Search Results

Search found 43654 results on 1747 pages for 'custom method'.

Page 307/1747 | < Previous Page | 303 304 305 306 307 308 309 310 311 312 313 314  | Next Page >

  • Pure Server-Side Filtering with RadGridView and WCF RIA Services

    Those of you who are familiar with WCF RIA Services know that the DomainDataSource control provides a FilterDescriptors collection that enables you to filter data returned by the query on the server. We have been using this DomainDataSource feature in our RIA Services with DomainDataSource online example for almost an year now. In the example, we are listening for RadGridViews Filtering event in order to intercept any filtering that is performed on the client and translate it to something that the DomainDataSource will understand, in this case a System.Windows.Data.FilterDescriptor being added or removed from its FilterDescriptors collection. Think of RadGridView.FilterDescriptors as client-side filtering and of DomainDataSource.FilterDescriptors as server-side filtering. We no longer need the client-side one. With the introduction of the Custom Filtering Controls feature many new possibilities have opened. With these custom controls we no longer need to do any filtering on the client. I have prepared a very small project that demonstrates how to filter solely on the server by using a custom filtering control. As I have already mentioned filtering on the server is done through the FilterDescriptors collection of the DomainDataSource control. This collection holds instances of type System.Windows.Data.FilterDescriptor. The FilterDescriptor has three important properties: PropertyPath: Specifies the name of the property that we want to filter on (the left operand). Operator: Specifies the type of comparison to use when filtering. An instance of FilterOperator Enumeration. Value: The value to compare with (the right operand). An instance of the Parameter Class. By adding filters, you can specify that only entities which meet the condition in the filter are loaded from the domain context. In case you are not familiar with these concepts you might find Brad Abrams blog interesting. Now, our requirements are to create some kind of UI that will manipulate the DomainDataSource.FilterDescriptors collection. When it comes to collections, my first choice of course would be RadGridView. If you are not familiar with the Custom Filtering Controls concept I would strongly recommend getting acquainted with my step-by-step tutorial Custom Filtering with RadGridView for Silverlight and checking the online example out. I have created a simple custom filtering control that contains a RadGridView and several buttons. This control is aware of the DomainDataSource instance, since it is operating on its FilterDescriptors collection. In fact, the RadGridView that is inside it is bound to this collection. In order to display filters that are relevant for the current column only, I have applied a filter to the grid. This filter is a Telerik.Windows.Data.FilterDescriptor and is used to filter the little grid inside the custom control. It should not be confused with the DomainDataSource.FilterDescriptors collection that RadGridView is actually bound to. These are the RIA filters. Additionally, I have added several other features. For example, if you have specified a DataFormatString on your original column, the Value column inside the custom control will pick it up and format the filter values accordingly. Also, I have transferred the data type of the column that you are filtering to the Value column of the custom control. This will help the little RadGridView determine what kind of editor to show up when you begin edit, for example a date picker for DateTime columns. Finally, I have added four buttons two of them can be used to add or remove filters and the other two will communicate the changes you have made to the server. Here is the full source code of the DomainDataSourceFilteringControl. The XAML: <UserControl x:Class="PureServerSideFiltering.DomainDataSourceFilteringControl"    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:telerikGrid="clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls.GridView"     xmlns:telerik="clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls"     Width="300">     <Border x:Name="LayoutRoot"             BorderThickness="1"             BorderBrush="#FF8A929E"             Padding="5"             Background="#FFDFE2E5">           <Grid>             <Grid.RowDefinitions>                 <RowDefinition Height="Auto"/>                 <RowDefinition Height="150"/>                 <RowDefinition Height="Auto"/>             </Grid.RowDefinitions>               <StackPanel Grid.Row="0"                         Margin="2"                         Orientation="Horizontal"                         HorizontalAlignment="Center">                 <telerik:RadButton Name="addFilterButton"                                   Click="OnAddFilterButtonClick"                                   Content="Add Filter"                                   Margin="2"                                   Width="96"/>                 <telerik:RadButton Name="removeFilterButton"                                   Click="OnRemoveFilterButtonClick"                                   Content="Remove Filter"                                   Margin="2"                                   Width="96"/>             </StackPanel>               <telerikGrid:RadGridView Name="filtersGrid"                                     Grid.Row="1"                                     Margin="2"                                     ItemsSource="{Binding FilterDescriptors}"                                     AddingNewDataItem="OnFilterGridAddingNewDataItem"                                     ColumnWidth="*"                                     ShowGroupPanel="False"                                     AutoGenerateColumns="False"                                     CanUserResizeColumns="False"                                     CanUserReorderColumns="False"                                     CanUserFreezeColumns="False"                                     RowIndicatorVisibility="Collapsed"                                     IsFilteringAllowed="False"                                     CanUserSortColumns="False">                 <telerikGrid:RadGridView.Columns>                     <telerikGrid:GridViewComboBoxColumn DataMemberBinding="{Binding Operator}"                                                         UniqueName="Operator"/>                     <telerikGrid:GridViewDataColumn Header="Value"                                                     DataMemberBinding="{Binding Value.Value}"                                                     UniqueName="Value"/>                 </telerikGrid:RadGridView.Columns>             </telerikGrid:RadGridView>               <StackPanel Grid.Row="2"                         Margin="2"                         Orientation="Horizontal"                         HorizontalAlignment="Center">                 <telerik:RadButton Name="filterButton"                                   Click="OnApplyFiltersButtonClick"                                   Content="Apply Filters"                                   Margin="2"                                   Width="96"/>                 <telerik:RadButton Name="clearButton"                                   Click="OnClearFiltersButtonClick"                                   Content="Clear Filters"                                   Margin="2"                                   Width="96"/>             </StackPanel>           </Grid>       </Border> </UserControl>   And the code-behind: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using Telerik.Windows.Controls.GridView; using System.Windows.Data; using Telerik.Windows.Controls; using Telerik.Windows.Data;   namespace PureServerSideFiltering {     /// <summary>     /// A custom filtering control capable of filtering purely server-side.     /// </summary>     public partial class DomainDataSourceFilteringControl : UserControl, IFilteringControl     {         // The main player here.         DomainDataSource domainDataSource;           // This is the name of the property that this column displays.         private string dataMemberName;           // This is the type of the property that this column displays.         private Type dataMemberType;           /// <summary>         /// Identifies the <see cref="IsActive"/> dependency property.         /// </summary>         /// <remarks>         /// The state of the filtering funnel (i.e. full or empty) is bound to this property.         /// </remarks>         public static readonly DependencyProperty IsActiveProperty =             DependencyProperty.Register(                 "IsActive",                 typeof(bool),                 typeof(DomainDataSourceFilteringControl),                 new PropertyMetadata(false));           /// <summary>         /// Gets or sets a value indicating whether the filtering is active.         /// </summary>         /// <remarks>         /// Set this to true if you want to lit-up the filtering funnel.         /// </remarks>         public bool IsActive         {             get { return (bool)GetValue(IsActiveProperty); }             set { SetValue(IsActiveProperty, value); }         }           /// <summary>         /// Gets or sets the domain data source.         /// We need this in order to work on its FilterDescriptors collection.         /// </summary>         /// <value>The domain data source.</value>         public DomainDataSource DomainDataSource         {             get { return this.domainDataSource; }             set { this.domainDataSource = value; }         }           public System.Windows.Data.FilterDescriptorCollection FilterDescriptors         {             get { return this.DomainDataSource.FilterDescriptors; }         }           public DomainDataSourceFilteringControl()         {             InitializeComponent();         }           public void Prepare(GridViewBoundColumnBase column)         {             this.LayoutRoot.DataContext = this;               if (this.DomainDataSource == null)             {                 // Sorry, but we need a DomainDataSource. Can't do anything without it.                 return;             }               // This is the name of the property that this column displays.             this.dataMemberName = column.GetDataMemberName();               // This is the type of the property that this column displays.             // We need this in order to see which FilterOperators to feed to the combo-box column.             this.dataMemberType = column.DataType;               // We will use our magic Type extension method to see which operators are applicable for             // this data type. You can go to the extension method body and see what it does.             ((GridViewComboBoxColumn)this.filtersGrid.Columns["Operator"]).ItemsSource                 = this.dataMemberType.ApplicableFilterOperators();               // This is very nice as well. We will tell the Value column its data type. In this way             // RadGridView will pick up the best editor according to the data type. For example,             // if the data type of the value is DateTime, you will be editing it with a DatePicker.             // Nice!             ((GridViewDataColumn)this.filtersGrid.Columns["Value"]).DataType = this.dataMemberType;               // Yet another nice feature. We will transfer the original DataFormatString (if any) to             // the Value column. In this way if you have specified a DataFormatString for the original             // column, you will see all filter values formatted accordingly.             ((GridViewDataColumn)this.filtersGrid.Columns["Value"]).DataFormatString = column.DataFormatString;               // This is important. Since our little filtersGrid will be bound to the entire collection             // of this.domainDataSource.FilterDescriptors, we need to set a Telerik filter on the             // grid so that it will display FilterDescriptor which are relevane to this column ONLY!             Telerik.Windows.Data.FilterDescriptor columnFilter = new Telerik.Windows.Data.FilterDescriptor("PropertyPath"                 , Telerik.Windows.Data.FilterOperator.IsEqualTo                 , this.dataMemberName);             this.filtersGrid.FilterDescriptors.Add(columnFilter);               // We want to listen for this in order to activate and de-activate the UI funnel.             this.filtersGrid.Items.CollectionChanged += this.OnFilterGridItemsCollectionChanged;         }           /// <summary>         // Since the DomainDataSource is a little bit picky about adding uninitialized FilterDescriptors         // to its collection, we will prepare each new instance with some default values and then         // the user can change them later. Go to the event handler to see how we do this.         /// </summary>         void OnFilterGridAddingNewDataItem(object sender, GridViewAddingNewEventArgs e)         {             // We need to initialize the new instance with some values and let the user go on from here.             System.Windows.Data.FilterDescriptor newFilter = new System.Windows.Data.FilterDescriptor();               // This is a must. It should know what member it is filtering on.             newFilter.PropertyPath = this.dataMemberName;               // Initialize it with one of the allowed operators.             // TypeExtensions.ApplicableFilterOperators method for more info.             newFilter.Operator = this.dataMemberType.ApplicableFilterOperators().First();               if (this.dataMemberType == typeof(DateTime))             {                 newFilter.Value.Value = DateTime.Now;             }             else if (this.dataMemberType == typeof(string))             {                 newFilter.Value.Value = "<enter text>";             }             else if (this.dataMemberType.IsValueType)             {                 // We need something non-null for all value types.                 newFilter.Value.Value = Activator.CreateInstance(this.dataMemberType);             }               // Let the user edit the new filter any way he/she likes.             e.NewObject = newFilter;         }           void OnFilterGridItemsCollectionChanged(object sender, System.Collections.Specialized.NotifyCollectionChangedEventArgs e)         {             // We are active only if we have any filters define. In this case the filtering funnel will lit-up.             this.IsActive = this.filtersGrid.Items.Count > 0;         }           private void OnApplyFiltersButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Comment this if you want the popup to stay open after the button is clicked.             this.ClosePopup();               // Since this.domainDataSource.AutoLoad is false, this will take into             // account all filtering changes that the user has made since the last             // Load() and pull the new data to the client.             this.DomainDataSource.Load();         }           private void OnClearFiltersButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // We want to remove ONLY those filters from the DomainDataSource             // that this control is responsible for.             this.DomainDataSource.FilterDescriptors                 .Where(fd => fd.PropertyPath == this.dataMemberName) // Only "our" filters.                 .ToList()                 .ForEach(fd => this.DomainDataSource.FilterDescriptors.Remove(fd)); // Bye-bye!               // Comment this if you want the popup to stay open after the button is clicked.             this.ClosePopup();               // After we did our housekeeping, get the new data to the client.             this.DomainDataSource.Load();         }           private void OnAddFilterButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Let the user enter his/or her requirements for a new filter.             this.filtersGrid.BeginInsert();             this.filtersGrid.UpdateLayout();         }           private void OnRemoveFilterButtonClick(object sender, RoutedEventArgs e)         {             if (this.DomainDataSource.IsLoadingData)             {                 return;             }               // Find the currently selected filter and destroy it.             System.Windows.Data.FilterDescriptor filterToRemove = this.filtersGrid.SelectedItem as System.Windows.Data.FilterDescriptor;             if (filterToRemove != null                 && this.DomainDataSource.FilterDescriptors.Contains(filterToRemove))             {                 this.DomainDataSource.FilterDescriptors.Remove(filterToRemove);             }         }           private void ClosePopup()         {             System.Windows.Controls.Primitives.Popup popup = this.ParentOfType<System.Windows.Controls.Primitives.Popup>();             if (popup != null)             {                 popup.IsOpen = false;             }         }     } }   Finally, we need to tell RadGridViews Columns to use this custom control instead of the default one. Here is how to do it: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using System.Windows.Data; using Telerik.Windows.Data; using Telerik.Windows.Controls; using Telerik.Windows.Controls.GridView;   namespace PureServerSideFiltering {     public partial class MainPage : UserControl     {         public MainPage()         {             InitializeComponent();             this.grid.AutoGeneratingColumn += this.OnGridAutoGeneratingColumn;               // Uncomment this if you want the DomainDataSource to start pre-filtered.             // You will notice how our custom filtering controls will correctly read this information,             // populate their UI with the respective filters and lit-up the funnel to indicate that             // filtering is active. Go ahead and try it.             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("Title", System.Windows.Data.FilterOperator.Contains, "Assistant"));             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("HireDate", System.Windows.Data.FilterOperator.IsGreaterThan, new DateTime(1998, 12, 31)));             this.employeesDataSource.FilterDescriptors.Add(new System.Windows.Data.FilterDescriptor("HireDate", System.Windows.Data.FilterOperator.IsLessThanOrEqualTo, new DateTime(1999, 12, 31)));               this.employeesDataSource.Load();         }           /// <summary>         /// First of all, we will need to replace the default filtering control         /// of each column with out custom filtering control DomainDataSourceFilteringControl         /// </summary>         private void OnGridAutoGeneratingColumn(object sender, GridViewAutoGeneratingColumnEventArgs e)         {             GridViewBoundColumnBase dataColumn = e.Column as GridViewBoundColumnBase;             if (dataColumn != null)             {                 // We do not like ugly dates.                 if (dataColumn.DataType == typeof(DateTime))                 {                     dataColumn.DataFormatString = "{0:d}"; // Short date pattern.                       // Notice how this format will be later transferred to the Value column                     // of the grid that we have inside the DomainDataSourceFilteringControl.                 }                   // Replace the default filtering control with our.                 dataColumn.FilteringControl = new DomainDataSourceFilteringControl()                 {                     // Let the control know about the DDS, after all it will work directly on it.                     DomainDataSource = this.employeesDataSource                 };                   // Finally, lit-up the filtering funnel through the IsActive dependency property                 // in case there are some filters on the DDS that match our column member.                 string dataMemberName = dataColumn.GetDataMemberName();                 dataColumn.FilteringControl.IsActive =                     this.employeesDataSource.FilterDescriptors                     .Where(fd => fd.PropertyPath == dataMemberName)                     .Count() > 0;             }         }     } } The best part is that we are not only writing filters for the DomainDataSource we can read and load them. If the DomainDataSource has some pre-existing filters (like I have created in the code above), our control will read them and will populate its UI accordingly. Even the filtering funnel will light-up! Remember, the funnel is controlled by the IsActive property of our control. While this is just a basic implementation, the source code is absolutely yours and you can take it from here and extend it to match your specific business requirements. Below the main grid there is another debug grid. With its help you can monitor what filter descriptors are added and removed to the domain data source. Download Source Code. (You will have to have the AdventureWorks sample database installed on the default SQLExpress instance in order to run it.) Enjoy!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Why unhandled exceptions are useful

    - by Simon Cooper
    It’s the bane of most programmers’ lives – an unhandled exception causes your application or webapp to crash, an ugly dialog gets displayed to the user, and they come complaining to you. Then, somehow, you need to figure out what went wrong. Hopefully, you’ve got a log file, or some other way of reporting unhandled exceptions (obligatory employer plug: SmartAssembly reports an application’s unhandled exceptions straight to you, along with the entire state of the stack and variables at that point). If not, you have to try and replicate it yourself, or do some psychic debugging to try and figure out what’s wrong. However, it’s good that the program crashed. Or, more precisely, it is correct behaviour. An unhandled exception in your application means that, somewhere in your code, there is an assumption that you made that is actually invalid. Coding assumptions Let me explain a bit more. Every method, every line of code you write, depends on implicit assumptions that you have made. Take this following simple method, that copies a collection to an array and includes an item if it isn’t in the collection already, using a supplied IEqualityComparer: public static T[] ToArrayWithItem( ICollection<T> coll, T obj, IEqualityComparer<T> comparer) { // check if the object is in collection already // using the supplied comparer foreach (var item in coll) { if (comparer.Equals(item, obj)) { // it's in the collection already // simply copy the collection to an array // and return it T[] array = new T[coll.Count]; coll.CopyTo(array, 0); return array; } } // not in the collection // copy coll to an array, and add obj to it // then return it T[] array = new T[coll.Count+1]; coll.CopyTo(array, 0); array[array.Length-1] = obj; return array; } What’s all the assumptions made by this fairly simple bit of code? coll is never null comparer is never null coll.CopyTo(array, 0) will copy all the items in the collection into the array, in the order defined for the collection, starting at the first item in the array. The enumerator for coll returns all the items in the collection, in the order defined for the collection comparer.Equals returns true if the items are equal (for whatever definition of ‘equal’ the comparer uses), false otherwise comparer.Equals, coll.CopyTo, and the coll enumerator will never throw an exception or hang for any possible input and any possible values of T coll will have less than 4 billion items in it (this is a built-in limit of the CLR) array won’t be more than 2GB, both on 32 and 64-bit systems, for any possible values of T (again, a limit of the CLR) There are no threads that will modify coll while this method is running and, more esoterically: The C# compiler will compile this code to IL according to the C# specification The CLR and JIT compiler will produce machine code to execute the IL on the user’s computer The computer will execute the machine code correctly That’s a lot of assumptions. Now, it could be that all these assumptions are valid for the situations this method is called. But if this does crash out with an exception, or crash later on, then that shows one of the assumptions has been invalidated somehow. An unhandled exception shows that your code is running in a situation which you did not anticipate, and there is something about how your code runs that you do not understand. Debugging the problem is the process of learning more about the new situation and how your code interacts with it. When you understand the problem, the solution is (usually) obvious. The solution may be a one-line fix, the rewrite of a method or class, or a large-scale refactoring of the codebase, but whatever it is, the fix for the crash will incorporate the new information you’ve gained about your own code, along with the modified assumptions. When code is running with an assumption or invariant it depended on broken, then the result is ‘undefined behaviour’. Anything can happen, up to and including formatting the entire disk or making the user’s computer sentient and start doing a good impression of Skynet. You might think that those can’t happen, but at Halting problem levels of generality, as soon as an assumption the code depended on is broken, the program can do anything. That is why it’s important to fail-fast and stop the program as soon as an invariant is broken, to minimise the damage that is done. What does this mean in practice? To start with, document and check your assumptions. As with most things, there is a level of judgement required. How you check and document your assumptions depends on how the code is used (that’s some more assumptions you’ve made), how likely it is a method will be passed invalid arguments or called in an invalid state, how likely it is the assumptions will be broken, how expensive it is to check the assumptions, and how bad things are likely to get if the assumptions are broken. Now, some assumptions you can assume unless proven otherwise. You can safely assume the C# compiler, CLR, and computer all run the method correctly, unless you have evidence of a compiler, CLR or processor bug. You can also assume that interface implementations work the way you expect them to; implementing an interface is more than simply declaring methods with certain signatures in your type. The behaviour of those methods, and how they work, is part of the interface contract as well. For example, for members of a public API, it is very important to document your assumptions and check your state before running the bulk of the method, throwing ArgumentException, ArgumentNullException, InvalidOperationException, or another exception type as appropriate if the input or state is wrong. For internal and private methods, it is less important. If a private method expects collection items in a certain order, then you don’t necessarily need to explicitly check it in code, but you can add comments or documentation specifying what state you expect the collection to be in at a certain point. That way, anyone debugging your code can immediately see what’s wrong if this does ever become an issue. You can also use DEBUG preprocessor blocks and Debug.Assert to document and check your assumptions without incurring a performance hit in release builds. On my coding soapbox… A few pet peeves of mine around assumptions. Firstly, catch-all try blocks: try { ... } catch { } A catch-all hides exceptions generated by broken assumptions, and lets the program carry on in an unknown state. Later, an exception is likely to be generated due to further broken assumptions due to the unknown state, causing difficulties when debugging as the catch-all has hidden the original problem. It’s much better to let the program crash straight away, so you know where the problem is. You should only use a catch-all if you are sure that any exception generated in the try block is safe to ignore. That’s a pretty big ask! Secondly, using as when you should be casting. Doing this: (obj as IFoo).Method(); or this: IFoo foo = obj as IFoo; ... foo.Method(); when you should be doing this: ((IFoo)obj).Method(); or this: IFoo foo = (IFoo)obj; ... foo.Method(); There’s an assumption here that obj will always implement IFoo. If it doesn’t, then by using as instead of a cast you’ve turned an obvious InvalidCastException at the point of the cast that will probably tell you what type obj actually is, into a non-obvious NullReferenceException at some later point that gives you no information at all. If you believe obj is always an IFoo, then say so in code! Let it fail-fast if not, then it’s far easier to figure out what’s wrong. Thirdly, document your assumptions. If an algorithm depends on a non-trivial relationship between several objects or variables, then say so. A single-line comment will do. Don’t leave it up to whoever’s debugging your code after you to figure it out. Conclusion It’s better to crash out and fail-fast when an assumption is broken. If it doesn’t, then there’s likely to be further crashes along the way that hide the original problem. Or, even worse, your program will be running in an undefined state, where anything can happen. Unhandled exceptions aren’t good per-se, but they give you some very useful information about your code that you didn’t know before. And that can only be a good thing.

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Logging connection strings

    If you some of the dynamic features of SSIS such as package configurations or property expressions then sometimes trying to work out were your connections are pointing can be a bit confusing. You will work out in the end but it can be useful to explicitly log this information so that when things go wrong you can just review the logs. You may wish to develop this idea further and encapsulate such logging into a custom task, but for now lets keep it simple and use the Script Task. The Script Task code below will raise an Information event showing the name and connection string for a connection. Imports System Imports Microsoft.SqlServer.Dts.Runtime Public Class ScriptMain Public Sub Main() Dim fireAgain As Boolean ' Get the connection string, we need to know the name of the connection Dim connectionName As String = "My OLE-DB Connection" Dim connectionString As String = Dts.Connections(connectionName).ConnectionString ' Format the message and log it via an information event Dim message As String = String.Format("Connection ""{0}"" has a connection string of ""{1}"".", _ connectionName, connectionString) Dts.Events.FireInformation(0, "Information", message, Nothing, 0, fireAgain) Dts.TaskResult = Dts.Results.Success End Sub End Class Building on that example it is probably more flexible to log all connections in a package as shown in the next example. Imports System Imports Microsoft.SqlServer.Dts.Runtime Public Class ScriptMain Public Sub Main() Dim fireAgain As Boolean ' Loop through all connections in the package For Each connection As ConnectionManager In Dts.Connections ' Get the connection string and log it via an information event Dim message As String = String.Format("Connection ""{0}"" has a connection string of ""{1}"".", _ connection.Name, connection.ConnectionString) Dts.Events.FireInformation(0, "Information", message, Nothing, 0, fireAgain) Next Dts.TaskResult = Dts.Results.Success End Sub End Class By using the Information event it makes it readily available in the designer, for example the Visual Studio Output window (Ctrl+Alt+O) or the package designer Execution Results tab, and also allows you to readily control the logging by choosing which events to log in the normal way. Now before somebody starts commenting that this is a security risk, I would like to highlight good practice for building connection managers. Firstly the Password property, or any other similar sensitive property is always defined as write-only, and secondly the connection string property only uses the public properties to assemble the connection string value when requested. In other words the connection string will never contain the password. I have seen a couple of cases where this is not true, but that was just bad development by third-parties, you won’t find anything like that in the box from Microsoft.   Whilst writing this code it made me wish that there was a custom log entry that you could just turn on that did this for you, but alas connection managers do not even seem to support custom events. It did however remind me of a very useful event that is often overlooked and fits rather well alongside connection string logging, the Execute SQL Task’s custom ExecuteSQLExecutingQuery event. To quote the help reference Custom Messages for Logging - Provides information about the execution phases of the SQL statement. Log entries are written when the task acquires connection to the database, when the task starts to prepare the SQL statement, and after the execution of the SQL statement is completed. The log entry for the prepare phase includes the SQL statement that the task uses. It is the last part that is so useful, how often have you used an expression to derive a SQL statement and you want to log that to make sure the correct SQL is being returned? You need to turn it one, by default no custom log events are captured, but I’ll refer you to a walkthrough on setting up the logging for ExecuteSQLExecutingQuery by Jamie.

    Read the article

  • Where’s my MD.050?

    - by Dave Burke
    A question that I’m sometimes asked is “where’s my MD.050 in OUM?” For those not familiar with an MD.050, it serves the purpose of being a Functional Design Document (FDD) in one of Oracle’s legacy Methods. Functional Design Documents have existed for many years with their primary purpose being to describe the functional aspects of one or more components of an IT system, typically, a Custom Extension of some sort. So why don’t we have a direct replacement for the MD.050/FDD in OUM? In simple terms, the disadvantage of the MD.050/FDD approach is that it tends to lead practitioners into “Design mode” too early in the process. Whereas OUM encourages more emphasis on gathering, and describing the functional requirements of a system ahead of the formal Analysis and Design process. So that just means more work up front for the Business Analyst or Functional Consultants right? Well no…..the design of a solution, particularly when it involves a complex custom extension, does not necessarily take longer just because you put more thought into the functional requirements. In fact, one could argue the complete opposite, in that by putting more emphasis on clearly understanding the nuances of functionality requirements early in the process, then the overall time and cost incurred during the Analysis to Design process should be less. In short, as your understanding of requirements matures over time, it is far easier (and more cost effective) to update a document or a diagram, than to change lines of code. So how does that translate into Tasks and Work Products in OUM? Let us assume you have reached a point on a project where a Custom Extension is needed. One of the first things you should consider doing is creating a Use Case, and remember, a Use Case could be as simple as a few lines of text reflecting a “User Story”, or it could be what Cockburn1 describes a “fully dressed Use Case”. It is worth mentioned at this point the highly scalable nature of OUM in the sense that “documents” should not be produced just because that is the way we have always done things. Some projects may well be predicated upon a base of electronic documents, whilst other projects may take a much more Agile approach to describing functional requirements; through “User Stories” perhaps. In any event, it is quite common for a Custom Extension to involve the creation of several “components”, i.e. some new screens, an interface, a report etc. Therefore several Use Cases might be required, which in turn can then be assembled into a Use Case Package. Once you have the Use Cases attributed to an appropriate (fit-for-purpose) level of detail, and assembled into a Package, you can now create an Analysis Model for the Package. An Analysis Model is conceptual in nature, and depending on the solution being developing, would involve the creation of one or more diagrams (i.e. Sequence Diagrams, Collaboration Diagrams etc.) which collectively describe the Data, Behavior and Use Interface requirements of the solution. If required, the various elements of the Analysis Model may be indexed via an Analysis Specification. For Custom Extension projects that follow a pure Object Orientated approach, then the Analysis Model will naturally support the development of the Design Model without any further artifacts. However, for projects that are transitioning to this approach, then the various elements of the Analysis Model may be represented within the Analysis Specification. If we now return to the original question of “Where’s my MD.050”. The full answer would be: Capture the functional requirements within a Use Case Group related Use Cases into a Package Create an Analysis Model for each Package Consider creating an Analysis Specification (AN.100) as a index to each Analysis Model artifact An alternative answer for a relatively simple Custom Extension would be: Capture the functional requirements within a Use Case Optionally, group related Use Cases into a Package Create an Analysis Specification (AN.100) for each package 1 Cockburn, A, 2000, Writing Effective Use Case, Addison-Wesley Professional; Edition 1

    Read the article

  • Logging connection strings

    If you some of the dynamic features of SSIS such as package configurations or property expressions then sometimes trying to work out were your connections are pointing can be a bit confusing. You will work out in the end but it can be useful to explicitly log this information so that when things go wrong you can just review the logs. You may wish to develop this idea further and encapsulate such logging into a custom task, but for now lets keep it simple and use the Script Task. The Script Task code below will raise an Information event showing the name and connection string for a connection. Imports System Imports Microsoft.SqlServer.Dts.Runtime Public Class ScriptMain Public Sub Main() Dim fireAgain As Boolean ' Get the connection string, we need to know the name of the connection Dim connectionName As String = "My OLE-DB Connection" Dim connectionString As String = Dts.Connections(connectionName).ConnectionString ' Format the message and log it via an information event Dim message As String = String.Format("Connection ""{0}"" has a connection string of ""{1}"".", _ connectionName, connectionString) Dts.Events.FireInformation(0, "Information", message, Nothing, 0, fireAgain) Dts.TaskResult = Dts.Results.Success End Sub End Class Building on that example it is probably more flexible to log all connections in a package as shown in the next example. Imports System Imports Microsoft.SqlServer.Dts.Runtime Public Class ScriptMain Public Sub Main() Dim fireAgain As Boolean ' Loop through all connections in the package For Each connection As ConnectionManager In Dts.Connections ' Get the connection string and log it via an information event Dim message As String = String.Format("Connection ""{0}"" has a connection string of ""{1}"".", _ connection.Name, connection.ConnectionString) Dts.Events.FireInformation(0, "Information", message, Nothing, 0, fireAgain) Next Dts.TaskResult = Dts.Results.Success End Sub End Class By using the Information event it makes it readily available in the designer, for example the Visual Studio Output window (Ctrl+Alt+O) or the package designer Execution Results tab, and also allows you to readily control the logging by choosing which events to log in the normal way. Now before somebody starts commenting that this is a security risk, I would like to highlight good practice for building connection managers. Firstly the Password property, or any other similar sensitive property is always defined as write-only, and secondly the connection string property only uses the public properties to assemble the connection string value when requested. In other words the connection string will never contain the password. I have seen a couple of cases where this is not true, but that was just bad development by third-parties, you won’t find anything like that in the box from Microsoft.   Whilst writing this code it made me wish that there was a custom log entry that you could just turn on that did this for you, but alas connection managers do not even seem to support custom events. It did however remind me of a very useful event that is often overlooked and fits rather well alongside connection string logging, the Execute SQL Task’s custom ExecuteSQLExecutingQuery event. To quote the help reference Custom Messages for Logging - Provides information about the execution phases of the SQL statement. Log entries are written when the task acquires connection to the database, when the task starts to prepare the SQL statement, and after the execution of the SQL statement is completed. The log entry for the prepare phase includes the SQL statement that the task uses. It is the last part that is so useful, how often have you used an expression to derive a SQL statement and you want to log that to make sure the correct SQL is being returned? You need to turn it one, by default no custom log events are captured, but I’ll refer you to a walkthrough on setting up the logging for ExecuteSQLExecutingQuery by Jamie.

    Read the article

  • Coding With Windows Azure IaaS

    - by Hisham El-bereky
    This post will focus on some advanced programming topics concerned with IaaS (Infrastructure as a Service) which provided as windows azure virtual machine (with its related resources like virtual disk and virtual network), you know that windows azure started as PaaS cloud platform but regarding to some business cases which need to have full control over their virtual machine, so windows azure directed toward providing IaaS. Sometimes you will need to manage your cloud IaaS through code may be for these reasons: Working on hyper-cloud system by providing bursting connector to windows azure virtual machines Providing multi-tenant system which consume windows azure virtual machine Automated process on your on-premises or cloud service which need to utilize some virtual resources We are going to implement the following basic operation using C# code: List images Create virtual machine List virtual machines Restart virtual machine Delete virtual machine Before going to implement the above operations we need to prepare client side and windows azure subscription to communicate correctly by providing management certificate (x.509 v3 certificates) which permit client access to resources in your Windows Azure subscription, whilst requests made using the Windows Azure Service Management REST API require authentication against a certificate that you provide to Windows Azure More info about setting management certificate located here. And to install .cer on other client machine you will need the .pfx file, or if not exist by exporting .cer as .pfx Note: You will need to install .net 4.5 on your machine to try the code So let start This post built on the post sent by Michael Washam "Advanced Windows Azure IaaS – Demo Code", so I'm here to declare some points and to add new operation which is not exist in Michael's demo The basic C# class object used here as client to azure REST API for IaaS service is HttpClient (Provides a base class for sending HTTP requests and receiving HTTP responses from a resource identified by a URI) this object must be initialized with the required data like certificate, headers and content if required. Also I'd like to refer here that the code is based on using Asynchronous programming with calls to azure which enhance the performance and gives us the ability to work with complex calls which depends on more than one sub-call to achieve some operation The following code explain how to get certificate and initializing HttpClient object with required data like headers and content HttpClient GetHttpClient() { X509Store certificateStore = null; X509Certificate2 certificate = null; try { certificateStore = new X509Store(StoreName.My, StoreLocation.CurrentUser); certificateStore.Open(OpenFlags.ReadOnly); string thumbprint = ConfigurationManager.AppSettings["CertThumbprint"]; var certificates = certificateStore.Certificates.Find(X509FindType.FindByThumbprint, thumbprint, false); if (certificates.Count > 0) { certificate = certificates[0]; } } finally { if (certificateStore != null) certificateStore.Close(); }   WebRequestHandler handler = new WebRequestHandler(); if (certificate!= null) { handler.ClientCertificates.Add(certificate); HttpClient httpClient = new HttpClient(handler); //And to set required headers lik x-ms-version httpClient.DefaultRequestHeaders.Add("x-ms-version", "2012-03-01"); httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/xml")); return httpClient; } return null; }  Let us keep the object httpClient as reference object used to call windows azure REST API IaaS service. For each request operation we need to define: Request URI HTTP Method Headers Content body (1) List images The List OS Images operation retrieves a list of the OS images from the image repository Request URI https://management.core.windows.net/<subscription-id>/services/images] Replace <subscription-id> with your windows Id HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None.  C# Code List<String> imageList = new List<String>(); //replace _subscriptionid with your WA subscription String uri = String.Format("https://management.core.windows.net/{0}/services/images", _subscriptionid);  HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);  if (responseStream != null) {      XDocument xml = XDocument.Load(responseStream);      var images = xml.Root.Descendants(ns + "OSImage").Where(i => i.Element(ns + "OS").Value == "Windows");      foreach (var image in images)      {      string img = image.Element(ns + "Name").Value;      imageList.Add(img);      } } More information about the REST call (Request/Response) located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/jj157191.aspx (2) Create Virtual Machine Creating virtual machine required service and deployment to be created first, so creating VM should be done through three steps incase hosted service and deployment is not created yet Create hosted service, a container for service deployments in Windows Azure. A subscription may have zero or more hosted services Create deployment, a service that is running on Windows Azure. A deployment may be running in either the staging or production deployment environment. It may be managed either by referencing its deployment ID, or by referencing the deployment environment in which it's running. Create virtual machine, the previous two steps info required here in this step I suggest here to use the same name for service, deployment and service to make it easy to manage virtual machines Note: A name for the hosted service that is unique within Windows Azure. This name is the DNS prefix name and can be used to access the hosted service. For example: http://ServiceName.cloudapp.net// 2.1 Create service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/gg441304.aspx C# code The following method show how to create hosted service async public Task<String> NewAzureCloudService(String ServiceName, String Location, String AffinityGroup, String subscriptionid) { String requestID = String.Empty;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices", subscriptionid); HttpClient http = GetHttpClient();   System.Text.ASCIIEncoding ae = new System.Text.ASCIIEncoding(); byte[] svcNameBytes = ae.GetBytes(ServiceName);   String locationEl = String.Empty; String locationVal = String.Empty;   if (String.IsNullOrEmpty(Location) == false) { locationEl = "Location"; locationVal = Location; } else { locationEl = "AffinityGroup"; locationVal = AffinityGroup; }   XElement srcTree = new XElement("CreateHostedService", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("ServiceName", ServiceName), new XElement("Label", Convert.ToBase64String(svcNameBytes)), new XElement(locationEl, locationVal) ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } 2.2 Create Deployment Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deploymentslots/<deployment-slot-name> <deployment-slot-name> with staging or production, depending on where you wish to deploy your service package <service-name> provided as input from the previous step HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/ee460813.aspx C# code The following method show how to create hosted service deployment async public Task<String> NewAzureVMDeployment(String ServiceName, String VMName, String VNETName, XDocument VMXML, XDocument DNSXML) { String requestID = String.Empty;     String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments", _subscriptionid, ServiceName); HttpClient http = GetHttpClient(); XElement srcTree = new XElement("Deployment", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("Name", ServiceName), new XElement("DeploymentSlot", "Production"), new XElement("Label", ServiceName), new XElement("RoleList", null) );   if (String.IsNullOrEmpty(VNETName) == false) { srcTree.Add(new XElement("VirtualNetworkName", VNETName)); }   if(DNSXML != null) { srcTree.Add(new XElement("DNS", new XElement("DNSServers", DNSXML))); }   XDocument deploymentXML = new XDocument(srcTree); ApplyNamespace(srcTree, ns);   deploymentXML.Descendants(ns + "RoleList").FirstOrDefault().Add(VMXML.Root);     String fixedXML = deploymentXML.ToString().Replace(" xmlns=\"\"", ""); HttpContent content = new StringContent(fixedXML); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); }   return requestID; } 2.3 Create Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<cloudservice-name>/deployments/<deployment-name>/roles <cloudservice-name> and <deployment-name> are provided as input from the previous steps Http Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) located here http://msdn.microsoft.com/en-us/library/windowsazure/jj157186.aspx C# code async public Task<String> NewAzureVM(String ServiceName, String VMName, XDocument VMXML) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName);   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles", _subscriptionid, ServiceName, deployment);   HttpClient http = GetHttpClient(); HttpContent content = new StringContent(VMXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml"); HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } (3) List Virtual Machines To list virtual machine hosted on windows azure subscription we have to loop over all hosted services to get its hosted virtual machines To do that we need to execute the following operations: listing hosted services listing hosted service Virtual machine 3.1 Listing Hosted Services Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/ee460781.aspx C# Code async private Task<List<XDocument>> GetAzureServices(String subscriptionid) { String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices ", subscriptionid); List<XDocument> services = new List<XDocument>();   HttpClient http = GetHttpClient();   Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var svcs = xml.Root.Descendants(ns + "HostedService"); foreach (XElement r in svcs) { XDocument vm = new XDocument(r); services.Add(vm); } }   return services; }  3.2 Listing Hosted Service Virtual Machines Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name> HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157193.aspx C# Code async public Task<XDocument> GetAzureVM(String ServiceName, String VMName, String subscriptionid) { String deployment = await GetAzureDeploymentName(ServiceName); XDocument vmXML = new XDocument();   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles/{3}", subscriptionid, ServiceName, deployment, VMName);   HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri); if (responseStream != null) { vmXML = XDocument.Load(responseStream); }   return vmXML; }  So the final method which can be used to list all virtual machines is: async public Task<XDocument> GetAzureVMs() { List<XDocument> services = await GetAzureServices(); XDocument vms = new XDocument(); vms.Add(new XElement("VirtualMachines")); ApplyNamespace(vms.Root, ns); foreach (var svc in services) { string ServiceName = svc.Root.Element(ns + "ServiceName").Value;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deploymentslots/{2}", _subscriptionid, ServiceName, "Production");   try { HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var roles = xml.Root.Descendants(ns + "RoleInstance"); foreach (XElement r in roles) { XElement svcnameel = new XElement("ServiceName", ServiceName); ApplyNamespace(svcnameel, ns); r.Add(svcnameel); // not part of the roleinstance vms.Root.Add(r); } } } catch (HttpRequestException http) { // no vms with cloud service } } return vms; }  (4) Restart Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name>/Operations HTTP Method POST (HTTP 1.1) Headers x-ms-version: 2012-03-01 Content-Type: application/xml Body <RestartRoleOperation xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <OperationType>RestartRoleOperation</OperationType> </RestartRoleOperation>  More details about this http request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157197.aspx  C# Code async public Task<String> RebootVM(String ServiceName, String RoleName) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName); String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roleInstances/{3}/Operations", _subscriptionid, ServiceName, deployment, RoleName);   HttpClient http = GetHttpClient();   XElement srcTree = new XElement("RestartRoleOperation", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("OperationType", "RestartRoleOperation") ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; }  (5) Delete Virtual Machine You can delete your hosted virtual machine by deleting its deployment, but I prefer to delete its hosted service also, so you can easily manage your virtual machines from code 5.1 Delete Deployment Request URI https://management.core.windows.net/< subscription-id >/services/hostedservices/< service-name >/deployments/<Deployment-Name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteDeployment( string deploymentName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}", _subscriptionid, deploymentName, deploymentName); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  5.2 Delete Hosted Service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteService(string serviceName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}", _subscriptionid, serviceName); Log.Info("Windows Azure URI (http DELETE verb): " + uri, typeof(VMManager)); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  And the following is the method which can used to delete both of deployment and service async public Task<string> DeleteVM(string vmName) { string responseString = string.Empty;   // as a convention here in this post, a unified name used for service, deployment and VM instance to make it easy to manage VMs HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await DeleteDeployment(vmName);   if (responseMessage != null) {   string requestID = responseMessage.Headers.GetValues("x-ms-request-id").FirstOrDefault(); OperationResult result = await PollGetOperationStatus(requestID, 5, 120); if (result.Status == OperationStatus.Succeeded) { responseString = result.Message; HttpResponseMessage sResponseMessage = await DeleteService(vmName); if (sResponseMessage != null) { OperationResult sResult = await PollGetOperationStatus(requestID, 5, 120); responseString += sResult.Message; } } else { responseString = result.Message; } } return responseString; }  Note: This article is subject to be updated Hisham  References Advanced Windows Azure IaaS – Demo Code Windows Azure Service Management REST API Reference Introduction to the Azure Platform Representational state transfer Asynchronous Programming with Async and Await (C# and Visual Basic) HttpClient Class

    Read the article

  • How load WebView with another URL when navigated through tab bar viewController

    - by TechFusion
    Hello, I have created window based application, root controller as Tab bar controller. WebView is being loaded in Tab bar interfaced ViewController's View.WebView is created using IB.WebView object declared in ViewController as per below. //ViewController.h @interface ViewController:UIViewController{ IBOutlet UIWebview *Webview; } @property(nonatomic,retain)IBOutlet UIWebview *Webview; @end I am calling [WebView loadrequest] method in -viewDidLoad method and stopLoading will be called in -viewWillDisappear method. I am again reload it in -viewWillAppear:animated method to load it again when tab bar is pressed. //ViewController.m @implementation viewcontroller @synthesize Webview; -(void)viewDidLoad{ [super viewDidLoad]; [self.Webview loadRequest:[NSURLRequest requestWithURL:[NSURL URLWithString:@"www.apple.com"]]]; } -(void)viewWillAppear:(BOOL)animated{ [super viewWillAppear:animated]; [self.Webview reload]; } -(void)viewWillDisappear:(BOOL)animated{ [super viewWillDisappear:animated]; [self.Webview stopLoading]; } I am releasing WebView in -ViewDidUnload method -(void)viewDidUnload{ [super viewDidUnload]; [Webview release]; } -(void)dealloc{ [Webview release]; [super dealloc]; } Does Webview released correctly ? Here how to kill connection with URL when ViewWillDisappear method called ? How to load View with Different URL then it's loaded in -viewDidLoad method when ViewController interfaced tab is pressed ? Means if naviagated from one tab to another that ViewController interface tab which has WebView should load request with another URL. Does it correct to call [self.Webview loadRequest:[NSURLRequest requestWithURL:[NSURL URLWithString:@"www.stackoverflow.com"]]]; this method again in -viewWillAppear:animated method to load with another URL ? Thanks,

    Read the article

  • Drupal vs ExpressionEngine for any kind of project from simple commercial site to complex ecommerce

    - by artmania
    Hi friends... So far I've been using custom cms. lately I developed own cms with CodeIgniter, and I'm actually happy. But recently I take more design and front-end development works than deep development projects. I actually also prefer so... I have many things to do with custom cms, also some security issues, etc. I'm kind of tired of doing everyhing custom, also I want to give more time to my family... Recently I'm seriously considering to go for a ready cms, and develop custom plugins when project need sth specific. This cms should be very flexible to implement any layout. also secured (since i had some hack problems with my custom cms!) I googled so much about this. As a result 2 options: Drupal Expression Engine opensource or licensed matter is not an issue for me at all. I just consider to go for a cms that I can use for any kind of project from simple 4-5 pages company sites to complicated projects like hotels directory, ecommerce portals, etc... As I found out; EE is more userfriendly and doesnt hassle about implementing custom layout as much as Drupal does. Also EE use CodeIgniter that I'm familiar. on the other hand I found out that Drupal is 10000% flexible, we can do anything with that (requires good php knowledge), extremely powerful and has many plugins... So I can't decide!! I want to go for a cms that I will use for looooong years from now on with no problems to implement any kind of project. So which one do you recommend? Appreciate your helps! thanks a lot... Edited: http://expressionengine.com/ee2_sneak_preview/#cost this Commercial License $299.95 is for 1 setup? So I need to purchase new licence for each project? Nothing like I pay once, and use the cms for as many project as I want?

    Read the article

  • Two Linked CSS Files Not working

    - by Oscar Godson
    <head> <title>Water Bureau</title> <link rel="shortcut icon" href="/favicon.ico" /> <link rel="stylesheet" href="/css/main.css" type="text/css" media="screen" title="Main CSS"> <link rel="stylesheet" href="custom.css" type="text/css" media="screen" title="Custom Styles"> <script language="JavaScript" src="/shared/js/createWin.js" type="text/javascript"></script> </head> Thats the code, but the "custom.css" isn't working. It doesn't work at all. If we add a @import into main.css OR into the header instead of a it works fine though. Any ideas? We also got rid of the media="screens" on both as well. The CSS inside of it is working fine, it's just when we stack those two, the first one parsed is the only one read by the browser. So if we swap main below custom, custom than works but NONE of main works. and custom just has snippet of CSS, and doesn't override all the CSS in main, just 1 element. I can't figure it out! We have other ed stylesheets in the head (which we took out for trying to fix this) and they worked fine...

    Read the article

  • android throw InvocationTargetException,How to modify the error

    - by fonter
    ActivityManager am = (ActivityManager)this.getSystemService(this.ACTIVITY_SERVICE); try { clearMethod = am.getClass() .getMethod("clearApplicationUserData", String.class, IPackageDataObserver.class); } catch (Exception e) { Log.e("Error", "Android Error",e); clearMethod = null; } if(clearMethod!=null){ try { clearMethod.invoke(am,"com.android.browser",new ClearUserDataObserver()); } catch (Exception e) { Log.e("Error", "Android Exception",e); } } Exception 05-26 08:34:13.056: ERROR/Error(739): java.lang.reflect.InvocationTargetException 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityManager.clearApplicationUserData(ActivityManager.java:475) 05-26 08:34:13.056: ERROR/Error(739): at java.lang.reflect.Method.invokeNative(Native Method) 05-26 08:34:13.056: ERROR/Error(739): at java.lang.reflect.Method.invoke(Method.java:521) 05-26 08:34:13.056: ERROR/Error(739): at com.iwidsets.clear.manager.AndClear.onCreate(AndClear.java:34) 05-26 08:34:13.056: ERROR/Error(739): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1123) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2364) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2417) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityThread.access$2100(ActivityThread.java:116) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1794) 05-26 08:34:13.056: ERROR/Error(739): at android.os.Handler.dispatchMessage(Handler.java:99) 05-26 08:34:13.056: ERROR/Error(739): at android.os.Looper.loop(Looper.java:123) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityThread.main(ActivityThread.java:4203) 05-26 08:34:13.056: ERROR/Error(739): at java.lang.reflect.Method.invokeNative(Native Method) 05-26 08:34:13.056: ERROR/Error(739): at java.lang.reflect.Method.invoke(Method.java:521) 05-26 08:34:13.056: ERROR/Error(739): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:791) 05-26 08:34:13.056: ERROR/Error(739): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:549) 05-26 08:34:13.056: ERROR/Error(739): at dalvik.system.NativeStart.main(Native Method) 05-26 08:34:13.056: ERROR/Error(739): Caused by: java.lang.SecurityException: 739 does not have permission:android.permission.CLEAR_APP_USER_DATA to clear datafor process:com.android.browser 05-26 08:34:13.056: ERROR/Error(739): at android.os.Parcel.readException(Parcel.java:1218) 05-26 08:34:13.056: ERROR/Error(739): at android.os.Parcel.readException(Parcel.java:1206) 05-26 08:34:13.056: ERROR/Error(739): at android.app.ActivityManagerProxy.clearApplicationUserData(ActivityManagerNative.java:2016) 05-26 08:34:13.056: ERROR/Error(739): ... 17 more

    Read the article

  • WCF Message Debugging on WebHttpBehavior

    - by Programming Hero
    I've created a custom binding in WCF for a custom MessageEncoder to allow messages to be written as XML using a wider range of encodings than WCF supports out of the box. The encoder appears to be working and I am able to send and receive messages, but I want to verify that the XML message being written is exactly as required by the service I am trying to consume. I've turned on message logging for WCF using the diagnostic trace listeners to output the messages sent and received over the wire to a log file. Unfortunately, for calls using my encoder, the message is displayed as ... stream ... EDIT: I don't think it's anything to do with my custom encoding. I have experimented with my custom binding a little, switching to using the built-in text encoding and http transport. I still don't get a message body logged in the message trace. EDIT2: Having done further investigation, the issue looks to be related not to the custom binding, but the custom behaviour. I'm apply the <webHttp/> behaviour. Once this is specified (along with manual addressing), the tracing behaviour shows up. Is this a known issue with WebHttpBehavior? Am I still barking up the wrong tree?

    Read the article

  • Android - need UI help/advice

    - by Donal Rafferty
    I have been working on Android for the past couple of months getting to know how various components work. One area I am completely lacking in knowledge is any sort of User Interface or graphical interface creation. As an excercise I have been asked to break down the HTC call screen into what components it contains and rebuild as close as possible. Here is a picture of the HTC call screen: From my understanding the above UI has a custom title bar where "Meteor" and the call time appears. Then the main image in the middle block along with a text view showing the called party, in this case "Voice Mail" and the number. The bottom is then a custom view maybe with three custom buttons used within it. Would I be correct in my above assumptions? So the parts I should look into start programming are a custom title bar and a custom view with three custom buttons to place at the bottom? What layout would be reccomended? I hope this question is seen as relative to Stack Overflow, if it is not then I will delete it. Thanks in advance

    Read the article

  • Downloading jQuery UI: Ok, so what part of this mess do I copy to the server?

    - by Martha
    From the "should be simple, but..." files: Trying to get started with jQuery UI. Went to the site, used their custom builder thingy to assemble the parts I need, made myself a custom theme using the Theme Roller, downloaded the zip file thus produced, unzipped it on my local drive. Ok, so I have 37 folders, 311 files, and a total of 2.4 MB. Ain't no way in hell all this is going on the server. What parts do I need to put there? 'css' 'custom-theme': jquery-ui-1.8.custom.css, 'images' subfolder with 12 .png images 'development-bundle' 'demos': demos.css, index.html, plus 18 subfolders, but I'm guessing "not needed" 'docs': 17 .html files, but again, I'm guessing "not needed" 'external': 4 .js files, one .css 'themes': 'base' and 'custom-theme' subfolders, each with 8 or 9 .css files and an 'images' subfolder with about a dozen images 'ui': 25 .js files, an 'i18n' subfolder with 53 .js files, and a 'minified' subfolder with 24 .js files 'js': jquery-1.4.2.min.js and jquery-ui-1.8.custom.min.js Also, the file structure. Our server is set up something like this: root admin (administrative tools) css forms (the gist of the site lives here) images include (asp code snippets that are used by multiple pages) js (just a few things right now, like an ancient wheezing spelling checker) As far as I can tell, the jQuery css files assume that (1) each theme is in its own folder, and (2) each folder has its own images subfolder. How can I convince it otherwise? i.e. put the necessary .js files in the 'js' folder, the .css files in the 'css' folder, and the images in the 'images' folder?

    Read the article

  • IMAP protocol support in different email servers

    - by raticulin
    Having to interact with several different email servers via IMAP (using javamail), I have found that there is a very different level of support for IMAP features among them. The lack of support of some features has resulted in more developing time, more complicated code to deal with different support, worse perforamance due to not being able to SEARCH etc. So I would like to get some info on other servers and what level of support they provide. So far I have dealt with Lotus Domino and Novell GroupWise (and to a lesser extend Exchange 2003 and 2007). I am particularly interested in most used one in unix/linux (Courier, Cyrus, Dovecot, UW IMAP) and also Zimbra, but feel free to add any you know. Also welcomed info about online services like gmail. Features that I consider (comment if you are interested in others and I'll add them. Custom flags Searching Custom flags Searching arbitrary headers Partial fetching Proxy authentication And what I have found so far (correct if I am wrong anywhere): Lotus Domino Custom flags yes Searching Custom flags yes Searching arbitrary headers yes Partial fetching ? Proxy authentication sort of, you can give some user permissions to access other users mailboxes and he will see them under his '\Other Users' folder Novell GroupWise Custom flags No Searching Custom flags No Searching arbitrary headers No Partial fetching ? Proxy authentication yes, you can use what is called a Trusted Application

    Read the article

  • How do you deserialize a collection with child collections?

    - by Stuart Helwig
    I have a collection of custom entity objects one property of which is an ArrayList of byte arrays. The custom entity is serializable and the collection property is marked with the following attributes: [XmlArray("Images"), XmlArrayItem("Image",typeof(byte[]))] So I serialize a collection of these custom entities and pass them to a web service, as a string. The web service receives the string and byte array in tact, The following code then attempts to deserialize the collection - back into custom entities for processing... XmlSerializer ser = new XmlSerializer(typeof(List<myCustomEntity>)); StringReader reader = new StringReader(xmlStringPassedToWS); List<myCustomEntity> entities = (List<myCustomEntity>)ser.Deserialize(reader); foreach (myCustomEntity e in entities) { // ...do some stuff... foreach (myChildCollection c in entities.ChildCollection { // .. do some more stuff.... } } I've checked the XML resulting from the initial serialization and it does contain byte array - the child collection, as does the StringReader built above. After the deserialization process, the resulting collection of custom entites is fine, except that each object in the collection does not contain any items in its child collection. (i.e. it doesn't get to "...do some more stuff..." above. Can someone please explain what I am doing wrong? Is it possible to serialize ArrayLists within a generic collection of custom entities?

    Read the article

  • Facebook android app keeps crashing even though there are no errors in my code. Why?

    - by user1554479
    If you import the facebook SDK library, the code works (ignore the deprecated methods for now lol) and there are no errors or warnings. However, when I run my facebook app on my Android 2.2 or 4.2 emulator, the app crashes either upon opening or after the log on screen. Why? Is it because I'm not implementing Async Task? If so, how does that work? Here's my code: package com.sara.facebookappl; import java.io.IOException; import java.net.MalformedURLException; import java.net.URL; import org.json.JSONException; import org.json.JSONObject; import android.app.Activity; import android.content.Intent; import android.content.SharedPreferences; import android.content.SharedPreferences.Editor; import android.os.Bundle; import android.os.StrictMode; import android.view.Menu; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.ImageView; import android.widget.TextView; import android.widget.Toast; import com.facebook.android.DialogError; import com.facebook.android.Facebook; import com.facebook.android.Facebook.DialogListener; import com.facebook.android.FacebookError; import com.facebook.android.Util; public class MainActivity extends Activity implements OnClickListener, DialogListener { Facebook fb; ImageView button; SharedPreferences sp; TextView welcome; Button post; @SuppressWarnings("deprecation") @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); post=(Button)findViewById(R.id.button1); String APP_ID = getString(R.string.APP_ID); fb= new Facebook(APP_ID); sp =getPreferences(MODE_PRIVATE); String access_token=sp.getString("access_token", null); long expires=sp.getLong("access_expires", 0); if (access_token !=null) { fb.setAccessToken(access_token); } if(expires !=0) { fb.setAccessExpires(expires); } button=(ImageView)findViewById(R.id.login); button.setOnClickListener((OnClickListener) this); updateButtonImage(); } @SuppressWarnings("deprecation") private void updateButtonImage() { // TODO Auto-generated method stub post.setVisibility(Button.VISIBLE); button.setImageResource(R.drawable.com_facebook_loginbutton_blue); //logout button if (fb.isSessionValid()) { button.setImageResource(R.drawable.com_facebook_loginbutton_blue); // ^logout button JSONObject obj=null; URL img_url =null; try { String jsonUser= fb.request("me"); obj = Util.parseJson(jsonUser); String id=obj.optString("id"); String name = obj.optString("name"); welcome.setText("Welcome, " + name); }catch(FacebookError e) { e.printStackTrace(); }catch (JSONException e) { e.printStackTrace(); }catch (MalformedURLException e) { e.printStackTrace(); }catch (IOException e) { e.printStackTrace(); } }else { post.setVisibility(Button.VISIBLE); button.setImageResource(R.drawable.com_facebook_loginbutton_blue); } } @SuppressWarnings("deprecation") public void buttonClicks(View v) { switch (v.getId()) { case R.id.button1: //post Bundle params= new Bundle(); params.putString("name", "User X"); params.putString("caption", "Rating"); params.putString("description", "User X Rated"); params.putString("link", "http://..."); fb.dialog(MainActivity.this, "feed", params, new Facebook.DialogListener() { @Override public void onFacebookError(FacebookError e) { // TODO Auto-generated method stub } @Override public void onError(DialogError e) { // TODO Auto-generated method stub } @Override public void onComplete(Bundle values) { // TODO Auto-generated method stub } @Override public void onCancel() { // TODO Auto-generated method stub } }); break; } } @SuppressWarnings("deprecation") public void onClick(View v) { if(fb.isSessionValid()) { try { fb.logout(getApplicationContext()); updateButtonImage(); //button will close our our session }catch(MalformedURLException e) { e.printStackTrace(); } catch(IOException e) { e.printStackTrace(); } }else{ //login into facebook fb.authorize(MainActivity.this, new String[] {"email"}, new Facebook.DialogListener() { @Override public void onFacebookError(FacebookError e) { // TODO Auto-generated method stub Toast.makeText(MainActivity.this, "fbError", Toast.LENGTH_SHORT).show(); } @Override public void onError(DialogError e) { // TODO Auto-generated method stub Toast.makeText(MainActivity.this, "onError", Toast.LENGTH_SHORT).show(); } @Override public void onComplete(Bundle values) { // TODO Auto-generated method stub Editor editor=sp.edit(); editor.putString("access_token", fb.getAccessToken()); editor.putLong("access_expires", fb.getAccessExpires()); editor.commit(); updateButtonImage(); } @Override public void onCancel() { // TODO Auto-generated method stub Toast.makeText(MainActivity.this, "onCancel", Toast.LENGTH_SHORT).show(); } }); } } @Override public boolean onCreateOptionsMenu(Menu menu) { // Inflate the menu; this adds items to the action bar if it is present. getMenuInflater().inflate(R.menu.activity_main, menu); return true; } @SuppressWarnings("deprecation") @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { super.onActivityResult(requestCode, resultCode, data); fb.authorizeCallback(requestCode, resultCode, data); } @Override public void onComplete(Bundle values) { // TODO Auto-generated method stub } @Override public void onFacebookError(FacebookError e) { // TODO Auto-generated method stub } @Override public void onError(DialogError e) { // TODO Auto-generated method stub } @Override public void onCancel() { // TODO Auto-generated method stub } } LogCat Errors: 12-16 04:56:59.070: E/AndroidRuntime(822): FATAL EXCEPTION: main 12-16 04:56:59.070: E/AndroidRuntime(822): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.sara.facebookappl/com.sara.facebookappl.MainActivity}: android.os.NetworkOnMainThreadException 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2180) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2230) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread.access$600(ActivityThread.java:141) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1234) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.os.Handler.dispatchMessage(Handler.java:99) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.os.Looper.loop(Looper.java:137) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread.main(ActivityThread.java:5039) 12-16 04:56:59.070: E/AndroidRuntime(822): at java.lang.reflect.Method.invokeNative(Native Method) 12-16 04:56:59.070: E/AndroidRuntime(822): at java.lang.reflect.Method.invoke(Method.java:511) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:793) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:560) 12-16 04:56:59.070: E/AndroidRuntime(822): at dalvik.system.NativeStart.main(Native Method) 12-16 04:56:59.070: E/AndroidRuntime(822): Caused by: android.os.NetworkOnMainThreadException 12-16 04:56:59.070: E/AndroidRuntime(822): at android.os.StrictMode$AndroidBlockGuardPolicy.onNetwork(StrictMode.java:1117) 12-16 04:56:59.070: E/AndroidRuntime(822): at java.net.InetAddress.lookupHostByName(InetAddress.java:385) 12-16 04:56:59.070: E/AndroidRuntime(822): at java.net.InetAddress.getAllByNameImpl(InetAddress.java:236) 12-16 04:56:59.070: E/AndroidRuntime(822): at java.net.InetAddress.getAllByName(InetAddress.java:214) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpConnection.(HttpConnection.java:70) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpConnection.(HttpConnection.java:50) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpConnection$Address.connect(HttpConnection.java:340) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpConnectionPool.get(HttpConnectionPool.java:87) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpConnection.connect(HttpConnection.java:128) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpEngine.openSocketConnection(HttpEngine.java:316) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.makeSslConnection(HttpsURLConnectionImpl.java:461) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.connect(HttpsURLConnectionImpl.java:433) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpEngine.sendSocketRequest(HttpEngine.java:290) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpEngine.sendRequest(HttpEngine.java:240) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpURLConnectionImpl.getResponse(HttpURLConnectionImpl.java:282) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpURLConnectionImpl.getInputStream(HttpURLConnectionImpl.java:177) 12-16 04:56:59.070: E/AndroidRuntime(822): at libcore.net.http.HttpsURLConnectionImpl.getInputStream(HttpsURLConnectionImpl.java:271) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.facebook.android.Util.openUrl(Util.java:219) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.facebook.android.Facebook.requestImpl(Facebook.java:806) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.facebook.android.Facebook.request(Facebook.java:732) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.sara.facebookappl.MainActivity.updateButtonImage(MainActivity.java:83) 12-16 04:56:59.070: E/AndroidRuntime(822): at com.sara.facebookappl.MainActivity.onCreate(MainActivity.java:63) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.Activity.performCreate(Activity.java:5104) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1080) 12-16 04:56:59.070: E/AndroidRuntime(822): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2144) 12-16 04:56:59.070: E/AndroidRuntime(822): ... 11 more 12-16 04:56:59.090: D/dalvikvm(822): GC_CONCURRENT freed 150K, 9% free 2723K/2988K, paused 7ms+58ms, total 239ms

    Read the article

  • How to make sure an action completes before you continue

    - by HurkNburkS
    I am trying to close a UIView thats in one method from another method by calling it, The UIView closes fine but not untill after all of the processes are finished in the current method. I would like to know if there is a way to force the first thing to happen first (i.e. close UIviews) then continue the current method? This is what my method looks like - (void)selectDeselectAllPressed:(UIButton*)button { int id = button.tag; [SVProgressHUD showWithStatus:@"Updating" maskType:SVProgressHUDMaskTypeGradient]; [self displaySelected]; // removes current view so you can load hud will not be behind it if (id == 1) { [self selectAllD]; } else if (id == 2) { [self deselectAllD]; } else if (id == 3) { [self selectAllI]; } else if (id == 4) { [self deselectAllI]; } } as you can see what happens is this method is called when a button is pressed, I would like for the displaySelected method to do what it needs to do before any of the other methods are called? Currently what happes when i debug this is displaySelected method is called the thread walks through that then continues to the if statment then after the method in the if statment has finished then displaySelected changes are made... its so weird. any help would be greatly appreciated.

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

  • AuthnRequest Settings in OIF / SP

    - by Damien Carru
    In this article, I will list the various OIF/SP settings that affect how an AuthnRequest message is created in OIF in a Federation SSO flow. The AuthnRequest message is used by an SP to start a Federation SSO operation and to indicate to the IdP how the operation should be executed: How the user should be challenged at the IdP Whether or not the user should be challenged at the IdP, even if a session already exists at the IdP for this user Which NameID format should be requested in the SAML Assertion Which binding (Artifact or HTTP-POST) should be requested from the IdP to send the Assertion Which profile should be used by OIF/SP to send the AuthnRequest message Enjoy the reading! Protocols The SAML 2.0, SAML 1.1 and OpenID 2.0 protocols define different message elements and rules that allow an administrator to influence the Federation SSO flows in different manners, when the SP triggers an SSO operation: SAML 2.0 allows extensive customization via the AuthnRequest message SAML 1.1 does not allow any customization, since the specifications do not define an authentication request message OpenID 2.0 allows for some customization, mainly via the OpenID 2.0 extensions such as PAPE or UI SAML 2.0 OIF/SP allows the customization of the SAML 2.0 AuthnRequest message for the following elements: ForceAuthn: Boolean indicating whether or not the IdP should force the user for re-authentication, even if the user has still a valid session By default set to false IsPassive Boolean indicating whether or not the IdP is allowed to interact with the user as part of the Federation SSO operation. If false, the Federation SSO operation might result in a failure with the NoPassive error code, because the IdP will not have been able to identify the user By default set to false RequestedAuthnContext Element indicating how the user should be challenged at the IdP If the SP requests a Federation Authentication Method unknown to the IdP or for which the IdP is not configured, then the Federation SSO flow will result in a failure with the NoAuthnContext error code By default missing NameIDPolicy Element indicating which NameID format the IdP should include in the SAML Assertion If the SP requests a NameID format unknown to the IdP or for which the IdP is not configured, then the Federation SSO flow will result in a failure with the InvalidNameIDPolicy error code If missing, the IdP will generally use the default NameID format configured for this SP partner at the IdP By default missing ProtocolBinding Element indicating which SAML binding should be used by the IdP to redirect the user to the SP with the SAML Assertion Set to Artifact or HTTP-POST By default set to HTTP-POST OIF/SP also allows the administrator to configure the server to: Set which binding should be used by OIF/SP to redirect the user to the IdP with the SAML 2.0 AuthnRequest message: Redirect or HTTP-POST By default set to Redirect Set which binding should be used by OIF/SP to redirect the user to the IdP during logout with SAML 2.0 Logout messages: Redirect or HTTP-POST By default set to Redirect SAML 1.1 The SAML 1.1 specifications do not define a message for the SP to send to the IdP when a Federation SSO operation is started. As such, there is no capability to configure OIF/SP on how to affect the start of the Federation SSO flow. OpenID 2.0 OpenID 2.0 defines several extensions that can be used by the SP/RP to affect how the Federation SSO operation will take place: OpenID request: mode: String indicating if the IdP/OP can visually interact with the user checkid_immediate does not allow the IdP/OP to interact with the user checkid_setup allows user interaction By default set to checkid_setup PAPE Extension: max_auth_age : Integer indicating in seconds the maximum amount of time since when the user authenticated at the IdP. If MaxAuthnAge is bigger that the time since when the user last authenticated at the IdP, then the user must be re-challenged. OIF/SP will set this attribute to 0 if the administrator configured ForceAuthn to true, otherwise this attribute won't be set Default missing preferred_auth_policies Contains a Federation Authentication Method Element indicating how the user should be challenged at the IdP By default missing Only specified in the OpenID request if the IdP/OP supports PAPE in XRDS, if OpenID discovery is used. UI Extension Popup mode Boolean indicating the popup mode is enabled for the Federation SSO By default missing Language Preference String containing the preferred language, set based on the browser's language preferences. By default missing Icon: Boolean indicating if the icon feature is enabled. In that case, the IdP/OP would look at the SP/RP XRDS to determine how to retrieve the icon By default missing Only specified in the OpenID request if the IdP/OP supports UI Extenstion in XRDS, if OpenID discovery is used. ForceAuthn and IsPassive WLST Command OIF/SP provides the WLST configureIdPAuthnRequest() command to set: ForceAuthn as a boolean: In a SAML 2.0 AuthnRequest, the ForceAuthn field will be set to true or false In an OpenID 2.0 request, if ForceAuthn in the configuration was set to true, then the max_auth_age field of the PAPE request will be set to 0, otherwise, max_auth_age won't be set IsPassive as a boolean: In a SAML 2.0 AuthnRequest, the IsPassive field will be set to true or false In an OpenID 2.0 request, if IsPassive in the configuration was set to true, then the mode field of the OpenID request will be set to checkid_immediate, otherwise set to checkid_setup Test In this test, OIF/SP is integrated with a remote SAML 2.0 IdP Partner, with the OOTB configuration. Based on this setup, when OIF/SP starts a Federation SSO flow, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer>   <samlp:NameIDPolicy AllowCreate="true"/></samlp:AuthnRequest> Let's configure OIF/SP for that IdP Partner, so that the SP will require the IdP to re-challenge the user, even if the user is already authenticated: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the configureIdPAuthnRequest() command:configureIdPAuthnRequest(partner="AcmeIdP", forceAuthn="true") Exit the WLST environment:exit() After the changes, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ForceAuthn="true" ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer>   <samlp:NameIDPolicy AllowCreate="true"/></samlp:AuthnRequest> To display or delete the ForceAuthn/IsPassive settings, perform the following operatons: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the configureIdPAuthnRequest() command: To display the ForceAuthn/IsPassive settings on the partnerconfigureIdPAuthnRequest(partner="AcmeIdP", displayOnly="true") To delete the ForceAuthn/IsPassive settings from the partnerconfigureIdPAuthnRequest(partner="AcmeIdP", delete="true") Exit the WLST environment:exit() Requested Fed Authn Method In my earlier "Fed Authentication Method Requests in OIF / SP" article, I discussed how OIF/SP could be configured to request a specific Federation Authentication Method from the IdP when starting a Federation SSO operation, by setting elements in the SSO request message. WLST Command The OIF WLST commands that can be used are: setIdPPartnerProfileRequestAuthnMethod() which will configure the requested Federation Authentication Method in a specific IdP Partner Profile, and accepts the following parameters: partnerProfile: name of the IdP Partner Profile authnMethod: the Federation Authentication Method to request displayOnly: an optional parameter indicating if the method should display the current requested Federation Authentication Method instead of setting it delete: an optional parameter indicating if the method should delete the current requested Federation Authentication Method instead of setting it setIdPPartnerRequestAuthnMethod() which will configure the specified IdP Partner entry with the requested Federation Authentication Method, and accepts the following parameters: partner: name of the IdP Partner authnMethod: the Federation Authentication Method to request displayOnly: an optional parameter indicating if the method should display the current requested Federation Authentication Method instead of setting it delete: an optional parameter indicating if the method should delete the current requested Federation Authentication Method instead of setting it This applies to SAML 2.0 and OpenID 2.0 protocols. See the "Fed Authentication Method Requests in OIF / SP" article for more information. Test In this test, OIF/SP is integrated with a remote SAML 2.0 IdP Partner, with the OOTB configuration. Based on this setup, when OIF/SP starts a Federation SSO flow, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer>   <samlp:NameIDPolicy AllowCreate="true"/></samlp:AuthnRequest> Let's configure OIF/SP for that IdP Partner, so that the SP will request the IdP to use a mechanism mapped to the urn:oasis:names:tc:SAML:2.0:ac:classes:X509 Federation Authentication Method to authenticate the user: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setIdPPartnerRequestAuthnMethod() command:setIdPPartnerRequestAuthnMethod("AcmeIdP", "urn:oasis:names:tc:SAML:2.0:ac:classes:X509") Exit the WLST environment:exit() After the changes, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer>   <samlp:NameIDPolicy AllowCreate="true"/>   <samlp:RequestedAuthnContext Comparison="minimum">      <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">         urn:oasis:names:tc:SAML:2.0:ac:classes:X509      </saml:AuthnContextClassRef>   </samlp:RequestedAuthnContext></samlp:AuthnRequest> NameID Format The SAML 2.0 protocol allows for the SP to request from the IdP a specific NameID format to be used when the Assertion is issued by the IdP. Note: SAML 1.1 and OpenID 2.0 do not provide such a mechanism Configuring OIF The administrator can configure OIF/SP to request a NameID format in the SAML 2.0 AuthnRequest via: The OAM Administration Console, in the IdP Partner entry The OIF WLST setIdPPartnerNameIDFormat() command that will modify the IdP Partner configuration OAM Administration Console To configure the requested NameID format via the OAM Administration Console, perform the following steps: Go to the OAM Administration Console: http(s)://oam-admin-host:oam-admin-port/oamconsole Navigate to Identity Federation -> Service Provider Administration Open the IdP Partner you wish to modify In the Authentication Request NameID Format dropdown box with one of the values None The NameID format will be set Default Email Address The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress X.509 Subject The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName Windows Name Qualifier The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName Kerberos The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos Transient The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:transient Unspecified The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified Custom In this case, a field would appear allowing the administrator to indicate the custom NameID format to use The NameID format will be set to the specified format Persistent The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:persistent I selected Email Address in this example Save WLST Command To configure the requested NameID format via the OIF WLST setIdPPartnerNameIDFormat() command, perform the following steps: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setIdPPartnerNameIDFormat() command:setIdPPartnerNameIDFormat("PARTNER", "FORMAT", customFormat="CUSTOM") Replace PARTNER with the IdP Partner name Replace FORMAT with one of the following: orafed-none The NameID format will be set Default orafed-emailaddress The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress orafed-x509 The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName orafed-windowsnamequalifier The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName orafed-kerberos The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos orafed-transient The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:transient orafed-unspecified The NameID format will be set urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified orafed-custom In this case, a field would appear allowing the administrator to indicate the custom NameID format to use The NameID format will be set to the specified format orafed-persistent The NameID format will be set urn:oasis:names:tc:SAML:2.0:nameid-format:persistent customFormat will need to be set if the FORMAT is set to orafed-custom An example would be:setIdPPartnerNameIDFormat("AcmeIdP", "orafed-emailaddress") Exit the WLST environment:exit() Test In this test, OIF/SP is integrated with a remote SAML 2.0 IdP Partner, with the OOTB configuration. Based on this setup, when OIF/SP starts a Federation SSO flow, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer> <samlp:NameIDPolicy AllowCreate="true"/></samlp:AuthnRequest> After the changes performed either via the OAM Administration Console or via the OIF WLST setIdPPartnerNameIDFormat() command where Email Address would be requested as the NameID Format, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ForceAuthn="false" IsPassive="false" ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer> <samlp:NameIDPolicy Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress" AllowCreate="true"/></samlp:AuthnRequest> Protocol Binding The SAML 2.0 specifications define a way for the SP to request which binding should be used by the IdP to redirect the user to the SP with the SAML 2.0 Assertion: the ProtocolBinding attribute indicates the binding the IdP should use. It is set to: Either urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST for HTTP-POST Or urn:oasis:names:tc:SAML:2.0:bindings:Artifact for Artifact The SAML 2.0 specifications also define different ways to redirect the user from the SP to the IdP with the SAML 2.0 AuthnRequest message, as the SP can send the message: Either via HTTP Redirect Or HTTP POST (Other bindings can theoretically be used such as Artifact, but these are not used in practice) Configuring OIF OIF can be configured: Via the OAM Administration Console or the OIF WLST configureSAMLBinding() command to set the Assertion Response binding to be used Via the OIF WLST configureSAMLBinding() command to indicate how the SAML AuthnRequest message should be sent Note: the binding for sending the SAML 2.0 AuthnRequest message will also be used to send the SAML 2.0 LogoutRequest and LogoutResponse messages. OAM Administration Console To configure the SSO Response/Assertion Binding via the OAM Administration Console, perform the following steps: Go to the OAM Administration Console: http(s)://oam-admin-host:oam-admin-port/oamconsole Navigate to Identity Federation -> Service Provider Administration Open the IdP Partner you wish to modify Check the "HTTP POST SSO Response Binding" box to request the IdP to return the SSO Response via HTTP POST, otherwise uncheck it to request artifact Save WLST Command To configure the SSO Response/Assertion Binding as well as the AuthnRequest Binding via the OIF WLST configureSAMLBinding() command, perform the following steps: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the configureSAMLBinding() command:configureSAMLBinding("PARTNER", "PARTNER_TYPE", binding, ssoResponseBinding="httppost") Replace PARTNER with the Partner name Replace PARTNER_TYPE with the Partner type (idp or sp) Replace binding with the binding to be used to send the AuthnRequest and LogoutRequest/LogoutResponse messages (should be httpredirect in most case; default) httppost for HTTP-POST binding httpredirect for HTTP-Redirect binding Specify optionally ssoResponseBinding to indicate how the SSO Assertion should be sent back httppost for HTTP-POST binding artifactfor for Artifact binding An example would be:configureSAMLBinding("AcmeIdP", "idp", "httpredirect", ssoResponseBinding="httppost") Exit the WLST environment:exit() Test In this test, OIF/SP is integrated with a remote SAML 2.0 IdP Partner, with the OOTB configuration which requests HTTP-POST from the IdP to send the SSO Assertion. Based on this setup, when OIF/SP starts a Federation SSO flow, the following SAML 2.0 AuthnRequest would be generated: <samlp:AuthnRequest ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" ID="id-E4BOT7lwbYK56lO57dBaqGUFq01WJSjAHiSR60Q4" Version="2.0" IssueInstant="2014-04-01T21:39:14Z" Destination="https://acme.com/saml20/sso">   <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">https://sp.com/oam/fed</saml:Issuer>   <samlp:NameIDPolicy AllowCreate="true"/></samlp:AuthnRequest> In the next article, I will cover the various crypto configuration properties in OIF that are used to affect the Federation SSO exchanges.Cheers,Damien Carru

    Read the article

  • Async CTP (C# 5): How to make WCF work with Async CTP

    - by javarg
    If you have recently downloaded the new Async CTP you will notice that WCF uses Async Pattern and Event based Async Pattern in order to expose asynchronous operations. In order to make your service compatible with the new Async/Await Pattern try using an extension method similar to the following: WCF Async/Await Method public static class ServiceExtensions {     public static Task<DateTime> GetDateTimeTaskAsync(this Service1Client client)     {         return Task.Factory.FromAsync<DateTime>(             client.BeginGetDateTime(null, null),             ar => client.EndGetDateTime(ar));     } } The previous code snippet adds an extension method to the GetDateTime method of the Service1Client WCF proxy. Then used it like this (remember to add the extension method’s namespace into scope in order to use it): Code Snippet var client = new Service1Client(); var dt = await client.GetDateTimeTaskAsync(); Replace the proxy’s type and operation name for the one you want to await.

    Read the article

  • RIDC Accelerator for Portal

    - by Stefan Krantz
    What is RIDC?Remote IntraDoc Client is a Java enabled API that leverages simple transportation protocols like Socket, HTTP and JAX/WS to execute content service operations in WebCenter Content Server. Each operation by design in the Content Server will execute stateless and return a complete result of the request. Each request object simply specifies the in a Map format (key and value pairs) what service to call and what parameters settings to apply. The result responded with will be built on the same Map format (key and value pairs). The possibilities with RIDC is endless since you can consume any available service (even custom made ones), RIDC can be executed from any Java SE application that has any WebCenter Content Services needs. WebCenter Portal and the example Accelerator RIDC adapter frameworkWebCenter Portal currently integrates and leverages WebCenter Content Services to enable available use cases in the portal today, like Content Presenter and Doc Lib. However the current use cases only covers few of the scenarios that the Content Server has to offer, in addition to the existing use cases it is not rare that the customer requirements requires additional steps and functionality that is provided by WebCenter Content but not part of the use cases from the WebCenter Portal.The good news to this is RIDC, the second good news is that WebCenter Portal already leverages the RIDC and has a connection management framework in place. The million dollar question here is how can I leverage this infrastructure for my custom use cases. Oracle A-Team has during its interactions produced a accelerator adapter framework that will reuse and leverage the existing connections provisioned in the webcenter portal application (works for WebCenter Spaces as well), as well as a very comprehensive design patter to minimize the work involved when exposing functionality. Let me introduce the RIDCCommon framework for accelerating WebCenter Content consumption from WebCenter Portal including Spaces. How do I get started?Through a few easy steps you will be on your way, Extract the zip file RIDCCommon.zip to the WebCenter Portal Application file structure (PortalApp) Open you Portal Application in JDeveloper (PS4/PS5) select to open the project in your application - this will add the project as a member of the application Update the Portal project dependencies to include the new RIDCCommon project Make sure that you WebCenter Content Server connection is marked as primary (a checkbox at the top of the connection properties form) You should by this stage have a similar structure in your JDeveloper Application Project Portal Project PortalWebAssets Project RIDCCommon Since the API is coming with some example operations that has already been exposed as DataControl actions, if you open Data Controls accordion you should see following: How do I implement my own operation? Create a new Java Class in for example com.oracle.ateam.portal.ridc.operation call it (GetDocInfoOperation) Extend the abstract class com.oracle.ateam.portal.ridc.operation.RIDCAbstractOperation and implement the interface com.oracle.ateam.portal.ridc.operation.IRIDCOperation The only method you actually are required to implement is execute(RIDCManager, IdcClient, IdcContext) The best practice to set object references for the operation is through the Constructor, example below public GetDocInfoOperation(String dDocName)By leveraging the constructor you can easily force the implementing class to pass right information, you can also overload the Constructor with more or less parameters as required Implement the execute method, the work you supposed to execute here is creating a new request binder and retrieve a response binder with the information in the request binder.In this case the dDocName for which we want the DocInfo Secondly you have to process the response binder by extracting the information you need from the request and restore this information in a simple POJO Java BeanIn the example below we do this in private void processResult(DataBinder responseData) - the new SearchDataObject is a Member of the GetDocInfoOperation so we can return this from a access method. Since the RIDCCommon API leverage template pattern for the operations you are now required to add a method that will enable access to the result after the execution of the operationIn the example below we added the method public SearchDataObject getDataObject() - this method returns the pre processed SearchDataObject from the execute method  This is it, as you can see on the code below you do not need more than 32 lines of very simple code 1: public class GetDocInfoOperation extends RIDCAbstractOperation implements IRIDCOperation { 2: private static final String DOC_INFO_BY_NAME = "DOC_INFO_BY_NAME"; 3: private String dDocName = null; 4: private SearchDataObject sdo = null; 5: 6: public GetDocInfoOperation(String dDocName) { 7: super(); 8: this.dDocName = dDocName; 9: } 10:   11: public boolean execute(RIDCManager manager, IdcClient client, 12: IdcContext userContext) throws Exception { 13: DataBinder dataBinder = createNewRequestBinder(DOC_INFO_BY_NAME); 14: dataBinder.putLocal(DocumentAttributeDef.NAME.getName(), dDocName); 15: 16: DataBinder responseData = getResponseBinder(dataBinder); 17: processResult(responseData); 18: return true; 19: } 20: 21: private void processResult(DataBinder responseData) { 22: DataResultSet rs = responseData.getResultSet("DOC_INFO"); 23: for(DataObject dobj : rs.getRows()) { 24: this.sdo = new SearchDataObject(dobj); 25: } 26: super.setMessage(responseData.getLocal(ATTR_MESSAGE)); 27: } 28: 29: public SearchDataObject getDataObject() { 30: return this.sdo; 31: } 32: } How do I execute my operation? In the previous section we described how to create a operation, so by now you should be ready to execute the operation Step one either add a method to the class  com.oracle.ateam.portal.datacontrol.ContentServicesDC or a class of your own choiceRemember the RIDCManager is a very light object and can be created where needed Create a method signature look like this public SearchDataObject getDocInfo(String dDocName) throws Exception In the method body - create a new instance of GetDocInfoOperation and meet the constructor requirements by passing the dDocNameGetDocInfoOperation docInfo = new GetDocInfoOperation(dDocName) Execute the operation via the RIDCManager instance rMgr.executeOperation(docInfo) Return the result by accessing it from the executed operationreturn docInfo.getDataObject() 1: private RIDCManager rMgr = null; 2: private String lastOperationMessage = null; 3:   4: public ContentServicesDC() { 5: super(); 6: this.rMgr = new RIDCManager(); 7: } 8: .... 9: public SearchDataObject getDocInfo(String dDocName) throws Exception { 10: GetDocInfoOperation docInfo = new GetDocInfoOperation(dDocName); 11: boolean boolVal = rMgr.executeOperation(docInfo); 12: lastOperationMessage = docInfo.getMessage(); 13: return docInfo.getDataObject(); 14: }   Get the binaries! The enclosed code in a example that can be used as a reference on how to consume and leverage similar use cases, user has to guarantee appropriate quality and support.  Download link: https://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/RIDCCommon.zip RIDC API Referencehttp://docs.oracle.com/cd/E23943_01/apirefs.1111/e17274/toc.htm

    Read the article

  • Problem when using ajax for refresh captcha with refresh button [closed]

    - by jowan
    But it doesn't work, I just get my image be vanished and I try METHOD 2, I think it can work but I'm wrong coz i just get display with code of image not new captcha image I am stack and confuse about what method exactly work to refresh my own captcha.. Any wrong in my code or my method can't be used to refresh captcha.. Could anyone tell me how to refresh captcha exactly ? Thanks in Advance JQUERY CODE $('.refresh_captcha').click( function(){ $.ajax({ type: 'POST', url: 'captcha_mk.php', success: function(data){ //$('img').attr('src', data); // METHOD 1 ( I try it and my image is lost ) $('div').html('<img src=' + data); // METHOD 2 ( display code of image not captcha image) } }); });

    Read the article

< Previous Page | 303 304 305 306 307 308 309 310 311 312 313 314  | Next Page >