Search Results

Search found 839 results on 34 pages for 'vertex'.

Page 3/34 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How do I simplify terrain with tunnels or overhangs?

    - by KKlouzal
    I'm attempting to store vertex data in a quadtree with C++, such that far-away vertices can be combined to simplify the object and speed up rendering. This works well with a reasonably flat mesh, but what about terrain with overhangs or tunnels? How should I represent such a mesh in a quadtree? After the initial generation, each mesh is roughly 130,000 polygons and about 300 of these meshes are lined up to create the surface of a planetary body. A fully generated planet is upwards of 10,000,000 polygons before applying any culling to the individual meshes. Therefore, this second optimization is vital for the project. The rest of my confusion focuses around my inexperience with vertex data: How do I properly loop through the vertex data to group them into specific quads? How do I conclude from vertex data what a quad's maximum size should be? How many quads should the quadtree include?

    Read the article

  • Drawing using Dynamic Array and Buffer Object

    - by user1905910
    I have a problem when creating the vertex array and the indices array. I don't know what really is the problem with the code, but I guess is something with the type of the arrays, can someone please give me a light on this? #define GL_GLEXT_PROTOTYPES #include<GL/glut.h> #include<iostream> using namespace std; #define BUFFER_OFFSET(offset) ((GLfloat*) NULL + offset) const GLuint numDiv = 2; const GLuint numVerts = 9; GLuint VAO; void display(void) { enum vertex {VERTICES, INDICES, NUM_BUFFERS}; GLuint * buffers = new GLuint[NUM_BUFFERS]; GLfloat (*squareVerts)[2] = new GLfloat[numVerts][2]; GLubyte * indices = new GLubyte[numDiv*numDiv*4]; GLuint delta = 80/numDiv; for(GLuint i = 0; i < numVerts; i++) { squareVerts[i][1] = (i/(numDiv+1))*delta; squareVerts[i][0] = (i%(numDiv+1))*delta; } for(GLuint i=0; i < numDiv; i++){ for(GLuint j=0; j < numDiv; j++){ //cada iteracao gera 4 pontos #define NUM_VERT(ii,jj) ((ii)*(numDiv+1)+(jj)) #define INDICE(ii,jj) (4*((ii)*numDiv+(jj))) indices[INDICE(i,j)] = NUM_VERT(i,j); indices[INDICE(i,j)+1] = NUM_VERT(i,j+1); indices[INDICE(i,j)+2] = NUM_VERT(i+1,j+1); indices[INDICE(i,j)+3] = NUM_VERT(i+1,j); } } glGenVertexArrays(1, &VAO); glBindVertexArray(VAO); glGenBuffers(NUM_BUFFERS, buffers); glBindBuffer(GL_ARRAY_BUFFER, buffers[VERTICES]); glBufferData(GL_ARRAY_BUFFER, sizeof(squareVerts), squareVerts, GL_STATIC_DRAW); glVertexPointer(2, GL_FLOAT, 0, BUFFER_OFFSET(0)); glEnableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[INDICES]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glClear(GL_COLOR_BUFFER_BIT); glColor3f(1.0,1.0,1.0); glDrawElements(GL_POINTS, 16, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0)); glutSwapBuffers(); } void init() { glClearColor(0.0, 0.0, 0.0, 0.0); gluOrtho2D((GLdouble) -1.0, (GLdouble) 90.0, (GLdouble) -1.0, (GLdouble) 90.0); } int main(int argv, char** argc) { glutInit(&argv, argc); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutInitWindowSize(500,500); glutInitWindowPosition(100,100); glutCreateWindow("myCode.cpp"); init(); glutDisplayFunc(display); glutMainLoop(); return 0; } Edit: The problem here is that drawing don't work at all. But I don't get any error, this just don't display what I want to display. Even if I put the code that make the vertices and put them in the buffers in a diferent function, this don't work. I just tried to do this: void display(void) { glBindVertexArray(VAO); glClear(GL_COLOR_BUFFER_BIT); glColor3f(1.0,1.0,1.0); glDrawElements(GL_POINTS, 16, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0)); glutSwapBuffers(); } and I placed the rest of the code in display in another function that is called on the start of the program. But the problem still

    Read the article

  • OpenGL ES 2.0: Vertex and Fragment Shader for 2D with Transparency

    - by Bunkai.Satori
    Could I knindly ask for correct examples of OpenGL ES 2.0 Vertex and Fragment shader for displaying 2D textured sprites with transparency? I have fairly simple shaders that display textured polygon pairs but transparency is not applied despite: texture map contains transparency information Blending is enabled: glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); My Vertex Shader: uniform mat4 uOrthoProjection; uniform vec3 Translation; attribute vec4 Position; attribute vec2 TextureCoord; varying vec2 TextureCoordOut; void main() { gl_Position = uOrthoProjection * (Position + vec4(Translation, 0)); TextureCoordOut = TextureCoord; } My Fragment Shader: varying mediump vec2 TextureCoordOut; uniform sampler2D Sampler; void main() { gl_FragColor = texture2D(Sampler, TextureCoordOut); }

    Read the article

  • Drawing multiple objects from one Vertex Buffer Object in OpenGL/OpenTK

    - by stoney78us
    I am trying to experimenting drawing method using VBO in OpenGL. Many people normally use 1 vbo to store one object data array. I was trying to do something quite opposite which is storing multiple object data into 1 vbo then drawing it. There is story behind why i want to do this. I want to group many of objects as a single object sometime. However my code doesn't do the justice. Following is my pseudo code: //Data double[] vertices = {line strip 1, line strip 2, line strip 3}; //series of vertices int linestrip1offset = index of the first vertex in line strip 1; int linestrip2offset = index of the first vertex in line strip 2; int linestrip3offset = index of the first vertex in line strip 3; int linestrip1VertexNum = number of vertices in linestrip 1; int linestrip2VertexNum = number of vertices in linestrip 2; int linestrip3VertexNum = number of vertices in linestrip 3; //Setting Up void init() { int[] vBO = new int[1]; GL.GenBuffer(1, vBO); GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(_vertices.Length * sizeof(double)), _vertices, BufferUsageHint.StaticDraw); GL.EnableClientState(Array.VertexArray); } //Drawing void draw() { GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.EnableClientState(ArrayCap.VertexArray); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip1offset); //drawing first linestrip GL.DrawArrays(drawMode, linestrip1offset , linestrip1VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip2offset); //drawing second linestrip GL.DrawArrays(drawMode, linestrip2offset , linestrip2VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip3offset); //drawing third linestrip GL.DrawArrays(drawMode, linestrip3offset , linestrip3VertexNum ); GL.DisableClientState(ArrayCap.VertexArray); GL.BindBuffer(BufferTarget.ArrayBuffer, 0); } I don't know what i did wrong but i think technically it should work where we can tell OpenGL which part of the data in the vBO to be drawn.

    Read the article

  • Calculating vertex normals on the GPU

    - by Etan
    I have some height-map sampled on a regular grid stored in an array. Now, I want to use the normals on the sampled vertices for some smoothing algorithm. The way I'm currently doing it is as follows: For each vertex, generate triangles to all it's neighbours. This results in eight neighbours when using the 1-neighbourhood for all vertices except at the borders. +---+---+ ¦ \ ¦ / ¦ +---o---+ ¦ / ¦ \ ¦ +---+---+ For each adjacent triangle, calculate it's normal by taking the cross product between the two distances. As the triangles all have the same size when projected on the xy-plane, I simply average over all eight normals then and store it for this vertex. However, as my data grows larger, this approach takes too much time and I would prefer doing it on the GPU in a shader code. Is there an easy method, maybe if I could store my height-map as a texture?

    Read the article

  • Multiplication for MVP matrices: Any benefits to doing so within the vertex shader?

    - by Nick Wiggill
    I'd like to understand under what circumstances (if any) it is worth doing MVP matrix multiplication inside a vertex shader. The vertex shader is run once per vertex, and a single mesh typically contains many vertices. All MVP inputs remain the same for each vertex in the vertex batch relating to a given draw call (model). Surely then, you're always better off keeping the multiplications in the client code, such that you pass in the whole MVP precalculated as a uniform? (avoiding redundant ops between individual vertices)

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • best way to compute vertex normals from a Triangle's list

    - by nkint
    hi i'm a complete newbie in computergraphics so sorry if it's a stupid answer. i'm trying to make a simple 3d engine from scratch, more for educational purpose than for real use. i have a Surface object with inside a Triangle's list. For now i compute normals inside Triangle class, in this way: triangle.computeFaceNormals() { Vec3D u = v1.sub(v3) Vec3D v = v1.sub(v2) Vec3D normal = Vec3D.cross(u,v) normal.normalized() this.n1 = this.n2 = this.n3 = normal } and when building surface: t = new Triangle(v1,v2,v3).computeFaceNormals() surface.addTriangle(t) and i think this is the best way to do that.. isn't it? now.. what about for vertex normals? i've found this simple algorithm: flipcode vertex normal but.. hei this algorithm has.. exponential complexity? (if my memory doesn't fail my computer science background..) (bytheway.. it has 3 nested loops.. i don't think it's the best way to do it..) any suggestion?

    Read the article

  • evaluating a code of a graph [migrated]

    - by mazen.r.f
    This is relatively a long code,if you have the tolerance and the will to find out how to make this code work then take a look please, i will appreciate your feed back. i have spent two days trying to come up with a code to represent a graph , then calculate the shortest path using dijkastra algorithm , but i am not able to get the right result , even the code runs without errors , but the result is not correct , always i am getting 0. briefly,i have three classes , Vertex, Edge, Graph , the Vertex class represents the nodes in the graph and it has id and carried ( which carry the weight of the links connected to it while using dijkastra algorithm ) and a vector of the ids belong to other nodes the path will go through before arriving to the node itself , this vector is named previous_nodes. the Edge class represents the edges in the graph it has two vertices ( one in each side ) and a wight ( the distance between the two vertices ). the Graph class represents the graph , it has two vectors one is the vertices included in this graph , and the other is the edges included in the graph. inside the class Graph there is a method its name shortest takes the sources node id and the destination and calculates the shortest path using dijkastra algorithm, and i think that it is the most important part of the code. my theory about the code is that i will create two vectors one for the vertices in the graph i will name it vertices and another vector its name is ver_out it will include the vertices out of calculation in the graph, also i will have two vectors of type Edge , one its name edges for all the edges in the graph and the other its name is track to contain temporarily the edges linked to the temporarily source node in every round , after the calculation of every round the vector track will be cleared. in main() i created five vertices and 10 edges to simulate a graph , the result of the shortest path supposedly to be 4 , but i am always getting 0 , that means i am having something wrong in my code , so if you are interesting in helping me find my mistake and how to make the code work , please take a look. the way shortest work is as follow at the beginning all the edges will be included in the vector edges , we select the edges related to the source and put them in the vector track , then we iterate through track and add the wight of every edge to the vertex (node ) related to it ( not the source vertex ) , then after we clear track and remove the source vertex from the vector vertices and select a new source , and start over again select the edges related to the new source , put them in track , iterate over edges in tack , adding the weights to the corresponding vertices then remove this vertex from the vector vertices, and clear track , and select a new source , and so on . here is the code. #include<iostream> #include<vector> #include <stdlib.h> // for rand() using namespace std; class Vertex { private: unsigned int id; // the name of the vertex unsigned int carried; // the weight a vertex may carry when calculating shortest path vector<unsigned int> previous_nodes; public: unsigned int get_id(){return id;}; unsigned int get_carried(){return carried;}; void set_id(unsigned int value) {id = value;}; void set_carried(unsigned int value) {carried = value;}; void previous_nodes_update(unsigned int val){previous_nodes.push_back(val);}; void previous_nodes_erase(unsigned int val){previous_nodes.erase(previous_nodes.begin() + val);}; Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor { } ~Vertex() {}; // destructor }; class Edge { private: Vertex first_vertex; // a vertex on one side of the edge Vertex second_vertex; // a vertex on the other side of the edge unsigned int weight; // the value of the edge ( or its weight ) public: unsigned int get_weight() {return weight;}; void set_weight(unsigned int value) {weight = value;}; Vertex get_ver_1(){return first_vertex;}; Vertex get_ver_2(){return second_vertex;}; void set_first_vertex(Vertex v1) {first_vertex = v1;}; void set_second_vertex(Vertex v2) {second_vertex = v2;}; Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0) : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) { } ~Edge() {} ; // destructor }; class Graph { private: std::vector<Vertex> vertices; std::vector<Edge> edges; public: Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector) : vertices(ver_vector), edges(edg_vector) { } ~Graph() {}; vector<Vertex> get_vertices(){return vertices;}; vector<Edge> get_edges(){return edges;}; void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}; void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}; unsigned int shortest(unsigned int src, unsigned int dis) { vector<Vertex> ver_out; vector<Edge> track; for(unsigned int i = 0; i < edges.size(); ++i) { if((edges[i].get_ver_1().get_id() == vertices[src].get_id()) || (edges[i].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[i]); edges.erase(edges.begin()+i); } }; for(unsigned int i = 0; i < track.size(); ++i) { if(track[i].get_ver_1().get_id() != vertices[src].get_id()) { track[i].get_ver_1().set_carried((track[i].get_weight()) + track[i].get_ver_2().get_carried()); track[i].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else { track[i].get_ver_2().set_carried((track[i].get_weight()) + track[i].get_ver_1().get_carried()); track[i].get_ver_2().previous_nodes_update(vertices[src].get_id()); } } for(unsigned int i = 0; i < vertices.size(); ++i) if(vertices[i].get_id() == src) vertices.erase(vertices.begin() + i); // removing the sources vertex from the vertices vector ver_out.push_back (vertices[src]); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int i = 0; i < vertices.size(); ++i) if((vertices[i].get_carried() < vertices[src].get_carried()) && (vertices[i].get_id() != dis)) src = vertices[i].get_id(); //while(!edges.empty()) for(unsigned int round = 0; round < vertices.size(); ++round) { for(unsigned int k = 0; k < edges.size(); ++k) { if((edges[k].get_ver_1().get_id() == vertices[src].get_id()) || (edges[k].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[k]); edges.erase(edges.begin()+k); } }; for(unsigned int n = 0; n < track.size(); ++n) if((track[n].get_ver_1().get_id() != vertices[src].get_id()) && (track[n].get_ver_1().get_carried() > (track[n].get_ver_2().get_carried() + track[n].get_weight()))) { track[n].get_ver_1().set_carried((track[n].get_weight()) + track[n].get_ver_2().get_carried()); track[n].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else if(track[n].get_ver_2().get_carried() > (track[n].get_ver_1().get_carried() + track[n].get_weight())) { track[n].get_ver_2().set_carried((track[n].get_weight()) + track[n].get_ver_1().get_carried()); track[n].get_ver_2().previous_nodes_update(vertices[src].get_id()); } for(unsigned int t = 0; t < vertices.size(); ++t) if(vertices[t].get_id() == src) vertices.erase(vertices.begin() + t); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int tt = 0; tt < edges.size(); ++tt) { if(vertices[tt].get_carried() < vertices[src].get_carried()) { src = vertices[tt].get_id(); } } } return vertices[dis].get_carried(); } }; int main() { cout<< "Hello, This is a graph"<< endl; vector<Vertex> vers(5); vers[0].set_id(0); vers[1].set_id(1); vers[2].set_id(2); vers[3].set_id(3); vers[4].set_id(4); vector<Edge> eds(10); eds[0].set_first_vertex(vers[0]); eds[0].set_second_vertex(vers[1]); eds[0].set_weight(5); eds[1].set_first_vertex(vers[0]); eds[1].set_second_vertex(vers[2]); eds[1].set_weight(9); eds[2].set_first_vertex(vers[0]); eds[2].set_second_vertex(vers[3]); eds[2].set_weight(4); eds[3].set_first_vertex(vers[0]); eds[3].set_second_vertex(vers[4]); eds[3].set_weight(6); eds[4].set_first_vertex(vers[1]); eds[4].set_second_vertex(vers[2]); eds[4].set_weight(2); eds[5].set_first_vertex(vers[1]); eds[5].set_second_vertex(vers[3]); eds[5].set_weight(5); eds[6].set_first_vertex(vers[1]); eds[6].set_second_vertex(vers[4]); eds[6].set_weight(7); eds[7].set_first_vertex(vers[2]); eds[7].set_second_vertex(vers[3]); eds[7].set_weight(1); eds[8].set_first_vertex(vers[2]); eds[8].set_second_vertex(vers[4]); eds[8].set_weight(8); eds[9].set_first_vertex(vers[3]); eds[9].set_second_vertex(vers[4]); eds[9].set_weight(3); unsigned int path; Graph graf(vers, eds); path = graf.shortest(2, 4); cout<< path << endl; return 0; }

    Read the article

  • How to get predecessor and successors from an adjacency matrix

    - by NickTFried
    Hi I am am trying to complete an assignment, where it is ok to consult the online community. I have to create a graph class that ultimately can do Breadth First Search and Depth First Search. I have been able to implement those algorithms successfully however another requirement is to be able to get the successors and predecessors and detect if two vertices are either predecessors or successors for each other. I'm having trouble thinking of a way to do this. I will post my code below, if anyone has any suggestions it would be greatly appreciated. import java.util.ArrayList; import java.util.Iterator; import java.util.LinkedList; import java.util.Queue; import java.util.Stack; public class Graph<T> { public Vertex<T> root; public ArrayList<Vertex<T>> vertices=new ArrayList<Vertex<T>>(); public int[][] adjMatrix; int size; private ArrayList<Vertex<T>> dfsArrList; private ArrayList<Vertex<T>> bfsArrList; public void setRootVertex(Vertex<T> n) { this.root=n; } public Vertex<T> getRootVertex() { return this.root; } public void addVertex(Vertex<T> n) { vertices.add(n); } public void removeVertex(int loc){ vertices.remove(loc); } public void addEdge(Vertex<T> start,Vertex<T> end) { if(adjMatrix==null) { size=vertices.size(); adjMatrix=new int[size][size]; } int startIndex=vertices.indexOf(start); int endIndex=vertices.indexOf(end); adjMatrix[startIndex][endIndex]=1; adjMatrix[endIndex][startIndex]=1; } public void removeEdge(Vertex<T> v1, Vertex<T> v2){ int startIndex=vertices.indexOf(v1); int endIndex=vertices.indexOf(v2); adjMatrix[startIndex][endIndex]=1; adjMatrix[endIndex][startIndex]=1; } public int countVertices(){ int ver = vertices.size(); return ver; } /* public boolean isPredecessor( Vertex<T> a, Vertex<T> b){ for() return true; }*/ /* public boolean isSuccessor( Vertex<T> a, Vertex<T> b){ for() return true; }*/ public void getSuccessors(Vertex<T> v1){ } public void getPredessors(Vertex<T> v1){ } private Vertex<T> getUnvisitedChildNode(Vertex<T> n) { int index=vertices.indexOf(n); int j=0; while(j<size) { if(adjMatrix[index][j]==1 && vertices.get(j).visited==false) { return vertices.get(j); } j++; } return null; } public Iterator<Vertex<T>> bfs() { Queue<Vertex<T>> q=new LinkedList<Vertex<T>>(); q.add(this.root); printVertex(this.root); root.visited=true; while(!q.isEmpty()) { Vertex<T> n=q.remove(); Vertex<T> child=null; while((child=getUnvisitedChildNode(n))!=null) { child.visited=true; bfsArrList.add(child); q.add(child); } } clearVertices(); return bfsArrList.iterator(); } public Iterator<Vertex<T>> dfs() { Stack<Vertex<T>> s=new Stack<Vertex<T>>(); s.push(this.root); root.visited=true; printVertex(root); while(!s.isEmpty()) { Vertex<T> n=s.peek(); Vertex<T> child=getUnvisitedChildNode(n); if(child!=null) { child.visited=true; dfsArrList.add(child); s.push(child); } else { s.pop(); } } clearVertices(); return dfsArrList.iterator(); } private void clearVertices() { int i=0; while(i<size) { Vertex<T> n=vertices.get(i); n.visited=false; i++; } } private void printVertex(Vertex<T> n) { System.out.print(n.label+" "); } }

    Read the article

  • Evaluating code for a graph [migrated]

    - by mazen.r.f
    This is relatively long code. Please take a look at this code if you are still willing to do so. I will appreciate your feedback. I have spent two days trying to come up with code to represent a graph, calculating the shortest path using Dijkstra's algorithm. But I am not able to get the right result, even though the code runs without errors. The result is not correct and I am always getting 0. I have three classes: Vertex, Edge, and Graph. The Vertex class represents the nodes in the graph and it has id and carried (which carry the weight of the links connected to it while using Dijkstra's algorithm) and a vector of the ids belong to other nodes the path will go through before arriving to the node itself. This vector is named previous_nodes. The Edge class represents the edges in the graph and has two vertices (one in each side) and a width (the distance between the two vertices). The Graph class represents the graph. It has two vectors, where one is the vertices included in this graph, and the other is the edges included in the graph. Inside the class Graph, there is a method named shortest() that takes the sources node id and the destination and calculates the shortest path using Dijkstra's algorithm. I think that it is the most important part of the code. My theory about the code is that I will create two vectors, one for the vertices in the graph named vertices, and another vector named ver_out (it will include the vertices out of calculation in the graph). I will also have two vectors of type Edge, where one is named edges (for all the edges in the graph), and the other is named track (to temporarily contain the edges linked to the temporary source node in every round). After the calculation of every round, the vector track will be cleared. In main(), I've created five vertices and 10 edges to simulate a graph. The result of the shortest path supposedly is 4, but I am always getting 0. That means I have something wrong in my code. If you are interesting in helping me find my mistake and making the code work, please take a look. The way shortest work is as follow: at the beginning, all the edges will be included in the vector edges. We select the edges related to the source and put them in the vector track, then we iterate through track and add the width of every edge to the vertex (node) related to it (not the source vertex). After that, we clear track and remove the source vertex from the vector vertices and select a new source. Then we start over again and select the edges related to the new source, put them in track, iterate over edges in track, adding the weights to the corresponding vertices, then remove this vertex from the vector vertices. Then clear track, and select a new source, and so on. #include<iostream> #include<vector> #include <stdlib.h> // for rand() using namespace std; class Vertex { private: unsigned int id; // the name of the vertex unsigned int carried; // the weight a vertex may carry when calculating shortest path vector<unsigned int> previous_nodes; public: unsigned int get_id(){return id;}; unsigned int get_carried(){return carried;}; void set_id(unsigned int value) {id = value;}; void set_carried(unsigned int value) {carried = value;}; void previous_nodes_update(unsigned int val){previous_nodes.push_back(val);}; void previous_nodes_erase(unsigned int val){previous_nodes.erase(previous_nodes.begin() + val);}; Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor { } ~Vertex() {}; // destructor }; class Edge { private: Vertex first_vertex; // a vertex on one side of the edge Vertex second_vertex; // a vertex on the other side of the edge unsigned int weight; // the value of the edge ( or its weight ) public: unsigned int get_weight() {return weight;}; void set_weight(unsigned int value) {weight = value;}; Vertex get_ver_1(){return first_vertex;}; Vertex get_ver_2(){return second_vertex;}; void set_first_vertex(Vertex v1) {first_vertex = v1;}; void set_second_vertex(Vertex v2) {second_vertex = v2;}; Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0) : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) { } ~Edge() {} ; // destructor }; class Graph { private: std::vector<Vertex> vertices; std::vector<Edge> edges; public: Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector) : vertices(ver_vector), edges(edg_vector) { } ~Graph() {}; vector<Vertex> get_vertices(){return vertices;}; vector<Edge> get_edges(){return edges;}; void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}; void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}; unsigned int shortest(unsigned int src, unsigned int dis) { vector<Vertex> ver_out; vector<Edge> track; for(unsigned int i = 0; i < edges.size(); ++i) { if((edges[i].get_ver_1().get_id() == vertices[src].get_id()) || (edges[i].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[i]); edges.erase(edges.begin()+i); } }; for(unsigned int i = 0; i < track.size(); ++i) { if(track[i].get_ver_1().get_id() != vertices[src].get_id()) { track[i].get_ver_1().set_carried((track[i].get_weight()) + track[i].get_ver_2().get_carried()); track[i].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else { track[i].get_ver_2().set_carried((track[i].get_weight()) + track[i].get_ver_1().get_carried()); track[i].get_ver_2().previous_nodes_update(vertices[src].get_id()); } } for(unsigned int i = 0; i < vertices.size(); ++i) if(vertices[i].get_id() == src) vertices.erase(vertices.begin() + i); // removing the sources vertex from the vertices vector ver_out.push_back (vertices[src]); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int i = 0; i < vertices.size(); ++i) if((vertices[i].get_carried() < vertices[src].get_carried()) && (vertices[i].get_id() != dis)) src = vertices[i].get_id(); //while(!edges.empty()) for(unsigned int round = 0; round < vertices.size(); ++round) { for(unsigned int k = 0; k < edges.size(); ++k) { if((edges[k].get_ver_1().get_id() == vertices[src].get_id()) || (edges[k].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[k]); edges.erase(edges.begin()+k); } }; for(unsigned int n = 0; n < track.size(); ++n) if((track[n].get_ver_1().get_id() != vertices[src].get_id()) && (track[n].get_ver_1().get_carried() > (track[n].get_ver_2().get_carried() + track[n].get_weight()))) { track[n].get_ver_1().set_carried((track[n].get_weight()) + track[n].get_ver_2().get_carried()); track[n].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else if(track[n].get_ver_2().get_carried() > (track[n].get_ver_1().get_carried() + track[n].get_weight())) { track[n].get_ver_2().set_carried((track[n].get_weight()) + track[n].get_ver_1().get_carried()); track[n].get_ver_2().previous_nodes_update(vertices[src].get_id()); } for(unsigned int t = 0; t < vertices.size(); ++t) if(vertices[t].get_id() == src) vertices.erase(vertices.begin() + t); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int tt = 0; tt < edges.size(); ++tt) { if(vertices[tt].get_carried() < vertices[src].get_carried()) { src = vertices[tt].get_id(); } } } return vertices[dis].get_carried(); } }; int main() { cout<< "Hello, This is a graph"<< endl; vector<Vertex> vers(5); vers[0].set_id(0); vers[1].set_id(1); vers[2].set_id(2); vers[3].set_id(3); vers[4].set_id(4); vector<Edge> eds(10); eds[0].set_first_vertex(vers[0]); eds[0].set_second_vertex(vers[1]); eds[0].set_weight(5); eds[1].set_first_vertex(vers[0]); eds[1].set_second_vertex(vers[2]); eds[1].set_weight(9); eds[2].set_first_vertex(vers[0]); eds[2].set_second_vertex(vers[3]); eds[2].set_weight(4); eds[3].set_first_vertex(vers[0]); eds[3].set_second_vertex(vers[4]); eds[3].set_weight(6); eds[4].set_first_vertex(vers[1]); eds[4].set_second_vertex(vers[2]); eds[4].set_weight(2); eds[5].set_first_vertex(vers[1]); eds[5].set_second_vertex(vers[3]); eds[5].set_weight(5); eds[6].set_first_vertex(vers[1]); eds[6].set_second_vertex(vers[4]); eds[6].set_weight(7); eds[7].set_first_vertex(vers[2]); eds[7].set_second_vertex(vers[3]); eds[7].set_weight(1); eds[8].set_first_vertex(vers[2]); eds[8].set_second_vertex(vers[4]); eds[8].set_weight(8); eds[9].set_first_vertex(vers[3]); eds[9].set_second_vertex(vers[4]); eds[9].set_weight(3); unsigned int path; Graph graf(vers, eds); path = graf.shortest(2, 4); cout<< path << endl; return 0; }

    Read the article

  • HLSL How to flip geometry horizontally

    - by cubrman
    I want to flip my asymmetric 3d model horizontally in the vertex shader alongside an arbitrary plane parallel to the YZ plane. This should switch everything for the model from the left hand side to the right hand side (like flipping it in Photoshop). Doing it in pixel shader would be a huge computational cost (extra RT, more fullscreen samples...), so it must be done in the vertex shader. Once more: this is NOT reflection, i need to flip THE WHOLE MODEL. I thought I could simply do the following: Turn off culling. Run the following code in the vertex shader: input.Position = mul(input.Position, World); // World[3][0] holds x value of the model's pivot in the World. if (input.Position.x <= World[3][0]) input.Position.x += World[3][0] - input.Position.x; else input.Position.x -= input.Position.x - World[3][0]; ... The model is never drawn. Where am I wrong? I presume that messes up the index buffer. Can something be done about it? P.S. it's INSANELY HARD to format code here. Thanks to Panda I found my problem. SOLUTION: // Do thins before anything else in the vertex shader. Position.x *= -1; // To invert alongside the object's YZ plane.

    Read the article

  • XNA .FBX Vertex Color Missing

    - by Alex
    When I vertex paint and export my models from Blender (or Maya) for use in my XNA 4.0 project, I somehow lose the vertex color channel for the model. I use no custom model object or content pipelines and my own shader throws me the error: The current vertex declaration does not include all the elements required by the current vertex shader. Color0 is missing. I tryed to reopen the model in other modeling tools and the vertex colors are there. What could cause the vertex color channel to not get loaded in XNA 4.0? Here's a temporary link to the FBX file(server refuses to send a fbx, so rename the .jpg file to .fbx after downloading) http://resources.gamestack.org/BananaBush.jpg

    Read the article

  • Why does OpenGL's glDrawArrays() fail with GL_INVALID_OPERATION under Core Profile 3.2, but not 3.3 or 4.2?

    - by metaleap
    I have OpenGL rendering code calling glDrawArrays that works flawlessly when the OpenGL context is (automatically / implicitly obtained) 4.2 but fails consistently (GL_INVALID_OPERATION) with an explicitly requested OpenGL core context 3.2. (Shaders are always set to #version 150 in both cases but that's beside the point here I suspect.) According to specs, there are only two instances when glDrawArrays() fails with GL_INVALID_OPERATION: "if a non-zero buffer object name is bound to an enabled array and the buffer object's data store is currently mapped" -- I'm not doing any buffer mapping at this point "if a geometry shader is active and mode? is incompatible with [...]" -- nope, no geometry shaders as of now. Furthermore: I have verified & double-checked that it's only the glDrawArrays() calls failing. Also double-checked that all arguments passed to glDrawArrays() are identical under both GL versions, buffer bindings too. This happens across 3 different nvidia GPUs and 2 different OSes (Win7 and OSX, both 64-bit -- of course, in OSX we have only the 3.2 context, no 4.2 anyway). It does not happen with an integrated "Intel HD" GPU but for that one, I only get an automatic implicit 3.3 context (trying to explicitly force a 3.2 core profile with this GPU via GLFW here fails the window creation but that's an entirely different issue...) For what it's worth, here's the relevant routine excerpted from the render loop, in Golang: func (me *TMesh) render () { curMesh = me curTechnique.OnRenderMesh() gl.BindBuffer(gl.ARRAY_BUFFER, me.glVertBuf) if me.glElemBuf > 0 { gl.BindBuffer(gl.ELEMENT_ARRAY_BUFFER, me.glElemBuf) gl.VertexAttribPointer(curProg.AttrLocs["aPos"], 3, gl.FLOAT, gl.FALSE, 0, gl.Pointer(nil)) gl.DrawElements(me.glMode, me.glNumIndices, gl.UNSIGNED_INT, gl.Pointer(nil)) gl.BindBuffer(gl.ELEMENT_ARRAY_BUFFER, 0) } else { gl.VertexAttribPointer(curProg.AttrLocs["aPos"], 3, gl.FLOAT, gl.FALSE, 0, gl.Pointer(nil)) /* BOOM! */ gl.DrawArrays(me.glMode, 0, me.glNumVerts) } gl.BindBuffer(gl.ARRAY_BUFFER, 0) } So of course this is part of a bigger render-loop, though the whole "*TMesh" construction for now is just two instances, one a simple cube and the other a simple pyramid. What matters is that the entire drawing loop works flawlessly with no errors reported when GL is queried for errors under both 3.3 and 4.2, yet on 3 nvidia GPUs with an explicit 3.2 core profile fails with an error code that according to spec is only invoked in two specific situations, none of which as far as I can tell apply here. What could be wrong here? Have you ever run into this? Any ideas what I have been missing?

    Read the article

  • Using DynamicVertexBuffer in XNA 4.0

    - by Bevin
    I read about DynamicVertexBuffer, and how it's supposed to be better for data that changes often. I have a world built up by cubes, and I need to store the cubes' vertices in this buffer to draw them to the screen. However, not all cubes have vertices (some are air, which is transparent) and not all faces of the cubes need to be drawn either (they are facing each other), so how do I keep track of what vertices are stored where in the buffer? Also, certain faces need to be drawn last, namely the ones with transparency in them (like glass or leaves), and these faces also need to be drawn in a back-to-front order to not mess up the alpha blending. If all of these vertices are stored arbitrarily in this buffer, how do I know what vertices are where? Also, the number of vertices can change, but the DynamicVertexBuffer doesn't seem very dynamic to me, since I can't change it's size at all. Do I have to recreate the buffer every time I need to add or remove faces?

    Read the article

  • Safe way for getting/finding a vertex in a graph with custom properties -> good programming practice

    - by Shadow
    Hi, I am writing a Graph-class using boost-graph-library. I use custom vertex and edge properties and a map to store/find the vertices/edges for a given property. I'm satisfied with how it works, so far. However, I have a small problem, where I'm not sure how to solve it "nicely". The class provides a method Vertex getVertex(Vertexproperties v_prop) and a method bool hasVertex(Vertexproperties v_prop) The question now is, would you judge this as good programming practice in C++? My opinion is, that I have first to check if something is available before I can get it. So, before getting a vertex with a desired property, one has to check if hasVertex() would return true for those properties. However, I would like to make getVertex() a bit more robust. ATM it will segfault when one would directly call getVertex() without prior checking if the graph has a corresponding vertex. A first idea was to return a NULL-pointer or a pointer that points past the last stored vertex. For the latter, I haven't found out how to do this. But even with this "robust" version, one would have to check for correctness after getting a vertex or one would also run into a SegFault when dereferencing that vertex-pointer for example. Therefore I am wondering if it is "ok" to let getVertex() SegFault if one does not check for availability beforehand?

    Read the article

  • 3d vertex translated onto 2d viewport

    - by Dan Leidal
    I have a spherical world defined by simple trigonometric functions to create triangles that are relatively similar in size and shape throughout. What I want to be able to do is use mouse input to target a range of vertices in the area around the mouse click in order to manipulate these vertices in real time. I read a post on this forum regarding translating 3d world coordinates into the 2d viewport.. it recommended that you should multiply the world vector coordinates by the viewport and then the projection, but they didn't include any code examples, and suffice to say i couldn't get any good results. Further information.. I am using a lookat method for the viewport. Does this cause a problem, and if so is there a solution? If this isn't the problem, does anyone have a simple code example illustrating translating one vertex in a 3d world into a 2d viewspace? I am using XNA.

    Read the article

  • OpenGL Vertex Attributes - Normalisation

    - by Daniel
    Alas, I have searched, and have found no definitive answer. When would you normalize the vertex data in OpenGL using the following command: glVertexAttribPointer(index, size, type, normalize, stride, pointer); I.e when would normalize == GL_TRUE; what situations, and why would you choose to let the GPU do the calculations instead of preprocessing it? All examples I have ever seen, have this set to GL_FALSE; and I cannot personally see a use for it. But Khronos aren't stupid, so it must be there for something useful (and probably common).

    Read the article

  • Y Axis inverted on vertex output

    - by Yonathan Klijnsma
    I've got my project running and somehow it seems my vertex y components are inverted. 10 in the positive on Y goes down and 10 negative on the Y axis goes up. I can't find anything with the initialization and I am not doing any negative scaling in the view matrix. I've never had something like this happen before, does anyone have some tips or things to look for ? How I am sending verteces to the GPU ( Currently intermediate mode ) glVertex3f( x_pos_n, 10, z_pos ); I am using CG in the project but even without shaders the Y axis seems to be inverted.

    Read the article

  • How can I calculate a vertex normal for a hard edge?

    - by K.G.
    Here is a picture of a lovely polygon: Circled is a vertex, and numbered are its adjacent faces. I have calculated the normals of those faces as such (not yet normalized, 0-indexed): Vertex 1 normal 0: 0.000000 0.000000 -0.250000 Vertex 1 normal 1: 0.000000 0.000000 -0.250000 Vertex 1 normal 2: -0.250000 0.000000 0.000000 Vertex 1 normal 3: -0.250000 0.000000 0.000000 Vertex 1 normal 4: 0.250000 0.000000 0.000000 What I'm wondering is, how can I determine, taken as given that I want this vertex to represent a hard edge, whether its normal should be the normal of 1/2 or 3/4? My plan after I glanced at the sketch I used to put this together was "Ha! I'll just use whichever two faces have the same normal!" and now I see that there are two sets of two faces for which this is true. Is there a rule I can apply based on the face winding, angle of the adjacent edges, moon phase, coin flip, to consistently choose a normal direction for this box? For the record, all of the other polygons I plan to use will have their normals dictated in Maya, but after encountering this problem, it made me really curious.

    Read the article

  • Octrees and Vertex Buffer Objects

    - by sharethis
    As many others I want to code a game with a voxel based terrain. The data is represented by voxels which are rendered using triangles. I head of two different approaches and want to combine them. First, I could once divide the space in chunks of a fixed size like many games do. What I could do now is to generate a polygon shape for each chunk and store that in a vertex buffer object (vbo). Each time a voxel changes, the polygon and vbo of its chunk is recreated. Additionally it is easy to dynamically load and reload parts of the terrain. Another approach would be to use octrees and divide the space in eight cubes which are divided again and again. So I could efficiently render the terrain because I don't have to go deeper in a solid cube and can draw that as a single one (with a repeated texture). What I like to use for my game is an octree datastructure. But I can't imagine how to use vbos with that. How is that done, or is this impossible?

    Read the article

  • Can I use a vertex shader to display a models normals?

    - by geowar
    I'm currently using a VBO for the texture coordinates, normals and the vertices of a (3DS) model I'm drawing with "glDrawArrays(GL_TRIANGLES, ...);". For debugging I want to (temporarily) show the normals when drawing my model. Do I have to use immediate mode to draw each line from vert to vert+normal -OR- stuff another VBO with vert and vert+normal to draw all the normals… -OR- is there a way for the vertex shader to use the vertex and normal data already passed in when drawing the model to compute the V+N used when drawing the normals?

    Read the article

  • Manual TRIM Windows 7 on OCZ VERTEX 2 SATA II 2.5" SSD

    - by INTPnerd
    I have an OCZ VERTEX 2 SATA II 2.5" SSD with Windows 7 Professional installed on it. I am pretty sure TRIM is not working because my motherboard is the Asus M2N-SLI (not the Deluxe model) which does not support AHCI mode for the drive. Is there a utility that is compatible with this drive that I could possibly run once a day that would do something similar to a manual TRIM in order to keep the drive performance up? I could not find one specifically for this drive on the OCZ website. I did find a User-Initiated Garbage Collection wiper tool, but it is for a Vertex drive not Vertex 2. I tried to run it, but it said that wiper could not be run for all the drives on this system.

    Read the article

  • Surface normal to screen angle

    - by Tannz0rz
    I've been struggling to get this working. I simply wish to take a surface normal and convert it to a screen angle. As an example, assuming we're working with the highlighted surface on the sphere below, where the arrow is the normal, the 2D angle would obviously be PI/4 radians. Here's one of the many things I've tried to no avail: float4 A = v.vertex; float4 B = v.vertex + float4(v.normal, 0.0); A = mul(VP, A); B = mul(VP, B); A.xy = (0.5 * (A.xy / A.w)) + 0.5; B.xy = (0.5 * (B.xy / B.w)) + 0.5; o.theta = atan2(B.y - A.y, B.x - A.x); I'm finally at my wit's end. Thanks for any and all help.

    Read the article

  • How are vertex shader outs sent as inputs to the fragment shader?

    - by Jeffrey
    I'm learning some OpenGL 3.2 way of doing things and I think it's quite great, I'm actually understanding more of shaders and non-fixed pipeline in 1 week rather than those 2 years I tried to learn OpenGL fixed pipeline functions. But here's my question: From what I think I've understood the vertex shader is run for each vertexes in the VBO. But the fragments shader is run per each pixel (is that right?) which is a huge number compared to let's say 3 vertexes of a triangle. Now it seems that in the vertex shader the out variables (like colors and stuff) are passed 1 to 1 to the fragment shader. But let's say that I pass to the fragment shader the position of the vertex in the vertex shader. How is all executed? What vertex (A, B or C of the hipothetical triangle) is passed per each fragment and why?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >