 Then Return pwdLastSet.Subtract(PasswordAge).Subtract(DateTime.Now) Else Return TimeSpan.MinValue 'already expired End If End Function 'Function added by Vince Private Function LongFromLargeInteger(ByVal largeInteger As Object) As Long Dim type As System.Type = largeInteger.[GetType]() Dim highPart As Integer = CInt(type.InvokeMember("HighPart", BindingFlags.GetProperty, Nothing, largeInteger, Nothing)) Dim lowPart As Integer = CInt(type.InvokeMember("LowPart", BindingFlags.GetProperty, Nothing, largeInteger, Nothing)) Return CLng(highPart) << 32 Or CUInt(lowPart) End Function 'Function added by Vince Private Function FindOne(ByVal searcher As DirectorySearcher) As SearchResult Dim sr As SearchResult = Nothing Dim src As SearchResultCollection = searcher.FindAll() If src.Count > 0 Then sr = src(0) End If src.Dispose() Return sr End Function End Class End Namespace And this is the Login.aspx page: sub Login_Click(sender as object,e as EventArgs) Dim adPath As String = "LDAP://DC=xxx,DC=com" 'Path to your LDAP directory server Dim adAuth As LdapAuthentication = New LdapAuthentication(adPath) Try If (True = adAuth.DoesUserHaveToChangePassword(txtUsername.Text)) Then Response.Redirect("passchange.htm") ElseIf (True = adAuth.IsAuthenticated(txtDomain.Text, txtUsername.Text, txtPassword.Text)) Then Dim groups As String = adAuth.GetGroups() 'Create the ticket, and add the groups. Dim isCookiePersistent As Boolean = chkPersist.Checked Dim authTicket As FormsAuthenticationTicket = New FormsAuthenticationTicket(1, _ txtUsername.Text, DateTime.Now, DateTime.Now.AddMinutes(60), isCookiePersistent, groups) 'Encrypt the ticket. Dim encryptedTicket As String = FormsAuthentication.Encrypt(authTicket) 'Create a cookie, and then add the encrypted ticket to the cookie as data. Dim authCookie As HttpCookie = New HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket) If (isCookiePersistent = True) Then authCookie.Expires = authTicket.Expiration End If 'Add the cookie to the outgoing cookies collection. Response.Cookies.Add(authCookie) 'Retrieve the password life Dim t As TimeSpan = adAuth.WhenExpires(txtUsername.Text) 'You can redirect now. If (passAge.Days = 90) Then errorLabel.Text = "Your password will expire in " & DateTime.Now.Subtract(t) 'errorLabel.Text = "This is" 'System.Threading.Thread.Sleep(5000) Response.Redirect("http://somepage.aspx") Else Response.Redirect(FormsAuthentication.GetRedirectUrl(txtUsername.Text, False)) End If Else errorLabel.Text = "Authentication did not succeed. Check user name and password." End If Catch ex As Exception errorLabel.Text = "Error authenticating. " & ex.Message End Try End Sub ` Every time I have this Dim t As TimeSpan = adAuth.WhenExpires(txtUsername.Text) enabled, I receive "Arithmetic operation resulted in an overflow." during the login and won't continue. What am I doing wrong? How can I correct this? Please help!! Thank you very much for any help in advance. Vince

    Read the article

  • Math with Timestamp

    - by Knut Vatsendvik
    table.sql { border-width: 1px; border-spacing: 2px; border-style: dashed; border-color: #0023ff; border-collapse: separate; background-color: white; } table.sql th { border-width: 1px; padding: 1px; border-style: none; border-color: gray; background-color: white; -moz-border-radius: 0px 0px 0px 0px; } table.sql td { border-width: 1px; padding: 3px; border-style: none; border-color: gray; background-color: white; -moz-border-radius: 0px 0px 0px 0px; } .sql-keyword { color: #0000cd; background-color: inherit; } .sql-result { color: #458b74; background-color: inherit; } Got this little SQL quiz from a colleague.  How to add or subtract exactly 1 second from a Timestamp?  Sounded simple enough at first blink, but was a bit trickier than expected. If the data type had been a Date, we knew that we could add or subtract days, minutes or seconds using + or – sysdate + 1 to add one day sysdate - (1 / 24) to subtract one hour sysdate + (1 / 86400) to add one second Would the same arithmetic work with Timestamp as with Date? Let’s test it out with the following query SELECT   systimestamp , systimestamp + (1 / 86400) FROM dual; ---------- 03.05.2010 22.11.50,240887 +02:00 03.05.2010 The first result line shows us the system time down to fractions of seconds. The second result line shows the result as Date (as used for date calculation) meaning now that the granularity is reduced down to a second.   By using the PL/SQL dump() function, we can confirm this with the following query SELECT   dump(systimestamp) , dump(systimestamp + (1 / 86400)) FROM dual; ---------- Typ=188 Len=20: 218,7,5,4,8,53,9,0,200,46,89,20,2,0,5,0,0,0,0,0 Typ=13 Len=8: 218,7,5,4,10,53,10,0 Where typ=13 is a runtime representation for Date. So how can we increase the precision to include fractions of second? After investigating it a bit, we found out that the interval data type INTERVAL DAY TO SECOND could be used with the result of addition or subtraction being a Timestamp. Let’s try again our first query again, now using the interval data type. SELECT systimestamp,    systimestamp + INTERVAL '0 00:00:01.0' DAY TO SECOND(1) FROM dual; ---------- 03.05.2010 22.58.32,723659000 +02:00 03.05.2010 22.58.33,723659000 +02:00 Yes, it worked! To finish the story, here is one example showing how to specify an interval of 2 days, 6 hours, 30 minutes, 4 seconds and 111 thousands of a second. INTERVAL ‘2 6:30:4.111’ DAY TO SECOND(3)

    Read the article

  • What is the merit of the "function" type (not "pointer to function")

    - by anatolyg
    Reading the C++ Standard, i see that there are "function" types and "pointer to function" types: typedef int func(int); // function typedef int (*pfunc)(int); // pointer to function typedef func* pfunc; // same as above I have never seen the function types used outside of examples (or maybe i didn't recognize their usage?). Some examples: func increase, decrease; // declares two functions int increase(int), decrease(int); // same as above int increase(int x) {return x + 1;} // cannot use the typedef when defining functions int decrease(int x) {return x - 1;} // cannot use the typedef when defining functions struct mystruct { func add, subtract, multiply; // declares three member functions int member; }; int mystruct::add(int x) {return x + member;} // cannot use the typedef int mystruct::subtract(int x) {return x - member;} int main() { func k; // the syntax is correct but the variable k is useless! mystruct myobject; myobject.member = 4; cout << increase(5) << ' ' << decrease(5) << '\n'; // outputs 6 and 4 cout << myobject.add(5) << ' ' << myobject.subtract(5) << '\n'; // 9 and 1 } Seeing that the function types support syntax that doesn't appear in C (declaring member functions), i guess they are not just a part of C baggage that C++ has to support for backward compatibility. So is there any use for function types, other than demonstrating some funky syntax?

    Read the article

  • Modular Inverse and BigInteger division

    - by dano82
    I've been working on the problem of calculating the modular inverse of an large integer i.e. a^-1 mod n. and have been using BigInteger's built in function modInverse to check my work. I've coded the algorithm as shown in The Handbook of Applied Cryptography by Menezes, et al. Unfortunately for me, I do not get the correct outcome for all integers. My thinking is that the line q = a.divide(b) is my problem as the divide function is not well documented (IMO)(my code suffers similarly). Does BigInteger.divide(val) round or truncate? My assumption is truncation since the docs say that it mimics int's behavior. Any other insights are appreciated. This is the code that I have been working with: private static BigInteger modInverse(BigInteger a, BigInteger b) throws ArithmeticException { //make sure a >= b if (a.compareTo(b) < 0) { BigInteger temp = a; a = b; b = temp; } //trivial case: b = 0 => a^-1 = 1 if (b.equals(BigInteger.ZERO)) { return BigInteger.ONE; } //all other cases BigInteger x2 = BigInteger.ONE; BigInteger x1 = BigInteger.ZERO; BigInteger y2 = BigInteger.ZERO; BigInteger y1 = BigInteger.ONE; BigInteger x, y, q, r; while (b.compareTo(BigInteger.ZERO) == 1) { q = a.divide(b); r = a.subtract(q.multiply(b)); x = x2.subtract(q.multiply(x1)); y = y2.subtract(q.multiply(y1)); a = b; b = r; x2 = x1; x1 = x; y2 = y1; y1 = y; } if (!a.equals(BigInteger.ONE)) throw new ArithmeticException("a and n are not coprime"); return x2; }

    Read the article

  • Making particle bounce off a line with friction

    - by Dlaor
    So I'm making a game and I need a particle to bounce off a line. I've got this so far: public static Vector2f Reflect(this Vector2f vec, Vector2f axis) //vec is velocity { Vector2f result = vec - 2f * axis * axis.Dot(vec); return result; } Which works fine, but then I decided I wanted to be able to change the bounciness and friction of the bounce. I got bounciness down... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness) //Bounciness goes from 0 to 1, 0 being not bouncy and 1 being perfectly bouncy { var reflect = (1 + bounciness); //2f Vector2f result = vec - reflect * axis * axis.Dot(vec); return result; } But when I tried to add friction, everything went to hell and back... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness, float friction) //Does not work at all! { var reflect = (1 + bounciness); //2f Vector2f subtract = reflect * axis * axis.Dot(vec); Vector2f subtract2 = axis * axis.Dot(vec); Vector2f result = vec - subtract; result -= axis.PerpendicularLeft() * subtract2.Length() * friction; return result; } Any physics guys willing to help me out with this? (if you're not sure what I mean with the friction of a bounce see this: http://www.metanetsoftware.com/technique/diagrams/A-1_particle_collision.swf)

    Read the article

  • C++ class functions calling fortran subroutine

    - by user2863626
    Okay so I am trying to make my code work. It is a simple C++ program with a class "CArray". This class has 2 properties, the array size, and the value. I want the main C++ program to create two instances of the class CArray. In the class CArray, I have a function called "AddArray( CArray )" where it adds another array to the current array. The problem I am stuck with, is that I want the function "AddArray" to add the two arrays in fortran. I know, much more complicated, but that is what I need. I am having issues with linking the two inside the class code. #include <iostream> using namespace std; class CArray { public: CArray(); ~CArray(); int Size; int* Val; void SetSize( int ); void SetValues(); void GetArray(); extern "C" { void Add( int*, int*, int*, int*); void Subtract( int*, int*, int*, int*); void Muliply( int*, int*, int *, int* ); } void AddArray( CArray ); void SubtractArray( CArray ); void MultiplyArray( CArray ); }; Also here is the CArray function file. #include "Array.h" #include <iostream> using namespace std; CArray::CArray() { } CArray::~CArray() { } void CArray::SetSize( int s ) { Size = s; for ( int i=0; i<s; i++ ) { Val = new int[Size]; } } void CArray::SetValues() { for ( int i=0; i<Size; i++ ) { cout << "Element " << i+1 << ": "; cin >> Val[i]; } } void CArray::GetArray() { for ( int i=0; i<Size; i++ ) { cout << Val[i] << " "; } } void CArray::AddArray( CArray a ) { if ( Size == a.Size ) { Add(&Val, &a.Val); } else { cout << "Array dimensions do not agree!" << endl; } } void CArray::SubtractArray( CArray a ) { Subtract( &Val, &a, &Size, &a.Size); GetArray(); } Here is my Fortran code. module SubtractArrays use ico_c_binding implicit none contains subroutine Subtract(a,b,s1,s2) bind(c,name='Subtract') integer s1,s2 integer a(s1),b(s2) if ( s1.eq.s2 ) do i=1,s1 a(i) = a(i) - b(i) end return end end If someone could just help me with setting me up to send arrays of integers from C++ classes to fortran I would greatly appreciate it! Thank you, Josh Derrick

    Read the article

  • How can I fix my program from crashing in C++?

    - by Rachel
    I'm very new to programming and I am trying to write a program that adds and subtracts polynomials. My program sometimes works, but most of the time, it randomly crashes and I have no idea why. It's very buggy and has other problems I'm trying to fix, but I am unable to really get any further coding done since it crashes. I'm completely new here but any help would be greatly appreciated. Here's the code: #include <iostream> #include <cstdlib> using namespace std; int getChoice(void); class Polynomial10 { private: double* coef; int degreePoly; public: Polynomial10(int max); //Constructor for a new Polynomial10 int getDegree(){return degreePoly;}; void print(); //Print the polynomial in standard form void read(); //Read a polynomial from the user void add(const Polynomial10& pol); //Add a polynomial void multc(double factor); //Multiply the poly by scalar void subtract(const Polynomial10& pol); //Subtract polynom }; void Polynomial10::read() { cout << "Enter degree of a polynom between 1 and 10 : "; cin >> degreePoly; cout << "Enter space separated coefficients starting from highest degree" << endl; for (int i = 0; i <= degreePoly; i++) { cin >> coef[i]; } } void Polynomial10::print() { for(int i=0;i<=degreePoly;i++) { if(coef[i] == 0) { cout << ""; } else if(i>=0) { if(coef[i] > 0 && i!=0) { cout<<"+"; } if((coef[i] != 1 && coef[i] != -1) || i == degreePoly) { cout << coef[i]; } if((coef[i] != 1 && coef[i] != -1) && i!=degreePoly ) { cout << "*"; } if (i != degreePoly && coef[i] == -1) { cout << "-"; } if(i != degreePoly) { cout << "x"; } if ((degreePoly - i) != 1 && i != degreePoly) { cout << "^"; cout << degreePoly-i; } } } } void Polynomial10::add(const Polynomial10& pol) { for(int i = 0; i<degreePoly; i++) { int degree = degreePoly; coef[degreePoly-i] += pol.coef[degreePoly-(i+1)]; } } void Polynomial10::subtract(const Polynomial10& pol) { for(int i = 0; i<degreePoly; i++) { coef[degreePoly-i] -= pol.coef[degreePoly-(i+1)]; } } void Polynomial10::multc(double factor) { //int degreePoly=0; //double coef[degreePoly]; cout << "Enter the scalar multiplier : "; cin >> factor; for(int i = 0; i<degreePoly; i++) { coef[i] *= factor; } }; Polynomial10::Polynomial10(int max) { degreePoly=max; coef = new double[degreePoly]; for(int i; i<degreePoly; i++) { coef[i] = 0; } } int main() { int choice; Polynomial10 p1(1),p2(1); cout << endl << "CGS 2421: The Polynomial10 Class" << endl << endl << endl; cout << "0. Quit\n" << "1. Enter polynomial\n" << "2. Print polynomial\n" << "3. Add another polynomial\n" << "4. Subtract another polynomial\n" << "5. Multiply by scalar\n\n"; int choiceFirst = getChoice(); if (choiceFirst != 1) { cout << "Enter a Polynomial first!"; } if (choiceFirst == 1) {choiceFirst = choice;} while(choice != 0) { switch(choice) { case 0: return 0; case 1: p1.read(); break; case 2: p1.print(); break; case 3: p2.read(); p1.add(p2); cout << "Updated Polynomial: "; p1.print(); break; case 4: p2.read(); p1.subtract(p2); cout << "Updated Polynomial: "; p1.print(); break; case 5: p1.multc(10); cout << "Updated Polynomial: "; p1.print(); break; } choice = getChoice(); } return 0; } int getChoice(void) { int c; cout << "\nEnter your choice : "; cin >> c; return c; }

    Read the article

  • Trying to detect collision between two polygons using Separating Axis Theorem

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(vertices[0]); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(vertices[i]); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if( other.x <= y || other.y >= x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Error in my Separating Axis Theorem collision code

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; int x; int y; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } public void update(int xPos, int yPos){ x = xPos; y = yPos; } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(new Vect(vertices[0].x+x, vertices[0].y+y)); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(new Vect(vertices[i].x+x, vertices[i].y+y)); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if(y > other.x && other.y > x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Triangle Picking Picking Back faces

    - by Tangeleno
    I'm having a bit of trouble with 3D picking, at first I thought my ray was inaccurate but it turns out that the picking is happening on faces facing the camera and faces facing away from the camera which I'm currently culling. Here's my ray creation code, I'm pretty sure the problem isn't here but I've been wrong before. private uint Pick() { Ray cursorRay = CalculateCursorRay(); Vector3? point = Control.Mesh.RayCast(cursorRay); if (point != null) { Tile hitTile = Control.TileMesh.GetTileAtPoint(point); return hitTile == null ? uint.MaxValue : (uint)(hitTile.X + hitTile.Y * Control.Generator.TilesWide); } return uint.MaxValue; } private Ray CalculateCursorRay() { Vector3 nearPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 0f)); Vector3 farPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 1f)); Vector3 direction = farPoint - nearPoint; direction.Normalize(); return new Ray(nearPoint, direction); } public Vector3 Camera.Unproject(Vector3 source) { Vector4 result; result.X = (source.X - _control.ClientRectangle.X) * 2 / _control.ClientRectangle.Width - 1; result.Y = (source.Y - _control.ClientRectangle.Y) * 2 / _control.ClientRectangle.Height - 1; result.Z = source.Z - 1; if (_farPlane - 1 == 0) result.Z = 0; else result.Z = result.Z / (_farPlane - 1); result.W = 1f; result = Vector4.Transform(result, Matrix4.Invert(ProjectionMatrix)); result = Vector4.Transform(result, Matrix4.Invert(ViewMatrix)); result = Vector4.Transform(result, Matrix4.Invert(_world)); result = Vector4.Divide(result, result.W); return new Vector3(result.X, result.Y, result.Z); } And my triangle intersection code. Ripped mainly from the XNA picking sample. public float? Intersects(Ray ray) { float? closestHit = Bounds.Intersects(ray); if (closestHit != null && Vertices.Length == 3) { Vector3 e1, e2; Vector3.Subtract(ref Vertices[1].Position, ref Vertices[0].Position, out e1); Vector3.Subtract(ref Vertices[2].Position, ref Vertices[0].Position, out e2); Vector3 directionCrossEdge2; Vector3.Cross(ref ray.Direction, ref e2, out directionCrossEdge2); float determinant; Vector3.Dot(ref e1, ref directionCrossEdge2, out determinant); if (determinant > -float.Epsilon && determinant < float.Epsilon) return null; float inverseDeterminant = 1.0f/determinant; Vector3 distanceVector; Vector3.Subtract(ref ray.Position, ref Vertices[0].Position, out distanceVector); float triangleU; Vector3.Dot(ref distanceVector, ref directionCrossEdge2, out triangleU); triangleU *= inverseDeterminant; if (triangleU < 0 || triangleU > 1) return null; Vector3 distanceCrossEdge1; Vector3.Cross(ref distanceVector, ref e1, out distanceCrossEdge1); float triangleV; Vector3.Dot(ref ray.Direction, ref distanceCrossEdge1, out triangleV); triangleV *= inverseDeterminant; if (triangleV < 0 || triangleU + triangleV > 1) return null; float rayDistance; Vector3.Dot(ref e2, ref distanceCrossEdge1, out rayDistance); rayDistance *= inverseDeterminant; if (rayDistance < 0) return null; return rayDistance; } return closestHit; } I'll admit I don't fully understand all of the math behind the intersection and that is something I'm working on, but my understanding was that if rayDistance was less than 0 the face was facing away from the camera, and shouldn't be counted as a hit. So my question is, is there an issue with my intersection or ray creation code, or is there another check I need to perform to tell if the face is facing away from the camera, and if so any hints on what that check might contain would be appreciated.

    Read the article

  • Ball to Ball Collision - Detection and Handling

    - by Simucal
    With the help of the Stack Overflow community I've written a pretty basic-but fun physics simulator. You click and drag the mouse to launch a ball. It will bounce around and eventually stop on the "floor". My next big feature I want to add in is ball to ball collision. The ball's movement is broken up into a x and y speed vector. I have gravity (small reduction of the y vector each step), I have friction (small reduction of both vectors each collision with a wall). The balls honestly move around in a surprisingly realistic way. I guess my question has two parts: What is the best method to detect ball to ball collision? Do I just have an O(n^2) loop that iterates over each ball and checks every other ball to see if it's radius overlaps? What equations do I use to handle the ball to ball collisions? Physics 101 How does it effect the two balls speed x/y vectors? What is the resulting direction the two balls head off in? How do I apply this to each ball? Handling the collision detection of the "walls" and the resulting vector changes were easy but I see more complications with ball-ball collisions. With walls I simply had to take the negative of the appropriate x or y vector and off it would go in the correct direction. With balls I don't think it is that way. Some quick clarifications: for simplicity I'm ok with a perfectly elastic collision for now, also all my balls have the same mass right now, but I might change that in the future. In case anyone is interested in playing with the simulator I have made so far, I've uploaded the source here (EDIT: Check the updated source below). Edit: Resources I have found useful 2d Ball physics with vectors: 2-Dimensional Collisions Without Trigonometry.pdf 2d Ball collision detection example: Adding Collision Detection Success! I have the ball collision detection and response working great! Relevant code: Collision Detection: for (int i = 0; i < ballCount; i++) { for (int j = i + 1; j < ballCount; j++) { if (balls[i].colliding(balls[j])) { balls[i].resolveCollision(balls[j]); } } } This will check for collisions between every ball but skip redundant checks (if you have to check if ball 1 collides with ball 2 then you don't need to check if ball 2 collides with ball 1. Also, it skips checking for collisions with itself). Then, in my ball class I have my colliding() and resolveCollision() methods: public boolean colliding(Ball ball) { float xd = position.getX() - ball.position.getX(); float yd = position.getY() - ball.position.getY(); float sumRadius = getRadius() + ball.getRadius(); float sqrRadius = sumRadius * sumRadius; float distSqr = (xd * xd) + (yd * yd); if (distSqr <= sqrRadius) { return true; } return false; } public void resolveCollision(Ball ball) { // get the mtd Vector2d delta = (position.subtract(ball.position)); float d = delta.getLength(); // minimum translation distance to push balls apart after intersecting Vector2d mtd = delta.multiply(((getRadius() + ball.getRadius())-d)/d); // resolve intersection -- // inverse mass quantities float im1 = 1 / getMass(); float im2 = 1 / ball.getMass(); // push-pull them apart based off their mass position = position.add(mtd.multiply(im1 / (im1 + im2))); ball.position = ball.position.subtract(mtd.multiply(im2 / (im1 + im2))); // impact speed Vector2d v = (this.velocity.subtract(ball.velocity)); float vn = v.dot(mtd.normalize()); // sphere intersecting but moving away from each other already if (vn > 0.0f) return; // collision impulse float i = (-(1.0f + Constants.restitution) * vn) / (im1 + im2); Vector2d impulse = mtd.multiply(i); // change in momentum this.velocity = this.velocity.add(impulse.multiply(im1)); ball.velocity = ball.velocity.subtract(impulse.multiply(im2)); } Source Code: Complete source for ball to ball collider. Binary: Compiled binary in case you just want to try bouncing some balls around. If anyone has some suggestions for how to improve this basic physics simulator let me know! One thing I have yet to add is angular momentum so the balls will roll more realistically. Any other suggestions? Leave a comment!

    Read the article

  • maths in Javascript.

    - by Jared
    Can someone please help me out with a javascript/jquery solution for this arithmetic problem... I need to subtract one number from the other. The problem is that the numbers have dollar signs (because its money). So it seems that jquery is treating them as strings instead of numbers. I have created two variables - toalAssets and totalLiabilites. I would like to subtract the latter from the former and place the result into another variable called netWorth Perhaps i need to use 'parseFloat'? But I'm not sure how - his is all a little over my head!

    Read the article

  • NSDecimalNumber subtraction

    - by happyCoding25
    Hello, I need to subtract 0.5 from number a and set the answer to number b. My code looks like it would work but I'm not sure what I'm doing wrong. The error I get Is on the subtraction line, the error says incompatible type for argument 1 of 'decimalNumberBySubtracting:'. Heres my header: (Note: I only showed the numbers because the header is large) NSDecimalNumber *a; NSDecimalNumber *b; Heres the rest: (Assume this is in an IBAction) b = [a decimalNumberBySubtracting:0.5]; If anyone knows how to properly subtract any help would be appreciated.

    Read the article

  • Currency Math in JavaScript

    - by Jared
    Can someone please help me out with a JavaScript/jQuery solution for this arithmetic problem: I need to subtract one number from the other. The problem is that the numbers have a dollar sign (because its money), therefore jQuery is treating them as strings instead of numbers. I have created two variables - toalAssets and totalLiabilites. I would like to subtract the latter from the former and place the result into another variable called netWorth. Perhaps i need to use parseFloat()? But I'm not sure how - This is all a little over my head!

    Read the article

  • Fibonacci using SBN in OISC in Machine Language

    - by velociraptor
    Hello, I want to generate fibonacci series using SBN in an OISC architecture. My initial approach is to implement it in assembly language first and then convert it to machine language. The first steps involve storing 0 and 1 in 2 registers and then subtract 1 from 0 and repeatedly subtract 1 in the consequent steps. Everytime it will generate a negative number and since its negative, it branches off and fetches the absolute value finding instruction. Is my approach correct? My confusion in the meaning of OISC. Correct me if i'm wrong, if i perform a subtraction and then an absolute value finding, it means that that i'm using 2 instructions everytime. or is it that in the OISC processor both these instructions are done at the sametime which would mean that my approach is correct. Please help. thank you all

    Read the article

  • Calculation with dates and different locales in Crystal Reports for Eclipse?

    - by Bevor
    Hello, I'm using Crystal Reports for Eclipse 2.0.4 and I have a problem. I use a formula in an report to subtract one day from a string which is a date: ToText(CDate({Agreement.EndDate})-1, "dd.MM.yyyy"); This works for the German locale. With an English locale, the calculation is absolutely wrong because the day and month is interchanged. For example: When {Agreement.EndDate} is 07.05.2010 and I subtract one day from it, I get 06.04.2010 with the German locale but 04.07.2010 with an English locale. How can I solve this that I works for different locales?

    Read the article

  • Subtracting Delphi Time Ranges from a Date Range, Calculate Remaining Time

    - by Anagoge
    I'm looking for an algorithm that will help calculate a workday working time length. It would have an input date range and then allow subtracting partially or completely intersecting time range slices from that date range and the result would be the number of minutes (or the fraction/multiple of a day) left in the original date range, after subtracting out the various non-working time slices. For Example: Input date range: 1/4/2010 11:21 am - 1/5/2010 3:00 pm Subtract out any partially or completely intersecting slices like this: Remove all day Sunday Non-Sundays remove 11:00 - 12:00 Non-Sundays remove time after 5:00 pm Non-Sundays remove time before 8:00 am Non-Sundays remove time 9:15 - 9:30 am Output: # of minutes left in the input date range I don't need anything overly-general. I could hardcode the rules to simplify the code. If anyone knows of sample code or a library/function somewhere, or has some pseudo-code ideas, I'd love something to start with. I didn't see anything in DateUtils, for example. Even a basic function that calculates the number of minutes of overlap in two date ranges to subtract out would be a good start.

    Read the article

  • Python: How to get a value of datetime.today() that is "timezone aware"?

    - by mindthief
    Hi, I am trying to subtract one date value from the value of datetime.today() to calculate how long ago something was. But it complains: TypeError: can't subtract offset-naive and offset-aware datetimes The value datetime.today() doesn't seem to be "timezone aware", while my other date value is. How do I get a value of datetime.today() that is timezone aware? Right now it's giving me the time in local time, which happens to be PST, i.e. UTC-8hrs. Worst case, is there a way I can manually enter a timezone value into the datetime object returned by datetime.today() and set it to UTC-8? Of course, the ideal solution would be for it to automatically know the timezone. Thanks!

    Read the article

  • c# .net framework subtracting time-span from date

    - by smkngspcmn
    I want to subtract a time-span from a date-time object. Date is 1983/5/1 13:0:0 (y/m/d-h:m:s) Time span is 2/4/28-2:51:0 (y/m/d-h:m:s) I can use the native DateTime and TimeSpan objects to do this, after converting years and months of the time-span to days (assuming a 30 day month and a ~364 day year). new DateTime(1981,5,1,13,0,0).Subtract(new TimeSpan(878,13,51,0)); With this i get the result: {12/4/1978 11:09:00 PM} But this is not exactly what i expected. If i do this manually (assuming a 30 day month) i get 1981/0/3-10:9:0 This is pretty close to what i'm after except i shouldn't get 0 for month and year should be 1980. So can someone please show me how i can do this manually and avoid getting a 0 month value? Also why do i get a completely different value when i use native classes?

    Read the article

  • handling matrix data in python

    - by Ovisek
    I was trying to progressively subtract values of a 3D matrix. The matrix looks like: ATOM 1223 ZX SOD A 11 2.11 -1.33 12.33 ATOM 1224 ZY SOD A 11 -2.99 -2.92 20.22 ATOM 1225 XH HEL A 12 -3.67 9.55 21.54 ATOM 1226 SS ARG A 13 -6.55 -3.09 42.11 ... here the last three columns are representing values for axes x,y,z respectively. now I what I wanted to do is, take the values of x,y,z for 1st line and subtract with 2nd,3rd,4th line in a iterative way and print the values for each axes. I was using: for line in map(str.split,inp): x = line[-3] y = line[-2] z = line[-1] for separating the values, but how to do in iterative way. should I do it by using Counter.

    Read the article

  • PHP Math issue with negatives [closed]

    - by user1269625
    Possible Duplicate: PHP negatives keep adding I have this code here.... $remaining = 0; foreach($array as $value=>$row){ $remaining = $remaining + $row['remainingbalance']; } What its doing is that it is going through all the remaining balances in the array which are -51.75 and -17.85 with the code above I get -69.60 which is correct. But I am wondering how when its two negatives if they could subtract? Is that possible? I tried this $remaining = 0; foreach($clientArrayInvoice as $value=>$row){ $remaining = $remaining + abs($row['remainingbalance']); } but it gives me 69.60 without the negative. Anyone got any ideas? my goal is to take -51.75 and -17.85 and come up with -33.90 only when its a negative to do subtract. otherwise add

    Read the article

  • Can a Printer Print White?

    - by Jason Fitzpatrick
    The vast majority of the time we all print on white media: white paper, white cardstock, and other neutral white surfaces. But what about printing white? Can modern printers print white and if not, why not? Read on as we explore color theory, printer design choices, and why white is the foundation of the printing process. Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Image by Coiote O.; available as wallpaper here. The Question SuperUser reader Curious_Kid is well, curious, about printers. He writes: I was reading about different color models, when this question hit my mind. Can the CMYK color model generate white color? Printers use CMYK color mode. What will happen if I try to print a white colored image (rabbit) on a black paper with my printer? Will I get any image on the paper? Does the CMYK color model have room for white? The Answer SuperUser contributor Darth Android offers some insight into the CMYK process: You will not get anything on the paper with a basic CMYK inkjet or laser printer. The CMYK color mixing is subtractive, meaning that it requires the base that is being colored to have all colors (i.e., White) So that it can create color variation through subtraction: White - Cyan - Yellow = Green White - Yellow - Magenta = Red White - Cyan - Magenta = Blue White is represented as 0 cyan, 0 yellow, 0 magenta, and 0 black – effectively, 0 ink for a printer that simply has those four cartridges. This works great when you have white media, as “printing no ink” simply leaves the white exposed, but as you can imagine, this doesn’t work for non-white media. If you don’t have a base color to subtract from (i.e., Black), then it doesn’t matter what you subtract from it, you still have the color Black. [But], as others are pointing out, there are special printers which can operate in the CMYW color space, or otherwise have a white ink or toner. These can be used to print light colors on top of dark or otherwise non-white media. You might also find my answer to a different question about color spaces helpful or informative. Given that the majority of printer media in the world is white and printing pure white on non-white colors is a specialty process, it’s no surprise that home and (most) commercial printers alike have no provision for it. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >