Search Results

Search found 8219 results on 329 pages for 'less'.

Page 306/329 | < Previous Page | 302 303 304 305 306 307 308 309 310 311 312 313  | Next Page >

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • Testing Workflows &ndash; Test-After

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-after.aspxIn this post I’m going to outline a few common methods that can be used to increase the coverage of of your test suite.  This won’t be yet another post on why you should be doing testing; there are plenty of those types of posts already out there.  Assuming you know you should be testing, then comes the problem of how do I actual fit that into my day job.  When the opportunity to automate testing comes do you take it, or do you even recognize it? There are a lot of ways (workflows) to go about creating automated tests, just like there are many workflows to writing a program.  When writing a program you can do it from a top-down approach where you write the main skeleton of the algorithm and call out to dummy stub functions, or a bottom-up approach where the low level functionality is fully implement before it is quickly wired together at the end.  Both approaches are perfectly valid under certain contexts. Each approach you are skilled at applying is another tool in your tool belt.  The more vectors of attack you have on a problem – the better.  So here is a short, incomplete list of some of the workflows that can be applied to increasing the amount of automation in your testing and level of quality in general.  Think of each workflow as an opportunity that is available for you to take. Test workflows basically fall into 2 categories:  test first or test after.  Test first is the best approach.  However, this post isn’t about the one and only best approach.  I want to focus more on the lesser known, less ideal approaches that still provide an opportunity for adding tests.  In this post I’ll enumerate some test-after workflows.  In my next post I’ll cover test-first. Bug Reporting When someone calls you up or forwards you a email with a vague description of a bug its usually standard procedure to create or verify a reproduction plan for the bug via manual testing and log that in a bug tracking system.  This can be problematic.  Often reproduction plans when written down might skip a step that seemed obvious to the tester at the time or they might be missing some crucial environment setting. Instead of data entry into a bug tracking system, try opening up the test project and adding a failing unit test to prove the bug.  The test project guarantees that all aspects of the environment are setup properly and no steps are missing.  The language in the test project is much more precise than the English that goes into a bug tracking system. This workflow can easily be extended for Enhancement Requests as well as Bug Reporting. Exploratory Testing Exploratory testing comes in when you aren’t sure how the system will behave in a new scenario.  The scenario wasn’t planned for in the initial system requirements and there isn’t an existing test for it.  By definition the system behaviour is “undefined”. So write a new unit test to define that behaviour.  Add assertions to the tests to confirm your assumptions.  The new test becomes part of the living system specification that is kept up to date with the test suite. Examples This workflow is especially good when developing APIs.  When you are finally done your production API then comes the job of writing documentation on how to consume the API.  Good documentation will also include code examples.  Don’t let these code examples merely exist in some accompanying manual; implement them in a test suite. Example tests and documentation do not have to be created after the production API is complete.  It is best to write the example code (tests) as you go just before the production code. Smoke Tests Every system has a typical use case.  This represents the basic, core functionality of the system.  If this fails after an upgrade the end users will be hosed and they will be scratching their heads as to how it could be possible that an update got released with this core functionality broken. The tests for this core functionality are referred to as “smoke tests”.  It is a good idea to have them automated and run with each build in order to avoid extreme embarrassment and angry customers. Coverage Analysis Code coverage analysis is a tool that reports how much of the production code base is exercised by the test suite.  In Visual Studio this can be found under the Test main menu item. The tool will report a total number for the code coverage, which can be anywhere between 0 and 100%.  Coverage Analysis shouldn’t be used strictly for numbers reporting.  Companies shouldn’t set minimum coverage targets that mandate that all projects must have at least 80% or 100% test coverage.  These arbitrary requirements just invite gaming of the coverage analysis, which makes the numbers useless. The analysis tool will break down the coverage by the various classes and methods in projects.  Instead of focusing on the total number, drill down into this view and see which classes have high or low coverage.  It you are surprised by a low number on a class this is an opportunity to add tests. When drilling through the classes there will be generally two types of reaction to a surprising low test coverage number.  The first reaction type is a recognition that there is low hanging fruit to be picked.  There may be some classes or methods that aren’t being tested, which could easy be.  The other reaction type is “OMG”.  This were you find a critical piece of code that isn’t under test.  In both cases, go and add the missing tests. Test Refactoring The general theme of this post up to this point has been how to add more and more tests to a test suite.  I’ll step back from that a bit and remind that every line of code is a liability.  Each line of code has to be read and maintained, which costs money.  This is true regardless whether the code is production code or test code. Remember that the primary goal of the test suite is that it be easy to read so that people can easily determine the specifications of the system.  Make sure that adding more and more tests doesn’t interfere with this primary goal. Perform code reviews on the test suite as often as on production code.  Hold the test code up to the same high readability standards as the production code.  If the tests are hard to read then change them.  Look to remove duplication.  Duplicate setup code between two or more test methods that can be moved to a shared function.  Entire test methods can be removed if it is found that the scenario it tests is covered by other tests.  Its OK to delete a test that isn’t pulling its own weight anymore. Remember to only start refactoring when all the test are green.  Don’t refactor the tests and the production code at the same time.  An automated test suite can be thought of as a double entry book keeping system.  The unchanging, passing production code serves as the tests for the test suite while refactoring the tests. As with all refactoring, it is best to fit this into your regular work rather than asking for time later to get it done.  Fit this into the standard red-green-refactor cycle.  The refactor step no only applies to production code but also the tests, but not at the same time.  Perhaps the cycle should be called red-green-refactor production-refactor tests (not quite as catchy).   That about covers most of the test-after workflows I can think of.  In my next post I’ll get into test-first workflows.

    Read the article

  • Oracle's Global Single Schema

    - by david.butler(at)oracle.com
    Maximizing business process efficiencies in a heterogeneous environment is very difficult. The difficulty stems from the fact that the various applications across the Information Technology (IT) landscape employ different integration standards, different message passing strategies, and different workflow engines. Vendors such as Oracle and others are delivering tools to help IT organizations manage the complexities introduced by these differences. But the one remaining intractable problem impacting efficient operations is the fact that these applications have different definitions for the same business data. Business data is your business information codified for computer programs to use. A good data model will represent the way your organization does business. The computer applications your organization deploys to improve operational efficiency are built to operate on the business data organized into this schema.  If the schema does not represent how you do business, the applications on that schema cannot provide the features you need to achieve the desired efficiencies. Business processes span these applications. Data problems break these processes rendering them far less efficient than they need to be to achieve organization goals. Thus, the expected return on the investment in these applications is never realized. The success of all business processes depends on the availability of accurate master data.  Clearly, the solution to this problem is to consolidate all the master data an organization uses to run its business. Then clean it up, augment it, govern it, and connect it back to the applications that need it. Until now, this obvious solution has been difficult to achieve because no one had defined a data model sufficiently broad, deep and flexible enough to support transaction processing on all key business entities and serve as a master superset to all other operational data models deployed in heterogeneous IT environments. Today, the situation has changed. Oracle has created an operational data model (aka schema) that can support accurate and consistent master data across heterogeneous IT systems. This is foundational for providing a way to consolidate and integrate master data without having to replace investments in existing applications. This Global Single Schema (GSS) represents a revolutionary breakthrough that allows for true master data consolidation. Oracle has deep knowledge of applications dating back to the early 1990s.  It developed applications in the areas of Supply Chain Management (SCM), Product Lifecycle Management (PLM), Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), Human Capital Management (HCM), Financials and Manufacturing. In addition, Oracle applications were delivered for key industries such as Communications, Financial Services, Retail, Public Sector, High Tech Manufacturing (HTM) and more. Expertise in all these areas drove requirements for GSS. The following figure illustrates Oracle's unique position that enabled the creation of the Global Single Schema. GSS Requirements Gathering GSS defines all the key business entities and attributes including Customers, Contacts, Suppliers, Accounts, Products, Services, Materials, Employees, Installed Base, Sites, Assets, and Inventory to name just a few. In addition, Oracle delivers GSS pre-integrated with a wide variety of operational applications.  Business Process Automation EBusiness is about maximizing operational efficiency. At the highest level, these 'operations' span all that you do as an organization.  The following figure illustrates some of these high-level business processes. Enterprise Business Processes Supplies are procured. Assets are maintained. Materials are stored. Inventory is accumulated. Products and Services are engineered, produced and sold. Customers are serviced. And across this entire spectrum, Employees do the procuring, supporting, engineering, producing, selling and servicing. Not shown, but not to be overlooked, are the accounting and the financial processes associated with all this procuring, manufacturing, and selling activity. Supporting all these applications is the master data. When this data is fragmented and inconsistent, the business processes fail and inefficiencies multiply. But imagine having all the data under these operational business processes in one place. ·            The same accurate and timely customer data will be provided to all your operational applications from the call center to the point of sale. ·            The same accurate and timely supplier data will be provided to all your operational applications from supply chain planning to procurement. ·            The same accurate and timely product information will be available to all your operational applications from demand chain planning to marketing. You would have a single version of the truth about your assets, financial information, customers, suppliers, employees, products and services to support your business automation processes as they flow across your business applications. All company and partner personnel will access the same exact data entity across all your channels and across all your lines of business. Oracle's Global Single Schema enables this vision of a single version of the truth across the heterogeneous operational applications supporting the entire enterprise. Global Single Schema Oracle's Global Single Schema organizes hundreds of thousands of attributes into 165 major schema objects supporting over 180 business application modules. It is designed for international operations, and extensibility.  The schema is delivered with a full set of public Application Programming Interfaces (APIs) and an Integration Repository with modern Service Oriented Architecture interfaces to make data available as a services (DaaS) to business processes and enable operations in heterogeneous IT environments. ·         Key tables can be extended with unlimited numbers of additional attributes and attribute groups for maximum flexibility.  o    This enables model extensions that reflect business entities unique to your organization's operations. ·         The schema is multi-organization enabled so data manipulation can be controlled along organizational boundaries. ·         It uses variable byte Unicode to support over 31 languages. ·         The schema encodes flexible date and flexible address formats for easy localizations. No matter how complex your business is, Oracle's Global Single Schema can hold your business objects and support your global operations. Oracle's Global Single Schema identifies and defines the business objects an enterprise needs within the context of its business operations. The interrelationships between the business objects are also contained within the GSS data model. Their presence expresses fundamental business rules for the interaction between business entities. The following figure illustrates some of these connections.   Interconnected Business Entities Interconnecte business processes require interconnected business data. No other MDM vendor has this capability. Everyone else has either one entity they can master or separate disconnected models for various business entities. Higher level integrations are made available, but that is a weak architectural alternative to data level integration in this critically important aspect of Master Data Management.    

    Read the article

  • Can Microsoft Build Appliances?

    - by andrewbrust
    Billy Hollis, my Visual Studio Live! colleague and fellow Microsoft Regional Director said recently, and I am paraphrasing, that the computing world, especially on the consumer side, has shifted from one of building hardware and software that makes things possible to do, to building products and technologies that make things easy to do.  Billy crystalized things perfectly, as he often does. In this new world of “easy to do,” Apple has done very well and Microsoft has struggled.  In the old world, customers wanted a Swiss Army Knife, with the most gimmicks and gadgets possible.  In the new world, people want elegantly cutlery.  They may want cake cutters and utility knives too, but they don’t want one device that works for all three tasks.  People don’t want tools, they want utensils.  People don’t want machines.  They want appliances. Microsoft Appliances: They Do Exist Microsoft has built a few appliance-like devices.  I would say XBox 360 is an appliance,  It’s versatile, mind you, but it’s the kind of thing you plug in, turn on and use, as opposed to set-up, tune, and open up to upgrade the internals.  Windows Phone 7 is an appliance too.  It’s a true smartphone, unlike Windows Mobile which was a handheld computer with a radio stack.  Zune is an appliance too, and a nice one.  It hasn’t attained much traction in the market, but that’s probably because the seminal consumer computing appliance -- the iPod – got there so much more quickly. In the embedded world, Mediaroom, Microsoft’s set-top product for the cable industry (used by AT&T U-Verse and others) is an appliance.  So is Microsoft’s Sync technology, used in Ford automobiles.  Even on the enterprise side, Microsoft has an appliance: SQL Server Parallel Data Warehouse Edition (PDW) combines Microsoft software with select OEMs’ server, networking and storage hardware.  You buy the appliance units from the OEMs, plug them in, connect them and go. I would even say that Bing is an appliance.  Not in the hardware sense, mind you.  But from the software perspective, it’s a single-purpose product that you visit or run, use and then move on.  You don’t have to install it (except the iOS and Android native apps where it’s pretty straightforward), you don’t have to customize it, you don’t have to program it.  Basically, you just use it. Microsoft Appliances that Should Exist But Microsoft builds a bunch of things that are not appliances.  Media Center is not an appliance, and it most certainly should be.  Instead, it’s an app that runs on Windows 7.  It runs full-screen and you can use this configuration to conceal the fact that Windows is under it, but eventually something will cause you to abandon that masquerade (like Patch Tuesday). The next version of Windows Home Server won’t, in my opinion, be an appliance either.  Now that the Drive Extender technology is gone, and users can’t just add and remove drives into and from a single storage pool, the product is much more like a IT server and less like an appliance-premised one.  Much has been written about this decision by Microsoft.  I’ll just sum it up in one word: pity. Microsoft doesn’t have anything remotely appliance-like in the tablet category, either.  Until it does, it likely won’t have much market share in that space either.  And of course, the bulk of Microsoft’s product catalog on the business side is geared to enterprise machines and not personal appliances. Appliance DNA: They Gotta Have It. The consumerization of IT is real, because businesspeople are consumers too.  They appreciate the fit and finish of appliances at home, and they increasingly feel entitled to have it at work too.  Secure and reliable push email in a smartphone is necessary, but it isn’t enough.  People want great apps and a pleasurable user experience too.  The full Microsoft Office product is needed at work, but a PC with a keyboard and mouse, or maybe a touch screen that uses a stylus (or requires really small fingers), to run Office isn’t enough either.  People want a flawless touch experience available for the times they want to read and take quick notes.  Until Microsoft realizes this fully and internalizes it, it will suffer defeats in the consumer market and even setbacks in the business market.  Think about how slow the Office upgrade cycle is…now imagine if the next version of Office had a first-class alternate touch UI and consider the possible acceleration in adoption rates. Can Microsoft make the appliance switch?  Can the appliance mentality become pervasive at the company?  Can Microsoft hasten its release cycles dramatically and shed the “some assembly required” paradigm upon which many of its products are based?  Let’s face it, the chances that Microsoft won’t make this transition are significant. But there are also encouraging signs, and they should not be ignored.  The appliances we have already discussed, especially Xbox, Zune and Windows Phone 7, are the most obvious in this regard.  The fact that SQL Server has an appliance SKU now is a more subtle but perhaps also more significant outcome, because that product sits so smack in the middle of Microsoft’s enterprise stack.  Bing is encouraging too, especially given its integrated travel, maps and augmented reality capabilities.  As Bing gains market share, Microsoft has tangible proof that it can transform and win, even when everyone outside the company, and many within it, would bet otherwise. That Great Big Appliance in the Sky Perhaps the most promising (and evolving) proof points toward the appliance mentality, though, are Microsoft’s cloud offerings -- Azure and BPOS/Office 365.  While the cloud does not represent a physical appliance (quite the opposite in fact) its ability to make acquisition, deployment and use of technology simple for the user is absolutely an embodiment of the appliance mentality and spirit.  Azure is primarily a platform as a service offering; it doesn’t just provide infrastructure.  SQL Azure does likewise for databases.  And Office 365 does likewise for SharePoint, Exchange and Lync. You don’t administer, tune and manage servers; instead, you create databases or site collections or mailboxes and start using them. Upgrades come automatically, and it seems like releases will come more frequently.  Fault tolerance and content distribution is just there.  No muss.  No fuss.  You use these services; you don’t have to set them up and think about them.  That’s how appliances work.  To me, these signs point out that Microsoft has the full capability of transforming itself.  But there’s a lot of work ahead.  Microsoft may say they’re “all in” on the cloud, but the majority of the company is still oriented around its old products and models.  There needs to be a wholesale cultural transformation in Redmond.  It can happen, but product management, program management, the field and executive ranks must unify in the effort. So must partners, and even customers.  New leaders must rise up and Microsoft must be able to see itself as a winner.  If Microsoft does this, it could lock-in decades of new success, and be a standard business school case study for doing so.  If not, the company will have missed an opportunity, and may see its undoing.

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages

    - by DigiMortal
    If you are using AppFabric Access Control Services to authenticate users when they log in to your community site using Live ID, Google or some other popular identity provider, you need more than AuthorizeAttribute to make sure that users can access the content that is there for authenticated users only. In this posting I will show you hot to extend the AuthorizeAttribute so users must also have user profile filled. Semi-authorized users When user is authenticated through external identity provider then not all identity providers give us user name or other information we ask users when they join with our site. What all identity providers have in common is unique ID that helps you identify the user. Example. Users authenticated through Windows Live ID by AppFabric ACS have no name specified. Google’s identity provider is able to provide you with user name and e-mail address if user agrees to publish this information to you. They both give you unique ID of user when user is successfully authenticated in their service. There is logical shift between ASP.NET and my site when considering user as authorized. For ASP.NET MVC user is authorized when user has identity. For my site user is authorized when user has profile and row in my users table. Having profile means that user has unique username in my system and he or she is always identified by this username by other users. My solution is simple: I created my own action filter attribute that makes sure if user has profile to access given method and if user has no profile then browser is redirected to join page. Illustrating the problem Usually we restrict access to page using AuthorizeAttribute. Code is something like this. [Authorize] public ActionResult Details(string id) {     var profile = _userRepository.GetUserByUserName(id);     return View(profile); } If this page is only for site users and we have user profiles then all users – the ones that have profile and all the others that are just authenticated – can access the information. It is okay because all these users have successfully logged in in some service that is supported by AppFabric ACS. In my site the users with no profile are in grey spot. They are on half way to be users because they have no username and profile on my site yet. So looking at the image above again we need something that adds profile existence condition to user-only content. [ProfileRequired] public ActionResult Details(string id) {     var profile = _userRepository.GetUserByUserName(id);     return View(profile); } Now, this attribute will solve our problem as soon as we implement it. ProfileRequiredAttribute: Profiles are required to be fully authorized Here is my implementation of ProfileRequiredAttribute. It is pretty new and right now it is more like working draft but you can already play with it. public class ProfileRequiredAttribute : AuthorizeAttribute {     private readonly string _redirectUrl;       public ProfileRequiredAttribute()     {         _redirectUrl = ConfigurationManager.AppSettings["JoinUrl"];         if (string.IsNullOrWhiteSpace(_redirectUrl))             _redirectUrl = "~/";     }              public override void OnAuthorization(AuthorizationContext filterContext)     {         base.OnAuthorization(filterContext);           var httpContext = filterContext.HttpContext;         var identity = httpContext.User.Identity;           if (!identity.IsAuthenticated || identity.GetProfile() == null)             if(filterContext.Result == null)                 httpContext.Response.Redirect(_redirectUrl);          } } All methods with this attribute work as follows: if user is not authenticated then he or she is redirected to AppFabric ACS identity provider selection page, if user is authenticated but has no profile then user is by default redirected to main page of site but if you have application setting with name JoinUrl then user is redirected to this URL. First case is handled by AuthorizeAttribute and the second one is handled by custom logic in ProfileRequiredAttribute class. GetProfile() extension method To get user profile using less code in places where profiles are needed I wrote GetProfile() extension method for IIdentity interface. There are some more extension methods that read out user and identity provider identifier from claims and based on this information user profile is read from database. If you take this code with copy and paste I am sure it doesn’t work for you but you get the idea. public static User GetProfile(this IIdentity identity) {     if (identity == null)         return null;       var context = HttpContext.Current;     if (context.Items["UserProfile"] != null)         return context.Items["UserProfile"] as User;       var provider = identity.GetIdentityProvider();     var nameId = identity.GetNameIdentifier();       var rep = ObjectFactory.GetInstance<IUserRepository>();     var profile = rep.GetUserByProviderAndNameId(provider, nameId);       context.Items["UserProfile"] = profile;       return profile; } To avoid round trips to database I cache user profile to current request because the chance that profile gets changed meanwhile is very minimal. The other reason is maybe more tricky – profile objects are coming from Entity Framework context and context has also HTTP request as lifecycle. Conclusion This posting gave you some ideas how to finish user profiles stuff when you use AppFabric ACS as external authentication provider. Although there was little shift between us and ASP.NET MVC with interpretation of “authorized” we were easily able to solve the problem by extending AuthorizeAttribute to get all our requirements fulfilled. We also write extension method for IIdentity that returns as user profile based on username and caches the profile in HTTP request scope.

    Read the article

  • SQL SERVER – SSIS Look Up Component – Cache Mode – Notes from the Field #028

    - by Pinal Dave
    [Notes from Pinal]: Lots of people think that SSIS is all about arranging various operations together in one logical flow. Well, the understanding is absolutely correct, but the implementation of the same is not as easy as it seems. Similarly most of the people think lookup component is just component which does look up for additional information and does not pay much attention to it. Due to the same reason they do not pay attention to the same and eventually get very bad performance. Linchpin People are database coaches and wellness experts for a data driven world. In this 28th episode of the Notes from the Fields series database expert Tim Mitchell (partner at Linchpin People) shares very interesting conversation related to how to write a good lookup component with Cache Mode. In SQL Server Integration Services, the lookup component is one of the most frequently used tools for data validation and completion.  The lookup component is provided as a means to virtually join one set of data to another to validate and/or retrieve missing values.  Properly configured, it is reliable and reasonably fast. Among the many settings available on the lookup component, one of the most critical is the cache mode.  This selection will determine whether and how the distinct lookup values are cached during package execution.  It is critical to know how cache modes affect the result of the lookup and the performance of the package, as choosing the wrong setting can lead to poorly performing packages, and in some cases, incorrect results. Full Cache The full cache mode setting is the default cache mode selection in the SSIS lookup transformation.  Like the name implies, full cache mode will cause the lookup transformation to retrieve and store in SSIS cache the entire set of data from the specified lookup location.  As a result, the data flow in which the lookup transformation resides will not start processing any data buffers until all of the rows from the lookup query have been cached in SSIS. The most commonly used cache mode is the full cache setting, and for good reason.  The full cache setting has the most practical applications, and should be considered the go-to cache setting when dealing with an untested set of data. With a moderately sized set of reference data, a lookup transformation using full cache mode usually performs well.  Full cache mode does not require multiple round trips to the database, since the entire reference result set is cached prior to data flow execution. There are a few potential gotchas to be aware of when using full cache mode.  First, you can see some performance issues – memory pressure in particular – when using full cache mode against large sets of reference data.  If the table you use for the lookup is very large (either deep or wide, or perhaps both), there’s going to be a performance cost associated with retrieving and caching all of that data.  Also, keep in mind that when doing a lookup on character data, full cache mode will always do a case-sensitive (and in some cases, space-sensitive) string comparison even if your database is set to a case-insensitive collation.  This is because the in-memory lookup uses a .NET string comparison (which is case- and space-sensitive) as opposed to a database string comparison (which may be case sensitive, depending on collation).  There’s a relatively easy workaround in which you can use the UPPER() or LOWER() function in the pipeline data and the reference data to ensure that case differences do not impact the success of your lookup operation.  Again, neither of these present a reason to avoid full cache mode, but should be used to determine whether full cache mode should be used in a given situation. Full cache mode is ideally useful when one or all of the following conditions exist: The size of the reference data set is small to moderately sized The size of the pipeline data set (the data you are comparing to the lookup table) is large, is unknown at design time, or is unpredictable Each distinct key value(s) in the pipeline data set is expected to be found multiple times in that set of data Partial Cache When using the partial cache setting, lookup values will still be cached, but only as each distinct value is encountered in the data flow.  Initially, each distinct value will be retrieved individually from the specified source, and then cached.  To be clear, this is a row-by-row lookup for each distinct key value(s). This is a less frequently used cache setting because it addresses a narrower set of scenarios.  Because each distinct key value(s) combination requires a relational round trip to the lookup source, performance can be an issue, especially with a large pipeline data set to be compared to the lookup data set.  If you have, for example, a million records from your pipeline data source, you have the potential for doing a million lookup queries against your lookup data source (depending on the number of distinct values in the key column(s)).  Therefore, one has to be keenly aware of the expected row count and value distribution of the pipeline data to safely use partial cache mode. Using partial cache mode is ideally suited for the conditions below: The size of the data in the pipeline (more specifically, the number of distinct key column) is relatively small The size of the lookup data is too large to effectively store in cache The lookup source is well indexed to allow for fast retrieval of row-by-row values No Cache As you might guess, selecting no cache mode will not add any values to the lookup cache in SSIS.  As a result, every single row in the pipeline data set will require a query against the lookup source.  Since no data is cached, it is possible to save a small amount of overhead in SSIS memory in cases where key values are not reused.  In the real world, I don’t see a lot of use of the no cache setting, but I can imagine some edge cases where it might be useful. As such, it’s critical to know your data before choosing this option.  Obviously, performance will be an issue with anything other than small sets of data, as the no cache setting requires row-by-row processing of all of the data in the pipeline. I would recommend considering the no cache mode only when all of the below conditions are true: The reference data set is too large to reasonably be loaded into SSIS memory The pipeline data set is small and is not expected to grow There are expected to be very few or no duplicates of the key values(s) in the pipeline data set (i.e., there would be no benefit from caching these values) Conclusion The cache mode, an often-overlooked setting on the SSIS lookup component, represents an important design decision in your SSIS data flow.  Choosing the right lookup cache mode directly impacts the fidelity of your results and the performance of package execution.  Know how this selection impacts your ETL loads, and you’ll end up with more reliable, faster packages. If you want me to take a look at your server and its settings, or if your server is facing any issue we can Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSIS

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • Integrating Oracle Hyperion Smart View Data Queries with MS Word and Power Point

    - by Andreea Vaduva
    Untitled Document table { border: thin solid; } Most Smart View users probably appreciate that they can use just one add-in to access data from the different sources they might work with, like Oracle Essbase, Oracle Hyperion Planning, Oracle Hyperion Financial Management and others. But not all of them are aware of the options to integrate data analyses not only in Excel, but also in MS Word or Power Point. While in the past, copying and pasting single numbers or tables from a recent analysis in Excel made the pasted content a static snapshot, copying so called Data Points now creates dynamic, updateable references to the data source. It also provides additional nice features, which can make life easier and less stressful for Smart View users. So, how does this option work: after building an ad-hoc analysis with Smart View as usual in an Excel worksheet, any area including data cells/numbers from the database can be highlighted in order to copy data points - even single data cells only.   TIP It is not necessary to highlight and copy the row or column descriptions   Next from the Smart View ribbon select Copy Data Point. Then transfer to the Word or Power Point document into which the selected content should be copied. Note that in these Office programs you will find a menu item Smart View;from it select the Paste Data Point icon. The copied details from the Excel report will be pasted, but showing #NEED_REFRESH in the data cells instead of the original numbers. =After clicking the Refresh icon on the Smart View menu the data will be retrieved and displayed. (Maybe at that moment a login window pops up and you need to provide your credentials.) It works in the same way if you just copy one single number without any row or column descriptions, for example in order to incorporate it into a continuous text: Before refresh: After refresh: From now on for any subsequent updates of the data shown in your documents you only need to refresh data by clicking the Refresh button on the Smart View menu, without copying and pasting the context or content again. As you might realize, trying out this feature on your own, there won’t be any Point of View shown in the Office document. Also you have seen in the example, where only a single data cell was copied, that there aren’t any member names or row/column descriptions copied, which are usually required in an ad-hoc report in order to exactly define where data comes from or how data is queried from the source. Well, these definitions are not visible, but they are transferred to the Word or Power Point document as well. They are stored in the background for each individual data cell copied and can be made visible by double-clicking the data cell as shown in the following screen shot (but which is taken from another context).   So for each cell/number the complete connection information is stored along with the exact member/cell intersection from the database. And that’s not all: you have the chance now to exchange the members originally selected in the Point of View (POV) in the Excel report. Remember, at that time we had the following selection:   By selecting the Manage POV option from the Smart View meny in Word or Power Point…   … the following POV Manager – Queries window opens:   You can now change your selection for each dimension from the original POV by either double-clicking the dimension member in the lower right box under POV: or by selecting the Member Selector icon on the top right hand side of the window. After confirming your changes you need to refresh your document again. Be aware, that this will update all (!) numbers taken from one and the same original Excel sheet, even if they appear in different locations in your Office document, reflecting your recent changes in the POV. TIP Build your original report already in a way that dimensions you might want to change from within Word or Power Point are placed in the POV. And there is another really nice feature I wouldn’t like to miss mentioning: Using Dynamic Data Points in the way described above, you will never miss or need to search again for your original Excel sheet from which values were taken and copied as data points into an Office document. Because from even only one single data cell Smart View is able to recreate the entire original report content with just a few clicks: Select one of the numbers from within your Word or Power Point document by double-clicking.   Then select the Visualize in Excel option from the Smart View menu. Excel will open and Smart View will rebuild the entire original report, including POV settings, and retrieve all data from the most recent actual state of the database. (It might be necessary to provide your credentials before data is displayed.) However, in order to make this work, an active online connection to your databases on the server is necessary and at least read access to the retrieved data. But apart from this, your newly built Excel report is fully functional for ad-hoc analysis and can be used in the common way for drilling, pivoting and all the other known functions and features. So far about embedding Dynamic Data Points into Office documents and linking them back into Excel worksheets. You can apply this in the described way with ad-hoc analyses directly on Essbase databases or using Hyperion Planning and Hyperion Financial Management ad-hoc web forms. If you are also interested in other new features and smart enhancements in Essbase or Hyperion Planning stay tuned for coming articles or check our training courses and web presentations. You can find general information about offerings for the Essbase and Planning curriculum or other Oracle-Hyperion products here (please make sure to select your country/region at the top of this page) or in the OU Learning paths section , where Planning, Essbase and other Hyperion products can be found under the Fusion Middleware heading (again, please select the right country/region). Or drop me a note directly: [email protected] . About the Author: Bernhard Kinkel started working for Hyperion Solutions as a Presales Consultant and Consultant in 1998 and moved to Hyperion Education Services in 1999. He joined Oracle University in 2007 where he is a Principal Education Consultant. Based on these many years of working with Hyperion products he has detailed product knowledge across several versions. He delivers both classroom and live virtual courses. His areas of expertise are Oracle/Hyperion Essbase, Oracle Hyperion Planning and Hyperion Web Analysis.  

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • ANTS Memory Profiler 7.0

    - by James Michael Hare
    I had always been a fan of ANTS products (Reflector is absolutely invaluable, and their performance profiler is great as well – very easy to use!), so I was curious to see what the ANTS Memory Profiler could show me. Background While a performance profiler will track how much time is typically spent in each unit of code, a memory profiler gives you much more detail on how and where your memory is being consumed and released in a program. As an example, I’d been working on a data access layer at work to call a market data web service.  This web service would take a list of symbols to quote and would return back the quote data.  To help consolidate the thousands of web requests per second we get and reduce load on the web services, we implemented a 5-second cache of quote data.  Not quite long enough to where customers will typically notice a quote go “stale”, but just long enough to be able to collapse multiple quote requests for the same symbol in a short period of time. A 5-second cache may not sound like much, but it actually pays off by saving us roughly 42% of our web service calls, while still providing relatively up-to-date information.  The question is whether or not the extra memory involved in maintaining the cache was worth it, so I decided to fire up the ANTS Memory Profiler and take a look at memory usage. First Impressions The main thing I’ve always loved about the ANTS tools is their ease of use.  Pretty much everything is right there in front of you in a way that makes it easy for you to find what you need with little digging required.  I’ve worked with other, older profilers before (that shall remain nameless other than to hint it was created by a very large chip maker) where it was a mind boggling experience to figure out how to do simple tasks. Not so with AMP.  The opening dialog is very straightforward.  You can choose from here whether to debug an executable, a web application (either in IIS or from VS’s web development server), windows services, etc. So I chose a .NET Executable and navigated to the build location of my test harness.  Then began profiling. At this point while the application is running, you can see a chart of the memory as it ebbs and wanes with allocations and collections.  At any given point in time, you can take snapshots (to compare states) zoom in, or choose to stop at any time.  Snapshots Taking a snapshot also gives you a breakdown of the managed memory heaps for each generation so you get an idea how many objects are staying around for extended periods of time (as an object lives and survives collections, it gets promoted into higher generations where collection becomes less frequent). Generating a snapshot brings up an analysis view with very handy graphs that show your generation sizes.  Almost all my memory is in Generation 1 in the managed memory component of the first graph, which is good news to me, because Gen 2 collections are much rarer.  I once3 made the mistake once of caching data for 30 minutes and found it didn’t get collected very quick after I released my reference because it had been promoted to Gen 2 – doh! Analysis It looks like (from the second pie chart) that the majority of the allocations were in the string class.  This also is expected for me because the majority of the memory allocated is in the web service responses, so it doesn’t seem the entities I’m adapting to (to prevent being too tightly coupled to the web service proxy classes, which can change easily out from under me) aren’t taking a significant portion of memory. I also appreciate that they have clear summary text in key places such as “No issues with large object heap fragmentation were detected”.  For novice users, this type of summary information can be critical to getting them to use a tool and develop a good working knowledge of it. There is also a handy link at the bottom for “What to look for on the summary” which loads a web page of help on key points to look for. Clicking over to the session overview, it’s easy to compare the samples at each snapshot to see how your memory is growing, shrinking, or staying relatively the same.  Looking at my snapshots, I’m pretty happy with the fact that memory allocation and heap size seems to be fairly stable and in control: Once again, you can check on the large object heap, generation one heap, and generation two heap across each snapshot to spot trends. Back on the analysis tab, we can go to the [Class List] button to get an idea what classes are making up the majority of our memory usage.  As was little surprise to me, System.String was the clear majority of my allocations, though I found it surprising that the System.Reflection.RuntimeMehtodInfo came in second.  I was curious about this, so I selected it and went into the [Instance Categorizer].  This view let me see where these instances to RuntimeMehtodInfo were coming from. So I scrolled back through the graph, and discovered that these were being held by the System.ServiceModel.ChannelFactoryRefCache and I was satisfied this was just an artifact of my WCF proxy. I also like that down at the bottom of the Instance Categorizer it gives you a series of filters and offers to guide you on which filter to use based on the problem you are trying to find.  For example, if I suspected a memory leak, I might try to filter for survivors in growing classes.  This means that for instances of a class that are growing in memory (more are being created than cleaned up), which ones are survivors (not collected) from garbage collection.  This might allow me to drill down and find places where I’m holding onto references by mistake and not freeing them! Finally, if you want to really see all your instances and who is holding onto them (preventing collection), you can go to the “Instance Retention Graph” which creates a graph showing what references are being held in memory and who is holding onto them. Visual Studio Integration Of course, VS has its own profiler built in – and for a free bundled profiler it is quite capable – but AMP gives a much cleaner and easier-to-use experience, and when you install it you also get the option of letting it integrate directly into VS. So once you go back into VS after installation, you’ll notice an ANTS menu which lets you launch the ANTS profiler directly from Visual Studio.   Clicking on one of these options fires up the project in the profiler immediately, allowing you to get right in.  It doesn’t integrate with the Visual Studio windows themselves (like the VS profiler does), but still the plethora of information it provides and the clear and concise manner in which it presents it makes it well worth it. Summary If you like the ANTS series of tools, you shouldn’t be disappointed with the ANTS Memory Profiler.  It was so easy to use that I was able to jump in with very little product knowledge and get the information I was looking it for. I’ve used other profilers before that came with 3-inch thick tomes that you had to read in order to get anywhere with the tool, and this one is not like that at all.  It’s built for your everyday developer to get in and find their problems quickly, and I like that! Tweet Technorati Tags: Influencers,ANTS,Memory,Profiler

    Read the article

  • ASP.NET WebAPI Security 5: JavaScript Clients

    - by Your DisplayName here!
    All samples I showed in my last post were in C#. Christian contributed another client sample in some strange language that is supposed to work well in browsers ;) JavaScript client scenarios There are two fundamental scenarios when it comes to JavaScript clients. The most common is probably that the JS code is originating from the same web application that also contains the web APIs. Think a web page that does some AJAX style callbacks to an API that belongs to that web app – Validation, data access etc. come to mind. Single page apps often fall in that category. The good news here is that this scenario just works. The typical course of events is that the user first logs on to the web application – which will result in an authentication cookie of some sort. That cookie will get round-tripped with your AJAX calls and ASP.NET does its magic to establish a client identity context. Since WebAPI inherits the security context from its (web) host, the client identity is also available here. The other fundamental scenario is JavaScript code *not* running in the context of the WebAPI hosting application. This is more or less just like a normal desktop client – either running in the browser, or if you think of Windows 8 Metro style apps as “real” desktop apps. In that scenario we do exactly the same as the samples did in my last post – obtain a token, then use it to call the service. Obtaining a token from IdentityServer’s resource owner credential OAuth2 endpoint could look like this: thinktectureIdentityModel.BrokeredAuthentication = function (stsEndpointAddress, scope) {     this.stsEndpointAddress = stsEndpointAddress;     this.scope = scope; }; thinktectureIdentityModel.BrokeredAuthentication.prototype = function () {     getIdpToken = function (un, pw, callback) {         $.ajax({             type: 'POST',             cache: false,             url: this.stsEndpointAddress,             data: { grant_type: "password", username: un, password: pw, scope: this.scope },             success: function (result) {                 callback(result.access_token);             },             error: function (error) {                 if (error.status == 401) {                     alert('Unauthorized');                 }                 else {                     alert('Error calling STS: ' + error.responseText);                 }             }         });     };     createAuthenticationHeader = function (token) {         var tok = 'IdSrv ' + token;         return tok;     };     return {         getIdpToken: getIdpToken,         createAuthenticationHeader: createAuthenticationHeader     }; } (); Calling the service with the requested token could look like this: function getIdentityClaimsFromService() {     authHeader = authN.createAuthenticationHeader(token);     $.ajax({         type: 'GET',         cache: false,         url: serviceEndpoint,         beforeSend: function (req) {             req.setRequestHeader('Authorization', authHeader);         },         success: function (result) {              $.each(result.Claims, function (key, val) {                 $('#claims').append($('<li>' + val.Value + '</li>'))             });         },         error: function (error) {             alert('Error: ' + error.responseText);         }     }); I updated the github repository, you can can play around with the code yourself.

    Read the article

  • Guide to MySQL & NoSQL, Webinar Q&A

    - by Mat Keep
    0 0 1 959 5469 Homework 45 12 6416 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Yesterday we ran a webinar discussing the demands of next generation web services and how blending the best of relational and NoSQL technologies enables developers and architects to deliver the agility, performance and availability needed to be successful. Attendees posted a number of great questions to the MySQL developers, serving to provide additional insights into areas like auto-sharding and cross-shard JOINs, replication, performance, client libraries, etc. So I thought it would be useful to post those below, for the benefit of those unable to attend the webinar. Before getting to the Q&A, there are a couple of other resources that maybe useful to those looking at NoSQL capabilities within MySQL: - On-Demand webinar (coming soon!) - Slides used during the webinar - Guide to MySQL and NoSQL whitepaper  - MySQL Cluster demo, including NoSQL interfaces, auto-sharing, high availability, etc.  So here is the Q&A from the event  Q. Where does MySQL Cluster fit in to the CAP theorem? A. MySQL Cluster is flexible. A single Cluster will prefer consistency over availability in the presence of network partitions. A pair of Clusters can be configured to prefer availability over consistency. A full explanation can be found on the MySQL Cluster & CAP Theorem blog post.  Q. Can you configure the number of replicas? (the slide used a replication factor of 1) Yes. A cluster is configured by an .ini file. The option NoOfReplicas sets the number of originals and replicas: 1 = no data redundancy, 2 = one copy etc. Usually there's no benefit in setting it >2. Q. Interestingly most (if not all) of the NoSQL databases recommend having 3 copies of data (the replication factor).    Yes, with configurable quorum based Reads and writes. MySQL Cluster does not need a quorum of replicas online to provide service. Systems that require a quorum need > 2 replicas to be able to tolerate a single failure. Additionally, many NoSQL systems take liberal inspiration from the original GFS paper which described a 3 replica configuration. MySQL Cluster avoids the need for a quorum by using a lightweight arbitrator. You can configure more than 2 replicas, but this is a tradeoff between incrementally improved availability, and linearly increased cost. Q. Can you have cross node group JOINS? Wouldn't that run into the risk of flooding the network? MySQL Cluster 7.2 supports cross nodegroup joins. A full cross-join can require a large amount of data transfer, which may bottleneck on network bandwidth. However, for more selective joins, typically seen with OLTP and light analytic applications, cross node-group joins give a great performance boost and network bandwidth saving over having the MySQL Server perform the join. Q. Are the details of the benchmark available anywhere? According to my calculations it results in approx. 350k ops/sec per processor which is the largest number I've seen lately The details are linked from Mikael Ronstrom's blog The benchmark uses a benchmarking tool we call flexAsynch which runs parallel asynchronous transactions. It involved 100 byte reads, of 25 columns each. Regarding the per-processor ops/s, MySQL Cluster is particularly efficient in terms of throughput/node. It uses lock-free minimal copy message passing internally, and maximizes ID cache reuse. Note also that these are in-memory tables, there is no need to read anything from disk. Q. Is access control (like table) planned to be supported for NoSQL access mode? Currently we have not seen much need for full SQL-like access control (which has always been overkill for web apps and telco apps). So we have no plans, though especially with memcached it is certainly possible to turn-on connection-level access control. But specifically table level controls are not planned. Q. How is the performance of memcached APi with MySQL against memcached+MySQL or any other Object Cache like Ecache with MySQL DB? With the memcache API we generally see a memcached response in less than 1 ms. and a small cluster with one memcached server can handle tens of thousands of operations per second. Q. Can .NET can access MemcachedAPI? Yes, just use a .Net memcache client such as the enyim or BeIT memcache libraries. Q. Is the row level locking applicable when you update a column through memcached API? An update that comes through memcached uses a row lock and then releases it immediately. Memcached operations like "INCREMENT" are actually pushed down to the data nodes. In most cases the locks are not even held long enough for a network round trip. Q. Has anyone published an example using something like PHP? I am assuming that you just use the PHP memcached extension to hook into the memcached API. Is that correct? Not that I'm aware of but absolutely you can use it with php or any of the other drivers Q. For beginner we need more examples. Take a look here for a fully worked example Q. Can I access MySQL using Cobol (Open Cobol) or C and if so where can I find the coding libraries etc? A. There is a cobol implementation that works well with MySQL, but I do not think it is Open Cobol. Also there is a MySQL C client library that is a standard part of every mysql distribution Q. Is there a place to go to find help when testing and/implementing the NoSQL access? If using Cluster then you can use the [email protected] alias or post on the MySQL Cluster forum Q. Are there any white papers on this?  Yes - there is more detail in the MySQL Guide to NoSQL whitepaper If you have further questions, please don’t hesitate to use the comments below!

    Read the article

  • HTG Explains: Should You Build Your Own PC?

    - by Chris Hoffman
    There was a time when every geek seemed to build their own PC. While the masses bought eMachines and Compaqs, geeks built their own more powerful and reliable desktop machines for cheaper. But does this still make sense? Building your own PC still offers as much flexibility in component choice as it ever did, but prebuilt computers are available at extremely competitive prices. Building your own PC will no longer save you money in most cases. The Rise of Laptops It’s impossible to look at the decline of geeks building their own PCs without considering the rise of laptops. There was a time when everyone seemed to use desktops — laptops were more expensive and significantly slower in day-to-day tasks. With the diminishing importance of computing power — nearly every modern computer has more than enough power to surf the web and use typical programs like Microsoft Office without any trouble — and the rise of laptop availability at nearly every price point, most people are buying laptops instead of desktops. And, if you’re buying a laptop, you can’t really build your own. You can’t just buy a laptop case and start plugging components into it — even if you could, you would end up with an extremely bulky device. Ultimately, to consider building your own desktop PC, you have to actually want a desktop PC. Most people are better served by laptops. Benefits to PC Building The two main reasons to build your own PC have been component choice and saving money. Building your own PC allows you to choose all the specific components you want rather than have them chosen for you. You get to choose everything, including the PC’s case and cooling system. Want a huge case with room for a fancy water-cooling system? You probably want to build your own PC. In the past, this often allowed you to save money — you could get better deals by buying the components yourself and combining them, avoiding the PC manufacturer markup. You’d often even end up with better components — you could pick up a more powerful CPU that was easier to overclock and choose more reliable components so you wouldn’t have to put up with an unstable eMachine that crashed every day. PCs you build yourself are also likely more upgradable — a prebuilt PC may have a sealed case and be constructed in such a way to discourage you from tampering with the insides, while swapping components in and out is generally easier with a computer you’ve built on your own. If you want to upgrade your CPU or replace your graphics card, it’s a definite benefit. Downsides to Building Your Own PC It’s important to remember there are downsides to building your own PC, too. For one thing, it’s just more work — sure, if you know what you’re doing, building your own PC isn’t that hard. Even for a geek, researching the best components, price-matching, waiting for them all to arrive, and building the PC just takes longer. Warranty is a more pernicious problem. If you buy a prebuilt PC and it starts malfunctioning, you can contact the computer’s manufacturer and have them deal with it. You don’t need to worry about what’s wrong. If you build your own PC and it starts malfunctioning, you have to diagnose the problem yourself. What’s malfunctioning, the motherboard, CPU, RAM, graphics card, or power supply? Each component has a separate warranty through its manufacturer, so you’ll have to determine which component is malfunctioning before you can send it off for replacement. Should You Still Build Your Own PC? Let’s say you do want a desktop and are willing to consider building your own PC. First, bear in mind that PC manufacturers are buying in bulk and getting a better deal on each component. They also have to pay much less for a Windows license than the $120 or so it would cost you to to buy your own Windows license. This is all going to wipe out the cost savings you’ll see — with everything all told, you’ll probably spend more money building your own average desktop PC than you would picking one up from Amazon or the local electronics store. If you’re an average PC user that uses your desktop for the typical things, there’s no money to be saved from building your own PC. But maybe you’re looking for something higher end. Perhaps you want a high-end gaming PC with the fastest graphics card and CPU available. Perhaps you want to pick out each individual component and choose the exact components for your gaming rig. In this case, building your own PC may be a good option. As you start to look at more expensive, high-end PCs, you may start to see a price gap — but you may not. Let’s say you wanted to blow thousands of dollars on a gaming PC. If you’re looking at spending this kind of money, it would be worth comparing the cost of individual components versus a prebuilt gaming system. Still, the actual prices may surprise you. For example, if you wanted to upgrade Dell’s $2293 Alienware Aurora to include a second NVIDIA GeForce GTX 780 graphics card, you’d pay an additional $600 on Alienware’s website. The same graphics card costs $650 on Amazon or Newegg, so you’d be spending more money building the system yourself. Why? Dell’s Alienware gets bulk discounts you can’t get — and this is Alienware, which was once regarded as selling ridiculously overpriced gaming PCs to people who wouldn’t build their own. Building your own PC still allows you to get the most freedom when choosing and combining components, but this is only valuable to a small niche of gamers and professional users — most people, even average gamers, would be fine going with a prebuilt system. If you’re an average person or even an average gamer, you’ll likely find that it’s cheaper to purchase a prebuilt PC rather than assemble your own. Even at the very high end, components may be more expensive separately than they are in a prebuilt PC. Enthusiasts who want to choose all the individual components for their dream gaming PC and want maximum flexibility may want to build their own PCs. Even then, building your own PC these days is more about flexibility and component choice than it is about saving money. In summary, you probably shouldn’t build your own PC. If you’re an enthusiast, you may want to — but only a small minority of people would actually benefit from building their own systems. Feel free to compare prices, but you may be surprised which is cheaper. Image Credit: Richard Jones on Flickr, elPadawan on Flickr, Richard Jones on Flickr     

    Read the article

  • Are Chromebooks the New Netbooks, and What Does That Mean?

    - by Chris Hoffman
    Netbooks — small, cheap, slow laptops — were once very popular. They fell out of favor — people bought them because they seemed cheap and portable, but the actual experience was lackluster. Most netbooks now sit unused. Windows netbooks have vanished from stores today, but there’s a new super-cheap laptop — the Chromebook. Chromebook sales numbers are impressive, but their usage statistics tell a different story. Are Chromebooks just the new netbook? The Problem With Netbooks Netbooks seemed appealing, especially in an age before tablets and lightweight ultrabooks. You could buy a netbook for $200 or so and have a portable device that let you get on the Internet. The name “netbook” spelled that out — it was a portable device for getting on the ‘net. They weren’t really that great. The original netbook was a lightweight Asus Eee PC that ran Linux alone and had a small amount of fast flash storage. Netbooks eventually ran heavier Windows XP operating systems — Windows Vista was out, but it was just too bloated to run on netbooks. Manufacturers added slow magnetic hard drives, bloatware, and even DVD drives! They couldn’t run most Windows software very well. The build quality was poor and their keyboards were tiny and cramped. People liked the idea of a lightweight device that let them get on the Internet and loved the cheap price, but the actual experience wasn’t great. Chromebook Sales Chromebook sales numbers seem surprisingly high. NPD reported that Chromebooks were 21% of all notebooks sold in the US in 2013. If you combine laptop and tablet sales into a single statistic, Chromebooks were 9.6% of all those devices sold. That’s 2/3 as many Chromebooks sold as iPads in the US! Of Amazon’s best-selling laptop computers, two of the top three are Chromebooks. These definitely look like successful products. Unlike netbooks, Chromebooks are taking off in a big way in the education market. Many schools are buying Chromebooks for their students instead of more expensive Windows laptops. They’re easier to manage and lock down than Windows laptops, but — more importantly for cash-strapped schools — they’re very cheap. Netbooks never had this sort of momentum in schools. Chromebook Usage Statistics Here’s where the rosy picture of Chromebooks starts to become more realistic. StatCounter’s browser usage statistics show how widely used different operating systems are. For example, Windows 7 has the highest share with 35.71% of web activity in April, 2014. The chart doesn’t even show Chrome OS at all, although there is an “Other” number near the bottom. Click the Download Data link to download a CSV file and we can view more detailed information. Chrome OS only accounted for 0.38% of web usage in April, 2014. Desktop Linux, which people often shrug at, accounted for 1.52% in the same month. To its credit, Chrome OS usage has increased. Chromebooks were widely mocked back in November, 2013 when the sales numbers came out. After all, they only accounted for 0.11% of web usage globally in November, 2013! But Chrome OS numbers have been improving: Nov, 2013: 0.11% Dec, 2013: 0.22% Jan, 2014: 0.31% Feb, 2014: 0.35% Mar, 2014: 0.36% Apr, 2014: 0.38% Chrome OS is climbing, but it’s definitely still in the “Other” category. It isn’t as high as we’d expect to see it with those types of sales numbers. Chromebooks vs. Netbooks Chromebooks are more limited devices than traditional PCs. You can do quite a few things, but you have to do it all using Chrome or Chrome apps. Most people won’t be enabling developer mode and installing a Linux desktop. You don’t have access to the powerful desktop software available for Windows and even Mac OS X. On the other hand, these Chromebooks are less compromised than netbooks in many ways. They come with a lightweight operating system designed for portable, mobile devices. They don’t come packed with any bloatware, like the bloatware you’ll find on competing Windows PCs and the original netbooks. They’re cheaper because the manufacturer doesn’t have to pay for a Windows license. There’s no need for antivirus software weighing the operating system down. They’re larger than the original netbooks, with many of them being 11.6-inches instead of the original 8-inch bodies many older netbooks came with. They have larger, more comfortable keyboards and fast solid-state storage. Really, Chromebooks are what netbooks wanted to be. People didn’t buy netbooks to use typical Windows software — they just wanted a lightweight PC. Of course, for many people, the real successor to netbooks is tablets. If all you want is a portable device to throw in a bag so you can get online, maybe a tablet is better. Where Does This Leave Chromebooks? So, are Chromebooks the new netbooks? It’s a bit early to answer that question. Chromebooks are definitely not out of the competition — their sales look good and their usage share is increasing. On the other hand, Chrome OS is still pretty far behind. They’re not catching fire like tablets did. Maybe netbooks were just before their time and Chromebooks were what they were always meant to be. Just as Microsoft’s Windows XP tablets failed, Windows XP netbooks also failed. Tablets took off with a more refined operating system on better hardware years later. “Netbooks” — or Chromebooks — are now taking off with a more purpose-built operating system on better hardware, too. It’s hard to count Chromebooks out because they provide a much better experience than netbooks ever did. If you’re one of the people who wants to use old Windows desktop apps on your portable laptop, you may think netbooks were better — but most people don’t want that. But maybe people either want a full desktop PC experience or a full mobile tablet experience. Is there a place for a laptop with a keyboard that can only view websites? We’ll have to wait and see. Image Credit: Kevin Jarret on Flickr, Clive Darra on Flickr, Sean Freese on Flickr

    Read the article

  • Setting useLegacyV2RuntimeActivationPolicy At Runtime

    - by Reed
    Version 4.0 of the .NET Framework included a new CLR which is almost entirely backwards compatible with the 2.0 version of the CLR.  However, by default, mixed-mode assemblies targeting .NET 3.5sp1 and earlier will fail to load in a .NET 4 application.  Fixing this requires setting useLegacyV2RuntimeActivationPolicy in your app.Config for the application.  While there are many good reasons for this decision, there are times when this is extremely frustrating, especially when writing a library.  As such, there are (rare) times when it would be beneficial to set this in code, at runtime, as well as verify that it’s running correctly prior to receiving a FileLoadException. Typically, loading a pre-.NET 4 mixed mode assembly is handled simply by changing your app.Config file, and including the relevant attribute in the startup element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } This causes your application to run correctly, and load the older, mixed-mode assembly without issues. For full details on what’s happening here and why, I recommend reading Mark Miller’s detailed explanation of this attribute and the reasoning behind it. Before I show any code, let me say: I strongly recommend using the official approach of using app.config to set this policy. That being said, there are (rare) times when, for one reason or another, changing the application configuration file is less than ideal. While this is the supported approach to handling this issue, the CLR Hosting API includes a means of setting this programmatically via the ICLRRuntimeInfo interface.  Normally, this is used if you’re hosting the CLR in a native application in order to set this, at runtime, prior to loading the assemblies.  However, the F# Samples include a nice trick showing how to load this API and bind this policy, at runtime.  This was required in order to host the Managed DirectX API, which is built against an older version of the CLR. This is fairly easy to port to C#.  Instead of a direct port, I also added a little addition – by trapping the COM exception received if unable to bind (which will occur if the 2.0 CLR is already bound), I also allow a runtime check of whether this property was setup properly: public static class RuntimePolicyHelper { public static bool LegacyV2RuntimeEnabledSuccessfully { get; private set; } static RuntimePolicyHelper() { ICLRRuntimeInfo clrRuntimeInfo = (ICLRRuntimeInfo)RuntimeEnvironment.GetRuntimeInterfaceAsObject( Guid.Empty, typeof(ICLRRuntimeInfo).GUID); try { clrRuntimeInfo.BindAsLegacyV2Runtime(); LegacyV2RuntimeEnabledSuccessfully = true; } catch (COMException) { // This occurs with an HRESULT meaning // "A different runtime was already bound to the legacy CLR version 2 activation policy." LegacyV2RuntimeEnabledSuccessfully = false; } } [ComImport] [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)] [Guid("BD39D1D2-BA2F-486A-89B0-B4B0CB466891")] private interface ICLRRuntimeInfo { void xGetVersionString(); void xGetRuntimeDirectory(); void xIsLoaded(); void xIsLoadable(); void xLoadErrorString(); void xLoadLibrary(); void xGetProcAddress(); void xGetInterface(); void xSetDefaultStartupFlags(); void xGetDefaultStartupFlags(); [MethodImpl(MethodImplOptions.InternalCall, MethodCodeType = MethodCodeType.Runtime)] void BindAsLegacyV2Runtime(); } } Using this, it’s possible to not only set this at runtime, but also verify, prior to loading your mixed mode assembly, whether this will succeed. In my case, this was quite useful – I am working on a library purely for internal use which uses a numerical package that is supplied with both a completely managed as well as a native solver.  The native solver uses a CLR 2 mixed-mode assembly, but is dramatically faster than the pure managed approach.  By checking RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully at runtime, I can decide whether to enable the native solver, and only do so if I successfully bound this policy. There are some tricks required here – To enable this sort of fallback behavior, you must make these checks in a type that doesn’t cause the mixed mode assembly to be loaded.  In my case, this forced me to encapsulate the library I was using entirely in a separate class, perform the check, then pass through the required calls to that class.  Otherwise, the library will load before the hosting process gets enabled, which in turn will fail. This code will also, of course, try to enable the runtime policy before the first time you use this class – which typically means just before the first time you check the boolean value.  As a result, checking this early on in the application is more likely to allow it to work. Finally, if you’re using a library, this has to be called prior to the 2.0 CLR loading.  This will cause it to fail if you try to use it to enable this policy in a plugin for most third party applications that don’t have their app.config setup properly, as they will likely have already loaded the 2.0 runtime. As an example, take a simple audio player.  The code below shows how this can be used to properly, at runtime, only use the “native” API if this will succeed, and fallback (or raise a nicer exception) if this will fail: public class AudioPlayer { private IAudioEngine audioEngine; public AudioPlayer() { if (RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully) { // This will load a CLR 2 mixed mode assembly this.audioEngine = new AudioEngineNative(); } else { this.audioEngine = new AudioEngineManaged(); } } public void Play(string filename) { this.audioEngine.Play(filename); } } Now – the warning: This approach works, but I would be very hesitant to use it in public facing production code, especially for anything other than initializing your own application.  While this should work in a library, using it has a very nasty side effect: you change the runtime policy of the executing application in a way that is very hidden and non-obvious.

    Read the article

  • Big Visible Charts

    - by Robert May
    An important part of Agile is the concept of transparency and visibility. In proper functioning teams, stakeholders can look at any team at any time in the iteration or release and see how that team is doing by simply looking at what we call Big Visible Charts. If you’ve done Scrum, you’ve seen these charts. However, interpreting these charts can often be an art form. There are several different charts that can be useful. In this newsletter, I’ll focus on the Iteration Burndown and Cumulative Flow charts. I’ve included a copy of the spreadsheet that I used to create the charts, and if you don’t have a tool that creates them for you, you can use this spreadsheet to do so. Our preferred tool for managing Scrum projects is Rally. Rally creates all of these charts for you, saving you quite a bit of time. The Iteration Burndown and Cumulative Flow Charts This is the main chart that teams use. Although less useful to stakeholders, this chart is critical to the team and provides quite a bit of information to the team about how their iteration is going. Most charts are a combination of the charts below, so you may need to combine aspects of each section to understand what is happening in your iterations. Ideal Ah, isn’t that a pretty picture? Unfortunately, it’s also very unrealistic. I’ve seen iterations that come close to ideal, but never that match perfectly. If your iteration matches perfectly, chances are, someone is playing with the numbers. Reality is just too difficult to have a burndown chart that matches this exactly. Late Planning Iteration started, but the team didn’t. You can tell this by the fact that the real number of estimated hours didn’t appear until day two. In the cumulative flow, you can also see that nothing was defined in Day one and two. You want to avoid situations like this. You’ll note that the team had to burn faster than is ideal to meet the iteration because of the late planning. This often results in long weeks and days. Testing Starved Determining whether or not testing is starved is difficult without the cumulative flow. The pattern in the burndown could be nothing more that developers not completing stories early enough or could be caused by stories being too big. With the cumulative flow, however, you see that only small bites are in progress and stories were completed early, but testing didn’t start testing until the end of the iteration, and didn’t complete testing all stories in the iteration. When this happens, question whether or not your testing resources are sufficient for your team and whether or not acceptance is adequately defined. No Testing With this one, both graphs show the same thing; the team needs testers and testing! Without testing, what was completed cannot be verified to make sure that it is acceptable to the business. If you find yourself in this situation, review your testing practices and acceptance testing process and make changes today. Late Development With this situation, both graphs tell a story. In the top graph, you can see that the hours failed to burn down as quickly as the team expected. This could be caused by the team not correctly estimating their hours or the team could have had illness or some other issue that affected them. Often, when teams are tackling something that is more unknown, they’ll run into technical barriers that cause the burn down to happen slower than expected. In the cumulative flow graph, you can see that not much was completed in the first few days. This could be because of illness or technical barriers or simply poor estimation. Testing was able to keep up with everything that was completed, however. No Tool Updating When you see graphs that look like this, you can be assured that it’s because the team is not updating the tool that generates the graphs. Review your policy for when they are to update. On the teams that I run, I require that each team member updates the tool at least once daily. You should also check to see how well the team is breaking down stories into tasks. If they’re creating few large tasks, graphs can look similar to this. As a general rule, I never allow tasks, other than Unit Testing and Uncertainty, to be greater than eight hours in duration. Scope Increase I always encourage team members to enter in however much time they think they have left on a task, even if that means increasing the total amount of time left to do. You get a much better and more realistic picture this way. Increasing time remaining could explain the burndown graph, but by looking at the cumulative flow graph, we can see that stories were added to the iteration and scope was increased. Since planning should consume all of the hours in the iteration, this is almost always a bad thing. If the scope change happened late in the iteration and the hours remaining were well below the ideal burn, then increasing scope is probably o.k., but estimation needs to get better. However, with the charts above, that’s clearly not what happened and the team was required to do extra work to make the iteration. If you find this happening, your product owner and ScrumMasters need training. The team also needs to learn to say no. Scope Decrease Scope decreases are just as bad as scope increases. Usually, graphs above show that the team did a poor job of estimating their stories and part way through had to reduce scope to change the iteration. This will happen once in a while, but if you find it’s a pattern on your team, you need to re-evaluate planning. Some teams are hopelessly optimistic. In those cases, I’ll introduce a task I call “Uncertainty.” With Uncertainty, the team estimates how many hours they might need if things don’t go well with the tasks they’ve defined. They try to estimate things that could go poorly and increase the time appropriately. Having an Uncertainty task allows them to have a low and high estimate. Uncertainty should not just be an arbitrary buffer. It must correlate to real uncertainty in the tasks that have been defined. Stories are too Big Often, we see graphs like the ones above. Note that the burndown looks fairly good, other than the chunky acceptance of stories. However, when you look at cumulative flow, you can see that at one point, everything is in progress. This is a bad thing. When you see graphs like this, you’re in one of two states. You may just have a very small team and can only handle one or two stories in your iteration. If you have more than one or two people, then the most likely problem is that your stories are far too big. To combat this, break large high hour stories into smaller pieces that can be completed independently and accepted independently. If you don’t, you’ll likely be requiring your testers to do heroic things to complete testing on the last day of the iteration and you’re much more likely to have the entire iteration fail, because of the limited amount of things that can be completed. Summary There are other charts that can be useful when doing scrum. If you don’t have any big visible charts, you really need to evaluate your process and change. These charts can provide the team a wealth of information and help you write better software. If you have any questions about charts that you’re seeing on your team, contact me with a screen capture of the charts and I’ll tell you what I’m seeing in those charts. I always want this information to be useful, so please let me know if you have other questions. Technorati Tags: Agile

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • Developing Mobile Applications: Web, Native, or Hybrid?

    - by Michelle Kimihira
    Authors: Joe Huang, Senior Principal Product Manager, Oracle Mobile Application Development Framework  and Carlos Chang, Senior Principal Product Director The proliferation of mobile devices and platforms represents a game-changing technology shift on a number of levels. Companies must decide not only the best strategic use of mobile platforms, but also how to most efficiently implement them. Inevitably, this conversation devolves to the developers, who face the task of developing and supporting mobile applications—not a simple task in light of the number of devices and platforms. Essentially, developers can choose from the following three different application approaches, each with its own set of pros and cons. Native Applications: This refers to apps built for and installed on a specific platform, such as iOS or Android, using a platform-specific software development kit (SDK).  For example, apps for Apple’s iPhone and iPad are designed to run specifically on iOS and are written in Xcode/Objective-C. Android has its own variation of Java, Windows uses C#, and so on.  Native apps written for one platform cannot be deployed on another. Native apps offer fast performance and access to native-device services but require additional resources to develop and maintain each platform, which can be expensive and time consuming. Mobile Web Applications: Unlike native apps, mobile web apps are not installed on the device; rather, they are accessed via a Web browser.  These are server-side applications that render HTML, typically adjusting the design depending on the type of device making the request.  There are no program coding constraints for writing server-side apps—they can be written in Java, C, PHP, etc., it doesn’t matter.  Instead, the server detects what type of mobile browser is pinging the server and adjusts accordingly. For example, it can deliver fully JavaScript and CSS-enabled content to smartphone browsers, while downgrading gracefully to basic HTML for feature phone browsers. Mobile apps work across platforms, but are limited to what you can do through a browser and require Internet connectivity. For certain types of applications, these constraints may not be an issue. Oracle supports mobile web applications via ADF Faces (for tablets) and ADF Mobile browser (Trinidad) for smartphone and feature phones. Hybrid Applications: As the name implies, hybrid apps combine technologies from native and mobile Web apps to gain the benefits each. For example, these apps are installed on a device, like their pure native app counterparts, while the user interface (UI) is based on HTML5.  This UI runs locally within the native container, which usually leverages the device’s browser engine.  The advantage of using HTML5 is a consistent, cross-platform UI that works well on most devices.  Combining this with the native container, which is installed on-device, provides mobile users with access to local device services, such as camera, GPS, and local device storage.  Native apps may offer greater flexibility in integrating with device native services.  However, since hybrid applications already provide device integrations that typical enterprise applications need, this is typically less of an issue.  The new Oracle ADF Mobile release is an HTML5 and Java hybrid framework that targets mobile app development to iOS and Android from one code base. So, Which is the Best Approach? The short answer is – the best choice depends on the type of application you are developing.  For instance, animation-intensive apps such as games would favor native apps, while hybrid applications may be better suited for enterprise mobile apps because they provide multi-platform support. Just for starters, the following issues must be considered when choosing a development path. Application Complexity: How complex is the application? A quick app that accesses a database or Web service for some data to display?  You can keep it simple, and a mobile Web app may suffice. However, for a mobile/field worker type of applications that supports mission critical functionality, hybrid or native applications are typically needed. Richness of User Interactivity: What type of user experience is required for the application?  Mobile browser-based app that’s optimized for mobile UI may suffice for quick lookup or productivity type of applications.  However, hybrid/native application would typically be required to deliver highly interactive user experiences needed for field-worker type of applications.  For example, interactive BI charts/graphs, maps, voice/email integration, etc.  In the most extreme case like gaming applications, native applications may be necessary to deliver the highly animated and graphically intensive user experience. Performance: What type of performance is required by the application functionality?  For instance, for real-time look up of data over the network, mobile app performance depends on network latency and server infrastructure capabilities.  If consistent performance is required, data would typically need to be cached, which is supported on hybrid or native applications only. Connectivity and Availability: What sort of connectivity will your application require? Does the app require Web access all the time in order to always retrieve the latest data from the server? Or do the requirements dictate offline support? While native and hybrid apps can be built to operate offline, Web mobile apps require Web connectivity. Multi-platform Requirements: The terms “consumerization of IT” and BYOD (bring your own device) effectively mean that the line between the consumer and the enterprise devices have become blurred. Employees are bringing their personal mobile devices to work and are often expecting that they work in the corporate network and access back-office applications.  Even if companies restrict access to the big dogs: (iPad, iPhone, Android phones and tablets, possibly Windows Phone and tablets), trying to support each platform natively will require increasing resources and domain expertise with each new language/platform. And let’s not forget the maintenance costs, involved in upgrading new versions of each platform.   Where multi-platform support is needed, Web mobile or hybrid apps probably have the advantage. Going native, and trying to support multiple operating systems may be cost prohibitive with existing resources and developer skills. Device-Services Access:  If your app needs to access local device services, such as the camera, contacts app, accelerometer, etc., then your choices are limited to native or hybrid applications.   Fragmentation: Apple controls Apple iOS and the only concern is what version iOS is running on any given device.   Not so Android, which is open source. There are many, many versions and variants of Android running on different devices, which can be a nightmare for app developers trying to support different devices running different flavors of Android.  (Is it an Amazon Kindle Fire? a Samsung Galaxy?  A Barnes & Noble Nook?) This is a nightmare scenario for native apps—on the other hand, a mobile Web or hybrid app, when properly designed, can shield you from these complexities because they are based on common frameworks.  Resources: How many developers can you dedicate to building and supporting mobile application development?  What are their existing skills sets?  If you’re considering native application development due to the complexity of the application under development, factor the costs of becoming proficient on a each platform’s OS and programming language. Add another platform, and that’s another language, another SDK. On the other side of the equation, Web mobile or hybrid applications are simpler to make, and readily support more platforms, but there may be performance trade-offs. Conclusion This only scratches the surface. However, I hope to have suggested some food for thought in choosing your mobile development strategy.  Do your due diligence, search the Web, read up on mobile, talk to peers, attend events. The development team at Oracle is working hard on mobile technologies to help customers extend enterprise applications to mobile faster and effectively.  To learn more on what Oracle has to offer, check out the Oracle ADF Mobile (hybrid) and ADF Faces/ADF Mobile browser (Web Mobile) solutions from Oracle.   Additional Information Blog: ADF Blog Product Information on OTN: ADF Mobile Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Persisting Session Between Different Browser Instances

    - by imran_ku07
        Introduction:          By default inproc session's identifier cookie is saved in browser memory. This cookie is known as non persistent cookie identifier. This simply means that if the user closes his browser then the cookie is immediately removed. On the other hand cookies which stored on the user’s hard drive and can be reused for later visits are called persistent cookies. Persistent cookies are less used than nonpersistent cookies because of security. Simply because nonpersistent cookies makes session hijacking attacks more difficult and more limited. If you are using shared computer then there are lot of chances that your persistent session will be used by other shared members. However this is not always the case, lot of users desired that their session will remain persisted even they open two instances of same browser or when they close and open a new browser. So in this article i will provide a very simple way to persist your session even the browser is closed.   Description:          Let's create a simple ASP.NET Web Application. In this article i will use Web Form but it also works in MVC. Open Default.aspx.cs and add the following code in Page_Load.    protected void Page_Load(object sender, EventArgs e)        {            if (Session["Message"] != null)                Response.Write(Session["Message"].ToString());            Session["Message"] = "Hello, Imran";        }          This page simply shows a message if a session exist previously and set the session.          Now just run the application, you will just see an empty page on first try. After refreshing the page you will see the Message "Hello, Imran". Now just close the browser and reopen it or just open another browser instance, you will get the exactly same behavior when you run your application first time . Why the session is not persisted between browser instances. The simple reason is non persistent session cookie identifier. The session cookie identifier is not shared between browser instances. Now let's make it persistent.          To make your application share session between different browser instances just add the following code in global.asax.    protected void Application_PostMapRequestHandler(object sender, EventArgs e)           {               if (Request.Cookies["ASP.NET_SessionIdTemp"] != null)               {                   if (Request.Cookies["ASP.NET_SessionId"] == null)                       Request.Cookies.Add(new HttpCookie("ASP.NET_SessionId", Request.Cookies["ASP.NET_SessionIdTemp"].Value));                   else                       Request.Cookies["ASP.NET_SessionId"].Value = Request.Cookies["ASP.NET_SessionIdTemp"].Value;               }           }          protected void Application_PostRequestHandlerExecute(object sender, EventArgs e)        {             HttpCookie cookie = new HttpCookie("ASP.NET_SessionIdTemp", Session.SessionID);               cookie.Expires = DateTime.Now.AddMinutes(Session.Timeout);               Response.Cookies.Add(cookie);         }          This code simply state that during Application_PostRequestHandlerExecute(which is executed after HttpHandler) just add a persistent cookie ASP.NET_SessionIdTemp which contains the value of current user SessionID and sets the timeout to current user session timeout.          In Application_PostMapRequestHandler(which is executed just before th session is restored) we just check whether the Request cookie contains ASP.NET_SessionIdTemp. If yes then just add or update ASP.NET_SessionId cookie with ASP.NET_SessionIdTemp. So when a new browser instance is open, then a check will made that if ASP.NET_SessionIdTemp exist then simply add or update ASP.NET_SessionId cookie with ASP.NET_SessionIdTemp.          So run your application again, you will get the last closed browser session(if it is not expired).   Summary:          Persistence session is great way to increase the user usability. But always beware the security before doing this. However there are some cases in which you might need persistence session. In this article i just go through how to do this simply. So hopefully you will again enjoy this simple article too.

    Read the article

  • H1 Visa interview tips–What you must know before attending the interview?

    - by Gopinath
    USA’s H1 visa allows highly qualified professionals from other countries to work in America. Many IT professionals in India aspire to go to USA on H1 and work for their clients. Recently I had a chance to study H1 visa process to help one of my friends and I would like to share what I learned. With the assumption that your H1 petition is approved and you got an interview scheduled at US Embassy for your visa stamping, here are tips you must know before attending the interview Dress Code – Formals Say no to casuals or any fancy dress when you attend the interview. It’s not a party or friends home you are visiting. Consider H1 Visa interview as your job interview and dress up in formals. There is no option B for your, you must be in formals. A plain formal shirt with a matching pant is suggested for men. Tie and Suit would not be required, but if you are a professional at management level you can consider wearing suit. Women can wear either formal Salwar or formal pant-shirt. Avoid heavy jewellery, wear what is must as per your tradition or culture. Body Language -  Smile on your face Your body language reflects what you are and what’s going on in your mind. Don’t be nervous or restless, be relaxed and wear a beautiful smile on your face. A smile is a curve that sets everything straight. When you are called for the interview, greet the interviewer with a beautiful smile. Say Good Morning/Afternoon/Evening depending on time you are visiting them. Whenever appropriate say Thank You. Generally American professionals are very friendly people and they reciprocate for your greetings. Make sure that you make them comfortable to start the interview. Carry original documents in a separate folder I don’t want to talk much about the documents that are required for your H1B interview as it’s big subject on it’s own and it requires a separate post. I assume that your consultant or employer helped you in gathering all the required documents like – petition, DS 160 forms, education & job related documents, resume, interview call letters, client letters, etc. For all the documents you are going to submit at the interview make sure that you have originals in a separate folder.  If required interviewer may ask you show the originals of any of the document you submitted for visa processing. Don’t mix the original documents with the documents you need to submit for interview. Have a separate folder for them. For those who are going to stamping along with their spouse and children, they need to carry few extra original documents like – marriage certificate, marriage photos(30 numbers)/album, birth certificates, passports, education and profession related certificates of the spouse and children. Know your role & responsibilities The interviewer will ask you questions on your roles and responsibilities at client location. Be clear what is your day to day tasks at client place and prepared to face detailed questions on the same. When asked explain clearly and also make sure what you say is inline with what is mentioned in your petition and client invitation letter. At times they may ask you questions specific to the project/technology you are going to work. So doing some homework in this area will help you easily answer the questions. Failing to answer basic questions on your role & responsibilities may result in rejection. You work for your Employer at Client location but NOT FOR CLIENT One of the important things to keep in mind that you work for your employer and you are being deputed to client location on a work visa.  Your employer is going to be solely responsible for your salary, work, promotion, pay hikes or what so ever during your stay at USA. Your client will not be responsible for anything. Lets say you are employed with Company X in India and they are applying for H1B to work at your client(ex: Microsoft) in USA, you must keep in my mind that Microsoft is not your employer. Microsoft will not pay your salaries or responsible for any employment related activities. Company X will be solely responsible for all your employer related activities. If you don’t get this correctly and say to Visa interviewer that your client is responsible, then you may get into troubles. Know your client It’s always good to know the clients with whom you are going to work in USA and their business. If your client is a well know organisation then you may not get many questions from interviewer else you need to be well prepared to provide details like – nature of business, location, size of the organisation, etc.  Get to know the basic details about your client and be confident while providing those details to the interviewer. Also make sure that you never talk about any confidential details of your client projects and business. Revealing confidential details of your client may land your job itself in soup. Make sure that your spouse is also in sync with you If you’ve applied a H4 visa for your spouse along with your H1, make sure that spouse is in sync with you. Your spouse also should know the basic details of your job, your employer, client and location where you will be travelling. Your spouse should also be prepared to answers questions related to marriage, their profession(if working), kids, education, etc. Interviewers will try to asses your spouse communication skills, whereabouts while staying in USA and would they prefer to work USA or not. On H4, which is a dependent visa, your spouse is not allowed to work in USA and at any point your spouse should not show the intentions to search for work in USA. Less luggage more comfort You would have definitely heard that there are lot of restrictions on what you can carry along with you to an US Embassy while attending the interview. To be frank it’s not good to say there are many restrictions, but there are a hell a lot of restrictions. There are unbelievable restrictions and it’s for the safety of everyone. You are not allowed to carry mobile phones, CD/DVDs, USBs, bank cards, cameras, cosmetics, food(except baby food), water, wallets, backpacks, sealed covers, etc. Trust me most of the things we carry with us regularly every day are not allowed inside. As there are 100s of restrictions, it would be easier if you understand what you can carry along with you and just carry them alone. Ask your employer/consultant to provide you a checklist of items that you can carry. Most what you would require are H1B related documents provided by the employer/consultant Photographs All original documents supporting your H1B Passports Some cash for your travel expenses (avoid coins) Any important phone number / details written in a paper(like your cab driver number, etc.) If you carry restricted stuff then you will be stopped at security checks, you have to find people who can safely keep all the restricted items. Due to heavy restrictions in and around the US Embassy you will not find any  place to keep your luggage. So just carry the bare minimum things required so that you feel more comfortable. Useful Links THE U.S. NON IMMIGRANT VISA APPLICATION PROCESS U.S VISA SECURITY REGULATIONS GENERAL FAQS Hope this information is helpful to you and best of luck for your interview. Creative commons Image credit: Flickr/ alexfrance, vinothchandar. hughelectronic, architratan, striatic

    Read the article

  • How to create a virtual network with Azure Connect

    - by Herve Roggero
    If you are trying to establish a virtual network between machines located in disparate networks, you can either use VPN, Virtual Network or Azure Connect. If you want to establish a connection between machines located in Windows Azure, you should consider using the Virtual Network service. If you want to establish a connection between local machines and Virtual Machines in Windows Azure, you may be able to use your existing VPN device (assuming you have one), as long as the device is supported by Microsoft. If the VPN device you are using isn’t supported, or if you are trying to create a virtual network between machines from disparate networks (such as machines located in another cloud provider), you can use Azure Connect. This blog post explains how Azure Connect can help you create virtual networks between multiple servers in the cloud, various servers in different cloud environments, and on-premise. Note: Azure Connect is currently in Technical Preview. About Azure Connect Let’s do a quick review of Azure Connect. This technology implements an IPSec tunnel from machines to to a relay service located in the Microsoft cloud (Azure). So in essence, Azure Connect doesn’t provide a point-to-point connection between machines; the network communication is tunneled through the relay service. The relay service in turn offers a mechanism to enforce basic communication rules that you define through Groups. We will review this later. You could network two or more VMs in the Azure cloud (although you should consider using a Virtual Network if you go this route), or servers in the Azure cloud and other machines in the Amazon cloud for example, or even two or more on-premise servers located in different locations for which a direct network connection is not an option. You can place any number of machines in your topology. Azure Connect gives you great flexibility on how you want to build your virtual network across various environments. So Azure Connect makes sense when you want to: Connect machines located in different cloud providers Connect on-premise machines running in different locations Connect Azure VMs with on-premise (if you do not have a VPN device, or if your device is not supported) Connect Azure Roles (Worker Roles, Web Roles) with on-premise servers or in other cloud providers The diagram below shows you a high level network topology that involves machines in the Windows Azure cloud, other cloud providers and on-premise. You should note that the only required component in this diagram is the Relay itself. The other machines are optional (although your network is useful only if you have two or more machines involved). Relay agents are currently available in three geographic areas: US, Europe and Asia. You can change which region you want to use in the Windows Azure management portal. High Level Network Topology With Azure Connect Azure Connect Agent Azure Connect establishes a virtual network and creates virtual adapters on your machines; these virtual adapters communicate through the Relay using IPSec. This is achieved by installing an agent (the Azure Connect Agent) on all the machines you want in your network topology. However, you do not need to install the agent on Worker Roles and Web Roles; that’s because the agent is already installed for you. Any other machine, including Virtual Machines in Windows Azure, needs the agent installed.  To install the agent, simply go to your Windows Azure portal (http://windows.azure.com) and click on Networks on the bottom left panel. You will see a list of subscriptions under Connect. If you select a subscription, you will be able to click on the Install Local Endpoint icon on top. Clicking on this icon will begin the download and installation process for the agent. Activating Roles for Azure Connect As previously mentioned, you do not need to install the Azure Connect Agent on Worker Roles and Web Roles because it is already loaded. However, you do need to activate them if you want the roles to participate in your network topology. To do this, you will need to click on the Get Activation Token icon. The activation token must then be copied and placed in the configuration file of your roles. For more information on how to perform this step, visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg432964.aspx. Firewall Rules Note that specific firewall rules must exist to allow the agent to communicate through the Relay. You will need to allow TCP 443 and ICMPv6. For additional information, please visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg433061.aspx. CA Certificates You can optionally require agents to sign their activation request with the Relay using a trusted certificate issued by a Certificate Authority (CA). Click on Activation Options to learn more. Groups To create your network topology you must first create a group. A group represents a logical container of endpoints (or machines) that can communicate through the Relay. You can create multiple groups allowing you to manage network communication differently. For example you could create a DEVELOPMENT group and a PRODUCTION group. To add an endpoint you must first install an agent that will create a virtual adapter on the machine on which it is installed (as discussed in the previous section). Once you have created a group and installed the agents, the machines will appear in the Windows Azure management portal and you can start assigning machines to groups. The next figure shows you that I created a group called LocalGroup and assigned two machines (both on-premise) to that group. Groups and Computers in Azure Connect As I mentioned previously you can allow these machines to establish a network connection. To do this, you must enable the Interconnected option in the group. The following diagram shows you the definition of the group. In this topology I chose to include local machines only, but I could also add worker roles and web roles in the Azure Roles section (you must first activate your roles, as discussed previously). You could also add other Groups, allowing you to manage inter-group communication. Defining a Group in Azure Connect Testing the Connection Now that my agents have been installed on my two machines, the group defined and the Interconnected option checked, I can test the connection between my machines. The next screenshot shows you that I sent a PING request to DEVLAP02 from DEVDSK02. The PING request was successful. Note however that the time is in the hundreds of milliseconds on average. That is to be expected because the machines are connecting through the Relay located in the cloud. Going through the Relay introduces an extra hop in the communication chain, so if your systems rely on high performance, you may want to conduct some basic performance tests. Sending a PING Request Through The Relay Conclusion As you can see, creating a network topology between machines using the Azure Connect service is simple. It took me less than five minutes to create the above configuration, including the time it took to install the Azure Connect agents on the two machines. The flexibility of Azure Connect allows you to create a virtual network between disparate environments, as long as your operating systems are supported by the agent. For more information on Azure Connect, visit the MSDN website at http://msdn.microsoft.com/en-us/library/windowsazure/gg432997.aspx. About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting, a company specialized in cloud computing products and services. Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" from Apress and runs the Azure Florida Association (on LinkedIn: http://www.linkedin.com/groups?gid=4177626). For more information on Blue Syntax Consulting, visit www.bluesyntax.net. Special Thanks I would like thank those that helped me figure out how Azure Connect works: Marcel Meijer - http://blogs.msmvps.com/marcelmeijer/ Michael Wood - Http://www.mvwood.com Glenn Block - http://www.codebetter.com/glennblock Yves Goeleven - http://cloudshaper.wordpress.com/ Sandrino Di Mattia - http://fabriccontroller.net/ Mike Martin - http://techmike2kx.wordpress.com

    Read the article

  • Clarity is important, both in question and in answer.

    - by gerrylowry
    clarity is important ... i'm often reminded of the Clouseau movie in which Peter Sellers as Chief Inspector Clouseau asks a hotel clerk "Does your dog bite?" ... the clerk answers "no" ... after Clouseau has been bitten by the dog, he looks at the hotel clerk who says "That's not my dog".  Clarity is important, both in question and in answer. i've been a member of forums.asp.net since 2008 ... like many of my peers at forums.asp.net, i've answered my fair share of questions. FWIW, the purpose of this, my first web log post to http://weblogs.asp.net/gerrylowry is to help new members ask better questions and in turn get better answers. TIMTOWTDI  =.  there is more than one way to do it imho, the best way to ask a question in any forum, or even person to person, is to first formulate your question and then ask yourself to answer your own question. Things to consider when asking (the more complete your question, the more likely you'll get the answer you require): -- have you searched Google and/or your favourite search engine(s) before posting your question to forums.asp.net; examples: site:msdn.microsoft.com entity framework 5.0 c#http://lmgtfy.com/?q=site%3Amsdn.microsoft.com+entity+framework+5.0+c%23 site:forums.asp.net MVC tutorial c#http://lmgtfy.com/?q=site%3Aforums.asp.net+MVC+tutorial+c%23 -- are you asking your question in the correct forum?  look at the forums' descriptions at http://forums.asp.net/; examples: Getting Started If you have a general ASP.NET question on a topic that's not covered by one of the other more specific forums - ask it here. MVC Discussions regarding ASP.NET Model-View-Controller (MVC) C# Questions about using C# for ASP.NET development Note:  if your question pertains more to c# than to MVC, choosing the C# forum is likely to be more appropriate. -- is your post subject clear and concise, yet not too vague? compare these three subjects (all three had something to do with GridView):     (1)    please help     (2)    gridview      (3)    How to show newline in GridView  -- have you clearly explained your scenario? compare:  my leg hurts   with   when i walk too much, my right knee hurts in the knee joint  compare:  my code does not work    with    when i enter a date as 2012-11-8, i get a FormatException -- have you checked your spelling, your grammar, and your English? for better or worse, English is the language of forums.asp.net ... many of the currently 170000++ forums.asp.net are not native speakers of English; that's okay ... however, there are times when choosing the more appropriate words will likely get one a better answer; fortunately, there are web tools to help you formulate your question, for example, http://translate.google.com/.  -- have you provided relevant information about your environment? here are a few examples ... feel free to include other items to your question ... rule of thumb:  if you think a given detail is relevant, it likely is -- what technology are you using?    ASP.NET MVC 4, ASP.NET MVC 3, WebForms, ...  -- what version of Visual Studio are you using?  vs2012 (ultimate, professional, express), vs2010, vs2008 ... -- are you hosting your own website?  are you using a shared hosting service? -- are you experience difficulties in just one browser? more than one browser? -- what browser version(s) are you using?   ie8? ie9? ... -- what is your operating system?     win8, win7, vista, XP, server 2008 R2 ... -- what is your database?   SQL Server 2008 R2, ss2005, MySQL, Oracle, ... -- what is your web server?  iis 7.5, iis 6, .... -- have you provided enough information for someone to be able to answer your question? Here's an actual example from an O.P. that i hope is self-explanatory: I'm trying to make a simple calculator when i write the code in windows application it worked when i tried it in web application it doesn't work and there are no errors what should i do ??!! -- have you included unnecessary information? more than once, i've seen the O.P. (original post, original poster) include many extra lines of code that were not relevant to the actual question; the more unnecessary code that you include, the less likely your volunteer peers will be motivated to donate their time to help you. -- have you asked the question that you want answered? "Does this dog bite?" -- are your expectations reasonable? -- generally, persons who are going to answer your questions are your peers ... they are unpaid volunteers ... -- are you looking for help with your homework, work assignment, or hobby? or, are you expecting someone else to do your work for you?  -- do you expect a complete solution or are you simply looking for guidance and direction? -- you are likely to get more help by first making a reasonable effort to help yourself first Clarity is important, both in question and in answer. if you are answering someone else's question, please remember that clear answers are just as important as clear questions; would you understand your own answer? Things to consider when answering: -- have you tested your code example?  if you have, say so; if you've not tested your code example, also say so -- imho, it's okay to guess as long as you clearly state that you're guessing ... sometimes a wrong guess can still help the O.P. find her/his way to the right answer -- meanness does not contribute to being helpful; sometimes one may become frustrated with the O.P. and/or others participating in a thread, if that happens to you, be kind regardless; speaking from my own experience, at least once i've allowed myself to be frustrated into writing something inappropriate that i've regretted later ... being a meany does not feel good ... being kind and helpful feels fantastic! Tip:  before asking your question, read more than a few existing questions and answers to get a sense of how your peers ask and answer questions. Gerry P.S.:  try to avoid necroposting and piggy backing. necroposting is adding to an old post, especially one that was resolved months ago. piggy backing is adding your own question to someone else's thread.

    Read the article

  • Why We Should Learn to Stop Worrying and Love Millennials

    - by HCM-Oracle
    By Christine Mellon Much is said and written about the new generations of employees entering our workforce, as though they are a strange specimen, a mysterious life form to be “figured out,” accommodated and engaged – at a safe distance, of course.  At its worst, this talk takes a critical and disapproving tone, with baby boomer employees adamantly refusing to validate this new breed of worker, let alone determine how to help them succeed and achieve their potential.   The irony of our baby-boomer resentments and suspicions is that they belie the fact that we created the very vision that younger employees are striving to achieve.  From our frustrations with empty careers that did not fulfill us, from our opposition to “the man,” from our sharp memories of our parents’ toiling for 30 years just for the right to retire, from the simple desire not to live our lives in a state of invisibility, came the seeds of hope for something better. One characteristic of Millennial workers that grew from these seeds is the desire to experience as much as possible.  They are the “Experiential Employee”, with a passion for growing in diverse ways and expanding personal and professional horizons.  Rather than rooting themselves in a single company for a career, or even in a single career path, these employees are committed to building a broad portfolio of experiences and capabilities that will enable them to make a difference and to leave a mark of significance in the world.  How much richer is the organization that nurtures and leverages this inclination?  Our curmudgeonly ways must be surrendered and our focus redirected toward building the next generation of talent ecosystems, if we are to optimize what future generations have to offer.   Accelerating Professional Development In spite of our Boomer grumblings about Millennials’ “unrealistic” expectations, the truth is that we have a well-matched set of circumstances.  We have executives-in-waiting who want to learn quickly and a concurrent, urgent need to ramp up their development time, based on anticipated high levels of retirement in the next 10+ years.  Since we need to rapidly skill up these heirs to the corporate kingdom, isn’t it a fortunate coincidence that they are hungry to learn, develop and move fluidly throughout our organizations??  So our challenge now is to efficiently operationalize the wisdom we have acquired about effective learning and development.   We have already evolved from classroom-based models to diverse instructional methods.  The next step is to find the best approaches to help younger employees learn quickly and apply new learnings in an impactful way.   Creating temporary or even permanent functional partnerships among Millennial employees is one way to maximize outcomes.  This might take the form of 2 or more employees owning aspects of what once fell under a single role.  While one might argue this would mean duplication of resources, it could be a short term cost while employees come up to speed.  And the potential benefits would be numerous:  leveraging and validating the inherent sense of community of new generations, creating cross-functional skills with broad applicability, yielding additional perspectives and approaches to traditional work outcomes, and accelerating the performance curve for incumbents through Cooperative Learning (Johnson, D. and Johnson R., 1989, 1999).  This well-researched teaching strategy, where students support each other in the absorption and application of new information, has been shown to deliver faster, more efficient learning, and greater retention. Alternately, perhaps short term contracts with exiting retirees, or former retirees, to help facilitate the development of following generations may have merit.  Again, a short term cost, certainly.  However, the gains realized in shortening the learning curve, and strengthening engagement are substantial and lasting. Ultimately, there needs to be creative thinking applied for each organization on how to accelerate the capabilities of our future leaders in unique ways that mesh with current culture. The manner in which performance is evaluated must finally shift as well.  Employees will need to be assessed on how well they have developed key skills and capabilities vs. end-to-end mastery of functional positions they have no interest in keeping for an entire career. As we become more comfortable in placing greater and greater weight on competencies vs. tasks, we will realize increased organizational agility via this new generation of workers, which will be further enhanced by their natural flexibility and appetite for change. Revisiting Succession  For many years, organizations have failed to deliver desired succession planning outcomes.  According to CEB’s 2013 research, only 28% of current leaders were pre-identified in a succession plan. These disappointing results, along with the entrance of the experiential, Millennial employee into the workforce, may just provide the needed impetus for HR to reinvent succession processes.   We have recognized that the best professional development efforts are not always linear, and the time has come to fully adopt this philosophy in regard to succession as well.  Paths to specific organizational roles will not look the same for newer generations who seek out unique learning opportunities, without consideration of a singular career destination.  Rather than charting particular jobs as precursors for key positions, the experiences and skills behind what makes an incumbent successful must become essential in succession mapping.  And the multitude of ways in which those experiences and skills may be acquired must be factored into the process, along with the individual employee’s level of learning agility. While this may seem daunting, it is necessary and long overdue.  We have talked about the criticality of competency-based succession, however, we have not lived up to our own rhetoric.  Many Boomers have experienced the same frustration in our careers; knowing we are capable of shining in a particular role, but being denied the opportunity due to how our career history lined up, on paper, with documented job requirements.  These requirements usually emphasized past jobs/titles and specific tasks, versus capabilities, drive and willingness (let alone determination) to learn new things.  How satisfying would it be for us to leave a legacy where such narrow thinking no longer applies and potential is amplified? Realizing Diversity Another bloom from the seeds we Boomers have tried to plant over the past decades is a completely evolved view of diversity.  Millennial employees assume a diverse workforce, and are startled by anything less.  Their social tolerance, nurtured by wide and diverse networks, is unprecedented.  College graduates expect a similar landscape in the “real world” to what they experienced throughout their lives.  They appreciate and seek out divergent points of view and experiences without needing any persuasion.  The face of our U.S. workforce will likely see dramatic change as Millennials apply their fresh take on hiring and building strong teams, with an inherent sense of inclusion.  This wonderful aspect of the Millennial wave should be celebrated and strongly encouraged, as it is the fulfillment of our own aspirations. Future Perfect The Experiential Employee is operating more as a free agent than a long term player, and their commitment will essentially last as long as meaningful organizational culture and personal/professional opportunities keep their interest.  As Boomers, we have laid the foundation for this new, spirited employment attitude, and we should take pride in knowing that.  Generations to come will challenge organizations to excel in how they identify, manage and nurture talent. Let’s support and revel in the future that we’ve helped invent, rather than lament what we think has been lost.  After all, the future is always connected to the past.  And as so eloquently phrased by Antoine Lavoisier, French nobleman, chemist and politico:  “Nothing is Lost, Nothing is Created, and Everything is Transformed.” Christine has over 25 years of diverse HR experience.  She has held HR consulting and corporate roles, including CHRO positions for Echostar in Denver, a 6,000+ employee global engineering firm, and Aepona, a startup software firm, successfully acquired by Intel. Christine is a resource to Oracle clients, to assist in Human Capital Management strategy development and implementation, compensation practices, talent development initiatives, employee engagement, global HR management, and integrated HR systems and processes that support the full employee lifecycle. 

    Read the article

< Previous Page | 302 303 304 305 306 307 308 309 310 311 312 313  | Next Page >