Search Results

Search found 7738 results on 310 pages for 'calling convention'.

Page 309/310 | < Previous Page | 305 306 307 308 309 310  | Next Page >

  • Linked List manipulation, issues retrieving data c++

    - by floatfil
    I'm trying to implement some functions to manipulate a linked list. The implementation is a template typename T and the class is 'List' which includes a 'head' pointer and also a struct: struct Node { // the node in a linked list T* data; // pointer to actual data, operations in T Node* next; // pointer to a Node }; Since it is a template, and 'T' can be any data, how do I go about checking the data of a list to see if it matches the data input into the function? The function is called 'retrieve' and takes two parameters, the data and a pointer: bool retrieve(T target, T*& ptr); // This is the prototype we need to use for the project "bool retrieve : similar to remove, but not removed from list. If there are duplicates in the list, the first one encountered is retrieved. Second parameter is unreliable if return value is false. E.g., " Employee target("duck", "donald"); success = company1.retrieve(target, oneEmployee); if (success) { cout << "Found in list: " << *oneEmployee << endl; } And the function is called like this: company4.retrieve(emp3, oneEmployee) So that when you cout *oneEmployee, you'll get the data of that pointer (in this case the data is of type Employee). (Also, this is assuming all data types have the apropriate overloaded operators) I hope this makes sense so far, but my issue is in comparing the data in the parameter and the data while going through the list. (The data types that we use all include overloads for equality operators, so oneData == twoData is valid) This is what I have so far: template <typename T> bool List<T>::retrieve(T target , T*& ptr) { List<T>::Node* dummyPtr = head; // point dummy pointer to what the list's head points to for(;;) { if (*dummyPtr->data == target) { // EDIT: it now compiles, but it breaks here and I get an Access Violation error. ptr = dummyPtr->data; // set the parameter pointer to the dummy pointer return true; // return true } else { dummyPtr = dummyPtr->next; // else, move to the next data node } } return false; } Here is the implementation for the Employee class: //-------------------------- constructor ----------------------------------- Employee::Employee(string last, string first, int id, int sal) { idNumber = (id >= 0 && id <= MAXID? id : -1); salary = (sal >= 0 ? sal : -1); lastName = last; firstName = first; } //-------------------------- destructor ------------------------------------ // Needed so that memory for strings is properly deallocated Employee::~Employee() { } //---------------------- copy constructor ----------------------------------- Employee::Employee(const Employee& E) { lastName = E.lastName; firstName = E.firstName; idNumber = E.idNumber; salary = E.salary; } //-------------------------- operator= --------------------------------------- Employee& Employee::operator=(const Employee& E) { if (&E != this) { idNumber = E.idNumber; salary = E.salary; lastName = E.lastName; firstName = E.firstName; } return *this; } //----------------------------- setData ------------------------------------ // set data from file bool Employee::setData(ifstream& inFile) { inFile >> lastName >> firstName >> idNumber >> salary; return idNumber >= 0 && idNumber <= MAXID && salary >= 0; } //------------------------------- < ---------------------------------------- // < defined by value of name bool Employee::operator<(const Employee& E) const { return lastName < E.lastName || (lastName == E.lastName && firstName < E.firstName); } //------------------------------- <= ---------------------------------------- // < defined by value of inamedNumber bool Employee::operator<=(const Employee& E) const { return *this < E || *this == E; } //------------------------------- > ---------------------------------------- // > defined by value of name bool Employee::operator>(const Employee& E) const { return lastName > E.lastName || (lastName == E.lastName && firstName > E.firstName); } //------------------------------- >= ---------------------------------------- // < defined by value of name bool Employee::operator>=(const Employee& E) const { return *this > E || *this == E; } //----------------- operator == (equality) ---------------- // if name of calling and passed object are equal, // return true, otherwise false // bool Employee::operator==(const Employee& E) const { return lastName == E.lastName && firstName == E.firstName; } //----------------- operator != (inequality) ---------------- // return opposite value of operator== bool Employee::operator!=(const Employee& E) const { return !(*this == E); } //------------------------------- << --------------------------------------- // display Employee object ostream& operator<<(ostream& output, const Employee& E) { output << setw(4) << E.idNumber << setw(7) << E.salary << " " << E.lastName << " " << E.firstName << endl; return output; } I will include a check for NULL pointer but I just want to get this working and will test it on a list that includes the data I am checking. Thanks to whoever can help and as usual, this is for a course so I don't expect or want the answer, but any tips as to what might be going wrong will help immensely!

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • PSTN Trunk TDM400P Install on Asterisk / Trixbox

    - by Jona
    Hey All, I'm trying to get a TDM400P card with FXO module to connect to our PSTN line. The card is correctly detected by Linux: [trixbox1.localdomain asterisk]# lspci 00:09.0 Communication controller: Tiger Jet Network Inc. Tiger3XX Modem/ISDN interface I've run setup-pstn which produces the following output trixbox1.localdomain ~]# setup-pstn -------------------------------------------------------------- Detecting PSTN cards and USB PSTN Devices -------------------------------------------------------------- Hardware present! STOPPING ASTERISK Asterisk Stopped STOPPING FOP SERVER FOP Server Stopped Unloading DAHDI hardware modules: done Loading DAHDI hardware modules: wct4xxp: [ OK ] wcte12xp: [ OK ] wct1xxp: [ OK ] wcte11xp: [ OK ] wctdm24xxp: [ OK ] opvxa1200: [ OK ] wcfxo: [ OK ] wctdm: [ OK ] wcb4xxp: [ OK ] wctc4xxp: [ OK ] xpp_usb: [ OK ] Running dahdi_cfg: [ OK ] SETTING FILE PERMISSIONS Permissions OK STARTING ASTERISK Asterisk Started STARTING FOP SERVER FOP Server Started Chan Extension Context Language MOH Interpret Blocked State pseudo default en default In Service 1 from-pstn en default In Service dahdi_scan returns: dahdi_scan [1] active=yes alarms=OK description=Wildcard TDM400P REV I Board 5 name=WCTDM/4 manufacturer=Digium devicetype=Wildcard TDM400P REV I location=PCI Bus 00 Slot 10 basechan=1 totchans=4 irq=209 type=analog port=1,FXO port=2,none port=3,none port=4,none And asterisk can see the channel: > trixbox1*CLI> dahdi show channel 1 > Channel: 1LI> File Descriptor: 14 > Span: 11*CLI> Extension: I> Dialing: > noI> Context: from-pstn Caller ID: I> > Calling TON: 0 Caller ID name: > Mailbox: none Destroy: 0LI> InAlarm: > 1LI> Signalling Type: FXS Kewlstart > Radio: 0*CLI> Owner: <None> Real: > <None>> Callwait: <None> Threeway: > <None> Confno: -1LI> Propagated > Conference: -1 Real in conference: 0 > DSP: no1*CLI> Busy Detection: no TDD: > no1*CLI> Relax DTMF: no > Dialing/CallwaitCAS: 0/0 Default law: > ulaw Fax Handled: no Pulse phone: no > DND: no1*CLI> Echo Cancellation: > trixbox1128 taps trixbox1(unless TDM > bridged) currently OFF Actual > Confinfo: Num/0, Mode/0x0000 Actual > Confmute: No > Hookstate (FXS only): Onhook A cat of /etc/asterisk/dahdi.conf shows: [trixbox1.localdomain ~]# cat /etc/asterisk/dahdi-channels.conf ; Autogenerated by /usr/sbin/dahdi_genconf on Tue May 25 17:45:13 2010 ; If you edit this file and execute /usr/sbin/dahdi_genconf again, ; your manual changes will be LOST. ; Dahdi Channels Configurations (chan_dahdi.conf) ; ; This is not intended to be a complete chan_dahdi.conf. Rather, it is intended ; to be #include-d by /etc/chan_dahdi.conf that will include the global settings ; ; Span 1: WCTDM/4 "Wildcard TDM400P REV I Board 5" (MASTER) ;;; line="1 WCTDM/4/0 FXSKS (SWEC: MG2)" signalling=fxs_ks callerid=asreceived group=0 context=from-pstn channel => 1 callerid= group= context=default I have configured a "ZAP Trunk (DAHDI compatibility Mode)" with the ZAP identifier 1 and an outbound route, but when ever I try to make an external call via it I get the "All Circuits are busy now, please try your call again later message". I have one outbound route which uses the dial pattern 9|. and the Trunk Zap/1 and one Zap Trunk which uses Zap Identifier (trunk name): 1 and has no Dial Rules. The FXO module is directly connected to our phone line from BT via a BT-RJ11 cable. When running tail -f /var/log/asterisk/full and placing a call I get the following output: [May 26 11:10:52] VERBOSE[2723] logger.c: == Using SIP RTP TOS bits 184 [May 26 11:10:52] VERBOSE[2723] logger.c: == Using SIP RTP CoS mark 5 [May 26 11:10:52] VERBOSE[2723] logger.c: == Using SIP VRTP TOS bits 136 [May 26 11:10:52] VERBOSE[2723] logger.c: == Using SIP VRTP CoS mark 6 [May 26 11:10:52] WARNING[2661] pbx.c: FONALITY: This thread has already held the conlock, skip locking [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [901483890915@from-internal:1] Macro("SIP/801-b7ce8c28", "user-callerid,SKIPTTL,") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:1] Set("SIP/801-b7ce8c28", "AMPUSER=801") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:2] GotoIf("SIP/801-b7ce8c28", "0?report") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:3] ExecIf("SIP/801-b7ce8c28", "1?Set(REALCALLERIDNUM=801)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:4] Set("SIP/801-b7ce8c28", "AMPUSER=801") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:5] Set("SIP/801-b7ce8c28", "AMPUSERCIDNAME=Jona") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:6] GotoIf("SIP/801-b7ce8c28", "0?report") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:7] Set("SIP/801-b7ce8c28", "AMPUSERCID=801") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:8] Set("SIP/801-b7ce8c28", "CALLERID(all)="Jona" <801>") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:9] Set("SIP/801-b7ce8c28", "REALCALLERIDNUM=801") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:10] ExecIf("SIP/801-b7ce8c28", "0?Set(CHANNEL(language)=)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:11] GotoIf("SIP/801-b7ce8c28", "1?continue") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-user-callerid,s,20) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-user-callerid:20] NoOp("SIP/801-b7ce8c28", "Using CallerID "Jona" <801>") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [901483890915@from-internal:2] Set("SIP/801-b7ce8c28", "_NODEST=") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [901483890915@from-internal:3] Macro("SIP/801-b7ce8c28", "record-enable,801,OUT,") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-record-enable:1] GotoIf("SIP/801-b7ce8c28", "1?check") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-record-enable,s,4) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-record-enable:4] AGI("SIP/801-b7ce8c28", "recordingcheck,20100526-111052,1274868652.1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Launched AGI Script /var/lib/asterisk/agi-bin/recordingcheck [May 26 11:10:52] VERBOSE[2858] logger.c: recordingcheck,20100526-111052,1274868652.1: Outbound recording not enabled [May 26 11:10:52] VERBOSE[2858] logger.c: -- <SIP/801-b7ce8c28>AGI Script recordingcheck completed, returning 0 [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-record-enable:5] MacroExit("SIP/801-b7ce8c28", "") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [901483890915@from-internal:4] Macro("SIP/801-b7ce8c28", "dialout-trunk,1,01483890915,") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:1] Set("SIP/801-b7ce8c28", "DIAL_TRUNK=1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:2] GosubIf("SIP/801-b7ce8c28", "0?sub-pincheck,s,1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:3] GotoIf("SIP/801-b7ce8c28", "0?disabletrunk,1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:4] Set("SIP/801-b7ce8c28", "DIAL_NUMBER=01483890915") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:5] Set("SIP/801-b7ce8c28", "DIAL_TRUNK_OPTIONS=tr") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:6] Set("SIP/801-b7ce8c28", "OUTBOUND_GROUP=OUT_1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:7] GotoIf("SIP/801-b7ce8c28", "1?nomax") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-dialout-trunk,s,9) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:9] GotoIf("SIP/801-b7ce8c28", "0?skipoutcid") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:10] Set("SIP/801-b7ce8c28", "DIAL_TRUNK_OPTIONS=") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:11] Macro("SIP/801-b7ce8c28", "outbound-callerid,1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:1] ExecIf("SIP/801-b7ce8c28", "0?Set(CALLERPRES()=)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:2] ExecIf("SIP/801-b7ce8c28", "0?Set(REALCALLERIDNUM=801)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:3] GotoIf("SIP/801-b7ce8c28", "1?normcid") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-outbound-callerid,s,6) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:6] Set("SIP/801-b7ce8c28", "USEROUTCID=") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:7] Set("SIP/801-b7ce8c28", "EMERGENCYCID=") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:8] Set("SIP/801-b7ce8c28", "TRUNKOUTCID=") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:9] GotoIf("SIP/801-b7ce8c28", "1?trunkcid") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-outbound-callerid,s,12) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:12] ExecIf("SIP/801-b7ce8c28", "0?Set(CALLERID(all)=)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:13] ExecIf("SIP/801-b7ce8c28", "0?Set(CALLERID(all)=)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outbound-callerid:14] ExecIf("SIP/801-b7ce8c28", "0?Set(CALLERPRES()=prohib_passed_screen)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:12] ExecIf("SIP/801-b7ce8c28", "0?AGI(fixlocalprefix)") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:13] Set("SIP/801-b7ce8c28", "OUTNUM=01483890915") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:14] Set("SIP/801-b7ce8c28", "custom=DAHDI/1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:15] ExecIf("SIP/801-b7ce8c28", "0?Set(DIAL_TRUNK_OPTIONS=M(setmusic^))") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:16] Macro("SIP/801-b7ce8c28", "dialout-trunk-predial-hook,") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk-predial-hook:1] MacroExit("SIP/801-b7ce8c28", "") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:17] GotoIf("SIP/801-b7ce8c28", "0?bypass,1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:18] GotoIf("SIP/801-b7ce8c28", "0?customtrunk") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:19] Dial("SIP/801-b7ce8c28", "DAHDI/1/01483890915,300,") in new stack [May 26 11:10:52] WARNING[2858] app_dial.c: Unable to create channel of type 'DAHDI' (cause 0 - Unknown) [May 26 11:10:52] VERBOSE[2858] logger.c: == Everyone is busy/congested at this time (1:0/0/1) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-dialout-trunk:20] Goto("SIP/801-b7ce8c28", "s-CHANUNAVAIL,1") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-dialout-trunk,s-CHANUNAVAIL,1) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s-CHANUNAVAIL@macro-dialout-trunk:1] GotoIf("SIP/801-b7ce8c28", "1?noreport") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Goto (macro-dialout-trunk,s-CHANUNAVAIL,3) [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s-CHANUNAVAIL@macro-dialout-trunk:3] NoOp("SIP/801-b7ce8c28", "TRUNK Dial failed due to CHANUNAVAIL (hangupcause: 0) - failing through to other trunks") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [901483890915@from-internal:5] Macro("SIP/801-b7ce8c28", "outisbusy,") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- Executing [s@macro-outisbusy:1] Playback("SIP/801-b7ce8c28", "all-circuits-busy-now,noanswer") in new stack [May 26 11:10:52] VERBOSE[2858] logger.c: -- <SIP/801-b7ce8c28> Playing 'all-circuits-busy-now.ulaw' (language 'en') [May 26 11:10:54] VERBOSE[2858] logger.c: -- Executing [s@macro-outisbusy:2] Playback("SIP/801-b7ce8c28", "pls-try-call-later,noanswer") in new stack [May 26 11:10:54] VERBOSE[2858] logger.c: -- <SIP/801-b7ce8c28> Playing 'pls-try-call-later.ulaw' (language 'en') [May 26 11:10:54] WARNING[2661] pbx.c: FONALITY: This thread has already held the conlock, skip locking [May 26 11:10:54] VERBOSE[2858] logger.c: == Spawn extension (macro-outisbusy, s, 2) exited non-zero on 'SIP/801-b7ce8c28' in macro 'outisbusy' [May 26 11:10:54] VERBOSE[2858] logger.c: == Spawn extension (from-internal, 901483890915, 5) exited non-zero on 'SIP/801-b7ce8c28' [May 26 11:10:54] VERBOSE[2858] logger.c: -- Executing [h@from-internal:1] Macro("SIP/801-b7ce8c28", "hangupcall") in new stack [May 26 11:10:54] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:1] ResetCDR("SIP/801-b7ce8c28", "vw") in new stack [May 26 11:10:54] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:2] NoCDR("SIP/801-b7ce8c28", "") in new stack [May 26 11:10:54] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:3] GotoIf("SIP/801-b7ce8c28", "1?skiprg") in new stack [May 26 11:10:54] VERBOSE[2858] logger.c: -- Goto (macro-hangupcall,s,6) [May 26 11:10:55] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:6] GotoIf("SIP/801-b7ce8c28", "1?skipblkvm") in new stack [May 26 11:10:55] VERBOSE[2858] logger.c: -- Goto (macro-hangupcall,s,9) [May 26 11:10:55] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:9] GotoIf("SIP/801-b7ce8c28", "1?theend") in new stack [May 26 11:10:55] VERBOSE[2858] logger.c: -- Goto (macro-hangupcall,s,11) [May 26 11:10:55] VERBOSE[2858] logger.c: -- Executing [s@macro-hangupcall:11] Hangup("SIP/801-b7ce8c28", "") in new stack [May 26 11:10:55] VERBOSE[2858] logger.c: == Spawn extension (macro-hangupcall, s, 11) exited non-zero on 'SIP/801-b7ce8c28' in macro 'hangupcall' [May 26 11:10:55] VERBOSE[2858] logger.c: == Spawn extension (from-internal, h, 1) exited non-zero on 'SIP/801-b7ce8c28' I'm guessing I've missed a configuration step somewhere but no idea where, any help greatly appreciated.

    Read the article

  • C# WCF Server retrieves 'List<T>' with 1 entry, but client doesn't receive it?! Please help Urgentl

    - by Neville
    Hi Everyone, I've been battling and trying to research this issue for over 2 days now with absolutely no luck. I am trying to retrieve a list of clients from the server (server using fluentNHibernate). The client object is as follow: [DataContract] //[KnownType(typeof(System.Collections.Generic.List<ContactPerson>))] //[KnownType(typeof(System.Collections.Generic.List<Address>))] //[KnownType(typeof(System.Collections.Generic.List<BatchRequest>))] //[KnownType(typeof(System.Collections.Generic.List<Discount>))] [KnownType(typeof(EClientType))] [KnownType(typeof(EComType))] public class Client { #region Properties [DataMember] public virtual int ClientID { get; set; } [DataMember] public virtual EClientType ClientType { get; set; } [DataMember] public virtual string RegisterID {get; set;} [DataMember] public virtual string HerdCode { get; set; } [DataMember] public virtual string CompanyName { get; set; } [DataMember] public virtual bool InvoicePerBatch { get; set; } [DataMember] public virtual EComType ResultsComType { get; set; } [DataMember] public virtual EComType InvoiceComType { get; set; } //[DataMember] //public virtual IList<ContactPerson> Contacts { get; set; } //[DataMember] //public virtual IList<Address> Addresses { get; set; } //[DataMember] //public virtual IList<BatchRequest> Batches { get; set; } //[DataMember] //public virtual IList<Discount> Discounts { get; set; } #endregion #region Overrides public override bool Equals(object obj) { var other = obj as Client; if (other == null) return false; return other.GetHashCode() == this.GetHashCode(); } public override int GetHashCode() { return ClientID.GetHashCode() | ClientType.GetHashCode() | RegisterID.GetHashCode() | HerdCode.GetHashCode() | CompanyName.GetHashCode() | InvoicePerBatch.GetHashCode() | ResultsComType.GetHashCode() | InvoiceComType.GetHashCode();// | Contacts.GetHashCode() | //Addresses.GetHashCode() | Batches.GetHashCode() | Discounts.GetHashCode(); } #endregion } As you can see, I have allready tried to remove the sub-lists, though even with this simplified version of the client I still run into the propblem. my fluent mapping is: public class ClientMap : ClassMap<Client> { public ClientMap() { Table("Clients"); Id(p => p.ClientID); Map(p => p.ClientType).CustomType<EClientType>(); ; Map(p => p.RegisterID); Map(p => p.HerdCode); Map(p => p.CompanyName); Map(p => p.InvoicePerBatch); Map(p => p.ResultsComType).CustomType<EComType>(); Map(p => p.InvoiceComType).CustomType<EComType>(); //HasMany<ContactPerson>(p => p.Contacts) // .KeyColumns.Add("ContactPersonID") // .Inverse() // .Cascade.All(); //HasMany<Address>(p => p.Addresses) // .KeyColumns.Add("AddressID") // .Inverse() // .Cascade.All(); //HasMany<BatchRequest>(p => p.Batches) // .KeyColumns.Add("BatchID") // .Inverse() // .Cascade.All(); //HasMany<Discount>(p => p.Discounts) // .KeyColumns.Add("DiscountID") // .Inverse() // .Cascade.All(); } The client method, seen below, connects to the server. The server retrieves the list, and everything looks right in the object, still, when it returns, the client doesn't receive anything (it receive a List object, but with nothing in it. Herewith the calling method: public List<s.Client> GetClientList() { try { s.DataServiceClient svcClient = new s.DataServiceClient(); svcClient.Open(); List<s.Client> clients = new List<s.Client>(); clients = svcClient.GetClientList().ToList<s.Client>(); svcClient.Close(); //when receiving focus from server, the clients object has a count of 0 return clients; } catch (Exception e) { MessageBox.Show(e.Message); } return null; } and the server method: public IList<Client> GetClientList() { var clients = new List<Client>(); try { using (var session = SessionHelper.OpenSession()) { clients = session.Linq<Client>().Where(p => p.ClientID > 0).ToList<Client>(); } } catch (Exception e) { EventLog.WriteEntry("eCOWS.Data", e.Message); } return clients; //returns a list with 1 client in it } the server method interface is: [UseNetDataContractSerializer] [OperationContract] IList<Client> GetClientList(); for final references, here is my client app.config entries: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataService" listenBacklog="10" maxConnections="10" transferMode="Buffered" transactionProtocol="OleTransactions" maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" receiveTimeout="00:10:00" sendTimeout="00:10:00"> <readerQuotas maxDepth="51200000" maxStringContentLength="51200000" maxArrayLength="51200000" maxBytesPerRead="51200000" maxNameTableCharCount="51200000" /> <security mode="Transport"/> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:9000/eCOWS/DataService" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataService" contract="eCowsDataService.IDataService" name="NetTcpBinding_IDataService" behaviorConfiguration="eCowsEndpointBehavior"> </endpoint> <endpoint address="MEX" binding="mexHttpBinding" contract="IMetadataExchange" /> </client> <behaviors> <endpointBehaviors> <behavior name="eCowsEndpointBehavior"> <dataContractSerializer maxItemsInObjectGraph="2147483647"/> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> and my server app.config: <system.serviceModel> <bindings> <netTcpBinding> <binding name="netTcpBinding" maxConnections="10" listenBacklog="10" transferMode="Buffered" transactionProtocol="OleTransactions" maxBufferSize="2147483647" maxReceivedMessageSize="2147483647" sendTimeout="00:10:00" receiveTimeout="00:10:00"> <readerQuotas maxDepth="51200000" maxStringContentLength="51200000" maxArrayLength="51200000" maxBytesPerRead="51200000" maxNameTableCharCount="51200000" /> <security mode="Transport"/> </binding> </netTcpBinding> </bindings> <services> <service name="eCows.Data.Services.DataService" behaviorConfiguration="eCowsServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:9001/eCOWS/" /> <add baseAddress="net.tcp://localhost:9000/eCOWS/" /> </baseAddresses> </host> <endpoint address="DataService" binding="netTcpBinding" contract="eCows.Data.Services.IDataService" behaviorConfiguration="eCowsEndpointBehaviour"> </endpoint> <endpoint address="MEX" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <behaviors> <endpointBehaviors> <behavior name="eCowsEndpointBehaviour"> <dataContractSerializer maxItemsInObjectGraph="2147483647" /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="eCowsServiceBehavior"> <serviceMetadata httpGetEnabled="True"/> <serviceThrottling maxConcurrentCalls="10" maxConcurrentSessions="10"/> <serviceDebug includeExceptionDetailInFaults="False" /> </behavior> <behavior name="MexBehaviour"> <serviceMetadata /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> I use to run into "socket closed / network or timeout" errors, and the trace showed clearly that on the callback it was looking for a listening endpoint, but couldn't find one. Anyway, after adding the UseNetSerializer that error went away, yet now I'm just not getting anything. Oh PS. if I add all the commented out List items, I still retrieve an entry from the DB, but also still not receive anything on the client. if I remove the [UseNetDataContractSerializer] I get the following error(s) in the svclog : WARNING: Description Faulted System.ServiceModel.Channels.ServerSessionPreambleConnectionReader+ServerFramingDuplexSessionChannel WARNING: Description Faulted System.ServiceModel.Channels.ServiceChannel ERROR: Initializing[eCows.Data.Models.Client#3]-failed to lazily initialize a collection of role: eCows.Data.Models.Client.Addresses, no session or session was closed ... ERROR: Could not find default endpoint element that references contract 'ILogbookManager' in the ServiceModel client configuration section. This might be because no configuration file was found for your application, or because no endpoint element matching this contract could be found in the client element. If I add a .Not.LazyLoad to the List mapping items, I'm back at not receiving errors, but also not receiving any client information.. Sigh! Please, if anyone can help with this I'd be extremely grateful. I'm probably just missing something small.. but... what is it :) hehe. Thanks in advance! Neville

    Read the article

  • Replacing instructions in a method's MethodBody

    - by Alix
    Hi, (First of all, this is a very lengthy post, but don't worry: I've already implemented all of it, I'm just asking your opinion.) I'm having trouble implementing the following; I'd appreciate some help: I get a Type as parameter. I define a subclass using reflection. Notice that I don't intend to modify the original type, but create a new one. I create a property per field of the original class, like so: public class OriginalClass { private int x; } public class Subclass : OriginalClass { private int x; public int X { get { return x; } set { x = value; } } } For every method of the superclass, I create an analogous method in the subclass. The method's body must be the same except that I replace the instructions ldfld x with callvirt this.get_X, that is, instead of reading from the field directly I call the get accessor. I'm having trouble with step 4. I know you're not supposed to manipulate code like this, but I really need to. Here's what I've tried: Attempt #1: Use Mono.Cecil. This would allow me to parse the body of the method into human-readable Instructions, and easily replace instructions. However, the original type isn't in a .dll file, so I can't find a way to load it with Mono.Cecil. Writing the type to a .dll, then load it, then modify it and write the new type to disk (which I think is the way you create a type with Mono.Cecil), and then load it seems like a huge overhead. Attempt #2: Use Mono.Reflection. This would also allow me to parse the body into Instructions, but then I have no support for replacing instructions. I've implemented a very ugly and inefficient solution using Mono.Reflection, but it doesn't yet support methods that contain try-catch statements (although I guess I can implement this) and I'm concerned that there may be other scenarios in which it won't work, since I'm using the ILGenerator in a somewhat unusual way. Also, it's very ugly ;). Here's what I've done: private void TransformMethod(MethodInfo methodInfo) { // Create a method with the same signature. ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); // Declare the same local variables as in the original method. IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } // Get readable instructions. IList<Instruction> instructions = methodInfo.GetInstructions(); // I first need to define labels for every instruction in case I // later find a jump to that instruction. Once the instruction has // been emitted I cannot label it, so I'll need to do it in advance. // Since I'm doing a first pass on the method's body anyway, I could // instead just create labels where they are truly needed, but for // now I'm using this quick fix. Dictionary<int, Label> labels = new Dictionary<int, Label>(); foreach (Instruction instr in instructions) { labels[instr.Offset] = ilGen.DefineLabel(); } foreach (Instruction instr in instructions) { // Mark this instruction with a label, in case there's a branch // instruction that jumps here. ilGen.MarkLabel(labels[instr.Offset]); // If this is the instruction that I want to replace (ldfld x)... if (instr.OpCode == OpCodes.Ldfld) { // ...get the get accessor for the accessed field (get_X()) // (I have the accessors in a dictionary; this isn't relevant), MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // ...instead of emitting the original instruction (ldfld x), // emit a call to the get accessor, ilGen.Emit(OpCodes.Callvirt, safeReadAccessor); // Else (it's any other instruction), reemit the instruction, unaltered. } else { Reemit(instr, ilGen, labels); } } } And here comes the horrible, horrible Reemit method: private void Reemit(Instruction instr, ILGenerator ilGen, Dictionary<int, Label> labels) { // If the instruction doesn't have an operand, emit the opcode and return. if (instr.Operand == null) { ilGen.Emit(instr.OpCode); return; } // Else (it has an operand)... // If it's a branch instruction, retrieve the corresponding label (to // which we want to jump), emit the instruction and return. if (instr.OpCode.FlowControl == FlowControl.Branch) { ilGen.Emit(instr.OpCode, labels[Int32.Parse(instr.Operand.ToString())]); return; } // Otherwise, simply emit the instruction. I need to use the right // Emit call, so I need to cast the operand to its type. Type operandType = instr.Operand.GetType(); if (typeof(byte).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (byte) instr.Operand); else if (typeof(double).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (double) instr.Operand); else if (typeof(float).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (float) instr.Operand); else if (typeof(int).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (int) instr.Operand); ... // you get the idea. This is a pretty long method, all like this. } Branch instructions are a special case because instr.Operand is SByte, but Emit expects an operand of type Label. Hence the need for the Dictionary labels. As you can see, this is pretty horrible. What's more, it doesn't work in all cases, for instance with methods that contain try-catch statements, since I haven't emitted them using methods BeginExceptionBlock, BeginCatchBlock, etc, of ILGenerator. This is getting complicated. I guess I can do it: MethodBody has a list of ExceptionHandlingClause that should contain the necessary information to do this. But I don't like this solution anyway, so I'll save this as a last-resort solution. Attempt #3: Go bare-back and just copy the byte array returned by MethodBody.GetILAsByteArray(), since I only want to replace a single instruction for another single instruction of the same size that produces the exact same result: it loads the same type of object on the stack, etc. So there won't be any labels shifting and everything should work exactly the same. I've done this, replacing specific bytes of the array and then calling MethodBuilder.CreateMethodBody(byte[], int), but I still get the same error with exceptions, and I still need to declare the local variables or I'll get an error... even when I simply copy the method's body and don't change anything. So this is more efficient but I still have to take care of the exceptions, etc. Sigh. Here's the implementation of attempt #3, in case anyone is interested: private void TransformMethod(MethodInfo methodInfo, Dictionary<string, MethodInfo[]> dataMembersSafeAccessors, ModuleBuilder moduleBuilder) { ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } byte[] rawInstructions = methodInfo.GetMethodBody().GetILAsByteArray(); IList<Instruction> instructions = methodInfo.GetInstructions(); int k = 0; foreach (Instruction instr in instructions) { if (instr.OpCode == OpCodes.Ldfld) { MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // Copy the opcode: Callvirt. byte[] bytes = toByteArray(OpCodes.Callvirt.Value); for (int m = 0; m < OpCodes.Callvirt.Size; m++) { rawInstructions[k++] = bytes[put.Length - 1 - m]; } // Copy the operand: the accessor's metadata token. bytes = toByteArray(moduleBuilder.GetMethodToken(safeReadAccessor).Token); for (int m = instr.Size - OpCodes.Ldfld.Size - 1; m >= 0; m--) { rawInstructions[k++] = bytes[m]; } // Skip this instruction (do not replace it). } else { k += instr.Size; } } methodBuilder.CreateMethodBody(rawInstructions, rawInstructions.Length); } private static byte[] toByteArray(int intValue) { byte[] intBytes = BitConverter.GetBytes(intValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } private static byte[] toByteArray(short shortValue) { byte[] intBytes = BitConverter.GetBytes(shortValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } (I know it isn't pretty. Sorry. I put it quickly together to see if it would work.) I don't have much hope, but can anyone suggest anything better than this? Sorry about the extremely lengthy post, and thanks.

    Read the article

  • What are good design practices when working with Entity Framework

    - by AD
    This will apply mostly for an asp.net application where the data is not accessed via soa. Meaning that you get access to the objects loaded from the framework, not Transfer Objects, although some recommendation still apply. This is a community post, so please add to it as you see fit. Applies to: Entity Framework 1.0 shipped with Visual Studio 2008 sp1. Why pick EF in the first place? Considering it is a young technology with plenty of problems (see below), it may be a hard sell to get on the EF bandwagon for your project. However, it is the technology Microsoft is pushing (at the expense of Linq2Sql, which is a subset of EF). In addition, you may not be satisfied with NHibernate or other solutions out there. Whatever the reasons, there are people out there (including me) working with EF and life is not bad.make you think. EF and inheritance The first big subject is inheritance. EF does support mapping for inherited classes that are persisted in 2 ways: table per class and table the hierarchy. The modeling is easy and there are no programming issues with that part. (The following applies to table per class model as I don't have experience with table per hierarchy, which is, anyway, limited.) The real problem comes when you are trying to run queries that include one or many objects that are part of an inheritance tree: the generated sql is incredibly awful, takes a long time to get parsed by the EF and takes a long time to execute as well. This is a real show stopper. Enough that EF should probably not be used with inheritance or as little as possible. Here is an example of how bad it was. My EF model had ~30 classes, ~10 of which were part of an inheritance tree. On running a query to get one item from the Base class, something as simple as Base.Get(id), the generated SQL was over 50,000 characters. Then when you are trying to return some Associations, it degenerates even more, going as far as throwing SQL exceptions about not being able to query more than 256 tables at once. Ok, this is bad, EF concept is to allow you to create your object structure without (or with as little as possible) consideration on the actual database implementation of your table. It completely fails at this. So, recommendations? Avoid inheritance if you can, the performance will be so much better. Use it sparingly where you have to. In my opinion, this makes EF a glorified sql-generation tool for querying, but there are still advantages to using it. And ways to implement mechanism that are similar to inheritance. Bypassing inheritance with Interfaces First thing to know with trying to get some kind of inheritance going with EF is that you cannot assign a non-EF-modeled class a base class. Don't even try it, it will get overwritten by the modeler. So what to do? You can use interfaces to enforce that classes implement some functionality. For example here is a IEntity interface that allow you to define Associations between EF entities where you don't know at design time what the type of the entity would be. public enum EntityTypes{ Unknown = -1, Dog = 0, Cat } public interface IEntity { int EntityID { get; } string Name { get; } Type EntityType { get; } } public partial class Dog : IEntity { // implement EntityID and Name which could actually be fields // from your EF model Type EntityType{ get{ return EntityTypes.Dog; } } } Using this IEntity, you can then work with undefined associations in other classes // lets take a class that you defined in your model. // that class has a mapping to the columns: PetID, PetType public partial class Person { public IEntity GetPet() { return IEntityController.Get(PetID,PetType); } } which makes use of some extension functions: public class IEntityController { static public IEntity Get(int id, EntityTypes type) { switch (type) { case EntityTypes.Dog: return Dog.Get(id); case EntityTypes.Cat: return Cat.Get(id); default: throw new Exception("Invalid EntityType"); } } } Not as neat as having plain inheritance, particularly considering you have to store the PetType in an extra database field, but considering the performance gains, I would not look back. It also cannot model one-to-many, many-to-many relationship, but with creative uses of 'Union' it could be made to work. Finally, it creates the side effet of loading data in a property/function of the object, which you need to be careful about. Using a clear naming convention like GetXYZ() helps in that regards. Compiled Queries Entity Framework performance is not as good as direct database access with ADO (obviously) or Linq2SQL. There are ways to improve it however, one of which is compiling your queries. The performance of a compiled query is similar to Linq2Sql. What is a compiled query? It is simply a query for which you tell the framework to keep the parsed tree in memory so it doesn't need to be regenerated the next time you run it. So the next run, you will save the time it takes to parse the tree. Do not discount that as it is a very costly operation that gets even worse with more complex queries. There are 2 ways to compile a query: creating an ObjectQuery with EntitySQL and using CompiledQuery.Compile() function. (Note that by using an EntityDataSource in your page, you will in fact be using ObjectQuery with EntitySQL, so that gets compiled and cached). An aside here in case you don't know what EntitySQL is. It is a string-based way of writing queries against the EF. Here is an example: "select value dog from Entities.DogSet as dog where dog.ID = @ID". The syntax is pretty similar to SQL syntax. You can also do pretty complex object manipulation, which is well explained [here][1]. Ok, so here is how to do it using ObjectQuery< string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); The first time you run this query, the framework will generate the expression tree and keep it in memory. So the next time it gets executed, you will save on that costly step. In that example EnablePlanCaching = true, which is unnecessary since that is the default option. The other way to compile a query for later use is the CompiledQuery.Compile method. This uses a delegate: static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => ctx.DogSet.FirstOrDefault(it => it.ID == id)); or using linq static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet where dog.ID == id select dog).FirstOrDefault()); to call the query: query_GetDog.Invoke( YourContext, id ); The advantage of CompiledQuery is that the syntax of your query is checked at compile time, where as EntitySQL is not. However, there are other consideration... Includes Lets say you want to have the data for the dog owner to be returned by the query to avoid making 2 calls to the database. Easy to do, right? EntitySQL string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)).Include("Owner"); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); CompiledQuery static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet.Include("Owner") where dog.ID == id select dog).FirstOrDefault()); Now, what if you want to have the Include parametrized? What I mean is that you want to have a single Get() function that is called from different pages that care about different relationships for the dog. One cares about the Owner, another about his FavoriteFood, another about his FavotireToy and so on. Basicly, you want to tell the query which associations to load. It is easy to do with EntitySQL public Dog Get(int id, string include) { string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)) .IncludeMany(include); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); } The include simply uses the passed string. Easy enough. Note that it is possible to improve on the Include(string) function (that accepts only a single path) with an IncludeMany(string) that will let you pass a string of comma-separated associations to load. Look further in the extension section for this function. If we try to do it with CompiledQuery however, we run into numerous problems: The obvious static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.Include(include) where dog.ID == id select dog).FirstOrDefault()); will choke when called with: query_GetDog.Invoke( YourContext, id, "Owner,FavoriteFood" ); Because, as mentionned above, Include() only wants to see a single path in the string and here we are giving it 2: "Owner" and "FavoriteFood" (which is not to be confused with "Owner.FavoriteFood"!). Then, let's use IncludeMany(), which is an extension function static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.IncludeMany(include) where dog.ID == id select dog).FirstOrDefault()); Wrong again, this time it is because the EF cannot parse IncludeMany because it is not part of the functions that is recognizes: it is an extension. Ok, so you want to pass an arbitrary number of paths to your function and Includes() only takes a single one. What to do? You could decide that you will never ever need more than, say 20 Includes, and pass each separated strings in a struct to CompiledQuery. But now the query looks like this: from dog in ctx.DogSet.Include(include1).Include(include2).Include(include3) .Include(include4).Include(include5).Include(include6) .[...].Include(include19).Include(include20) where dog.ID == id select dog which is awful as well. Ok, then, but wait a minute. Can't we return an ObjectQuery< with CompiledQuery? Then set the includes on that? Well, that what I would have thought so as well: static readonly Func<Entities, int, ObjectQuery<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, ObjectQuery<Dog>>((ctx, id) => (ObjectQuery<Dog>)(from dog in ctx.DogSet where dog.ID == id select dog)); public Dog GetDog( int id, string include ) { ObjectQuery<Dog> oQuery = query_GetDog(id); oQuery = oQuery.IncludeMany(include); return oQuery.FirstOrDefault; } That should have worked, except that when you call IncludeMany (or Include, Where, OrderBy...) you invalidate the cached compiled query because it is an entirely new one now! So, the expression tree needs to be reparsed and you get that performance hit again. So what is the solution? You simply cannot use CompiledQueries with parametrized Includes. Use EntitySQL instead. This doesn't mean that there aren't uses for CompiledQueries. It is great for localized queries that will always be called in the same context. Ideally CompiledQuery should always be used because the syntax is checked at compile time, but due to limitation, that's not possible. An example of use would be: you may want to have a page that queries which two dogs have the same favorite food, which is a bit narrow for a BusinessLayer function, so you put it in your page and know exactly what type of includes are required. Passing more than 3 parameters to a CompiledQuery Func is limited to 5 parameters, of which the last one is the return type and the first one is your Entities object from the model. So that leaves you with 3 parameters. A pitance, but it can be improved on very easily. public struct MyParams { public string param1; public int param2; public DateTime param3; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where dog.Age == myParams.param2 && dog.Name == myParams.param1 and dog.BirthDate > myParams.param3 select dog); public List<Dog> GetSomeDogs( int age, string Name, DateTime birthDate ) { MyParams myParams = new MyParams(); myParams.param1 = name; myParams.param2 = age; myParams.param3 = birthDate; return query_GetDog(YourContext,myParams).ToList(); } Return Types (this does not apply to EntitySQL queries as they aren't compiled at the same time during execution as the CompiledQuery method) Working with Linq, you usually don't force the execution of the query until the very last moment, in case some other functions downstream wants to change the query in some way: static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public IEnumerable<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name); } public void DataBindStuff() { IEnumerable<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } What is going to happen here? By still playing with the original ObjectQuery (that is the actual return type of the Linq statement, which implements IEnumerable), it will invalidate the compiled query and be force to re-parse. So, the rule of thumb is to return a List< of objects instead. static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public List<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name).ToList(); //<== change here } public void DataBindStuff() { List<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } When you call ToList(), the query gets executed as per the compiled query and then, later, the OrderBy is executed against the objects in memory. It may be a little bit slower, but I'm not even sure. One sure thing is that you have no worries about mis-handling the ObjectQuery and invalidating the compiled query plan. Once again, that is not a blanket statement. ToList() is a defensive programming trick, but if you have a valid reason not to use ToList(), go ahead. There are many cases in which you would want to refine the query before executing it. Performance What is the performance impact of compiling a query? It can actually be fairly large. A rule of thumb is that compiling and caching the query for reuse takes at least double the time of simply executing it without caching. For complex queries (read inherirante), I have seen upwards to 10 seconds. So, the first time a pre-compiled query gets called, you get a performance hit. After that first hit, performance is noticeably better than the same non-pre-compiled query. Practically the same as Linq2Sql When you load a page with pre-compiled queries the first time you will get a hit. It will load in maybe 5-15 seconds (obviously more than one pre-compiled queries will end up being called), while subsequent loads will take less than 300ms. Dramatic difference, and it is up to you to decide if it is ok for your first user to take a hit or you want a script to call your pages to force a compilation of the queries. Can this query be cached? { Dog dog = from dog in YourContext.DogSet where dog.ID == id select dog; } No, ad-hoc Linq queries are not cached and you will incur the cost of generating the tree every single time you call it. Parametrized Queries Most search capabilities involve heavily parametrized queries. There are even libraries available that will let you build a parametrized query out of lamba expressions. The problem is that you cannot use pre-compiled queries with those. One way around that is to map out all the possible criteria in the query and flag which one you want to use: public struct MyParams { public string name; public bool checkName; public int age; public bool checkAge; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where (myParams.checkAge == true && dog.Age == myParams.age) && (myParams.checkName == true && dog.Name == myParams.name ) select dog); protected List<Dog> GetSomeDogs() { MyParams myParams = new MyParams(); myParams.name = "Bud"; myParams.checkName = true; myParams.age = 0; myParams.checkAge = false; return query_GetDog(YourContext,myParams).ToList(); } The advantage here is that you get all the benifits of a pre-compiled quert. The disadvantages are that you most likely will end up with a where clause that is pretty difficult to maintain, that you will incur a bigger penalty for pre-compiling the query and that each query you run is not as efficient as it could be (particularly with joins thrown in). Another way is to build an EntitySQL query piece by piece, like we all did with SQL. protected List<Dod> GetSomeDogs( string name, int age) { string query = "select value dog from Entities.DogSet where 1 = 1 "; if( !String.IsNullOrEmpty(name) ) query = query + " and dog.Name == @Name "; if( age > 0 ) query = query + " and dog.Age == @Age "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); if( !String.IsNullOrEmpty(name) ) oQuery.Parameters.Add( new ObjectParameter( "Name", name ) ); if( age > 0 ) oQuery.Parameters.Add( new ObjectParameter( "Age", age ) ); return oQuery.ToList(); } Here the problems are: - there is no syntax checking during compilation - each different combination of parameters generate a different query which will need to be pre-compiled when it is first run. In this case, there are only 4 different possible queries (no params, age-only, name-only and both params), but you can see that there can be way more with a normal world search. - Noone likes to concatenate strings! Another option is to query a large subset of the data and then narrow it down in memory. This is particularly useful if you are working with a definite subset of the data, like all the dogs in a city. You know there are a lot but you also know there aren't that many... so your CityDog search page can load all the dogs for the city in memory, which is a single pre-compiled query and then refine the results protected List<Dod> GetSomeDogs( string name, int age, string city) { string query = "select value dog from Entities.DogSet where dog.Owner.Address.City == @City "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); oQuery.Parameters.Add( new ObjectParameter( "City", city ) ); List<Dog> dogs = oQuery.ToList(); if( !String.IsNullOrEmpty(name) ) dogs = dogs.Where( it => it.Name == name ); if( age > 0 ) dogs = dogs.Where( it => it.Age == age ); return dogs; } It is particularly useful when you start displaying all the data then allow for filtering. Problems: - Could lead to serious data transfer if you are not careful about your subset. - You can only filter on the data that you returned. It means that if you don't return the Dog.Owner association, you will not be able to filter on the Dog.Owner.Name So what is the best solution? There isn't any. You need to pick the solution that works best for you and your problem: - Use lambda-based query building when you don't care about pre-compiling your queries. - Use fully-defined pre-compiled Linq query when your object structure is not too complex. - Use EntitySQL/string concatenation when the structure could be complex and when the possible number of different resulting queries are small (which means fewer pre-compilation hits). - Use in-memory filtering when you are working with a smallish subset of the data or when you had to fetch all of the data on the data at first anyway (if the performance is fine with all the data, then filtering in memory will not cause any time to be spent in the db). Singleton access The best way to deal with your context and entities accross all your pages is to use the singleton pattern: public sealed class YourContext { private const string instanceKey = "On3GoModelKey"; YourContext(){} public static YourEntities Instance { get { HttpContext context = HttpContext.Current; if( context == null ) return Nested.instance; if (context.Items[instanceKey] == null) { On3GoEntities entity = new On3GoEntities(); context.Items[instanceKey] = entity; } return (YourEntities)context.Items[instanceKey]; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly YourEntities instance = new YourEntities(); } } NoTracking, is it worth it? When executing a query, you can tell the framework to track the objects it will return or not. What does it mean? With tracking enabled (the default option), the framework will track what is going on with the object (has it been modified? Created? Deleted?) and will also link objects together, when further queries are made from the database, which is what is of interest here. For example, lets assume that Dog with ID == 2 has an owner which ID == 10. Dog dog = (from dog in YourContext.DogSet where dog.ID == 2 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Person owner = (from o in YourContext.PersonSet where o.ID == 10 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == true; If we were to do the same with no tracking, the result would be different. ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog = oDogQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>) (from o in YourContext.PersonSet where o.ID == 10 select o); oPersonQuery.MergeOption = MergeOption.NoTracking; Owner owner = oPersonQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Tracking is very useful and in a perfect world without performance issue, it would always be on. But in this world, there is a price for it, in terms of performance. So, should you use NoTracking to speed things up? It depends on what you are planning to use the data for. Is there any chance that the data your query with NoTracking can be used to make update/insert/delete in the database? If so, don't use NoTracking because associations are not tracked and will causes exceptions to be thrown. In a page where there are absolutly no updates to the database, you can use NoTracking. Mixing tracking and NoTracking is possible, but it requires you to be extra careful with updates/inserts/deletes. The problem is that if you mix then you risk having the framework trying to Attach() a NoTracking object to the context where another copy of the same object exist with tracking on. Basicly, what I am saying is that Dog dog1 = (from dog in YourContext.DogSet where dog.ID == 2).FirstOrDefault(); ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog2 = oDogQuery.FirstOrDefault(); dog1 and dog2 are 2 different objects, one tracked and one not. Using the detached object in an update/insert will force an Attach() that will say "Wait a minute, I do already have an object here with the same database key. Fail". And when you Attach() one object, all of its hierarchy gets attached as well, causing problems everywhere. Be extra careful. How much faster is it with NoTracking It depends on the queries. Some are much more succeptible to tracking than other. I don't have a fast an easy rule for it, but it helps. So I should use NoTracking everywhere then? Not exactly. There are some advantages to tracking object. The first one is that the object is cached, so subsequent call for that object will not hit the database. That cache is only valid for the lifetime of the YourEntities object, which, if you use the singleton code above, is the same as the page lifetime. One page request == one YourEntity object. So for multiple calls for the same object, it will load only once per page request. (Other caching mechanism could extend that). What happens when you are using NoTracking and try to load the same object multiple times? The database will be queried each time, so there is an impact there. How often do/should you call for the same object during a single page request? As little as possible of course, but it does happens. Also remember the piece above about having the associations connected automatically for your? You don't have that with NoTracking, so if you load your data in multiple batches, you will not have a link to between them: ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>)(from dog in YourContext.DogSet select dog); oDogQuery.MergeOption = MergeOption.NoTracking; List<Dog> dogs = oDogQuery.ToList(); ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>)(from o in YourContext.PersonSet select o); oPersonQuery.MergeOption = MergeOption.NoTracking; List<Person> owners = oPersonQuery.ToList(); In this case, no dog will have its .Owner property set. Some things to keep in mind when you are trying to optimize the performance. No lazy loading, what am I to do? This can be seen as a blessing in disguise. Of course it is annoying to load everything manually. However, it decreases the number of calls to the db and forces you to think about when you should load data. The more you can load in one database call the better. That was always true, but it is enforced now with this 'feature' of EF. Of course, you can call if( !ObjectReference.IsLoaded ) ObjectReference.Load(); if you want to, but a better practice is to force the framework to load the objects you know you will need in one shot. This is where the discussion about parametrized Includes begins to make sense. Lets say you have you Dog object public class Dog { public Dog Get(int id) { return YourContext.DogSet.FirstOrDefault(it => it.ID == id ); } } This is the type of function you work with all the time. It gets called from all over the place and once you have that Dog object, you will do very different things to it in different functions. First, it should be pre-compiled, because you will call that very often. Second, each different pages will want to have access to a different subset of the Dog data. Some will want the Owner, some the FavoriteToy, etc. Of course, you could call Load() for each reference you need anytime you need one. But that will generate a call to the database each time. Bad idea. So instead, each page will ask for the data it wants to see when it first request for the Dog object: static public Dog Get(int id) { return GetDog(entity,"");} static public Dog Get(int id, string includePath) { string query = "select value o " + " from YourEntities.DogSet as o " +

    Read the article

  • Problem with my whiteboard application

    - by swift
    I have to develop a whiteboard application in which both the local user and the remote user should be able to draw simultaneously, is this possible? If possible then any logic? I have already developed a code but in which i am not able to do this, when the remote user starts drawing the shape which i am drawing is being replaced by his shape and co-ordinates. This problem is only when both draw simultaneously. any idea guys? Here is my code class Paper extends JPanel implements MouseListener,MouseMotionListener,ActionListener { static BufferedImage image; int bpressed; Color color; Point start; Point end; Point mp; Button elipse=new Button("elipse"); Button rectangle=new Button("rect"); Button line=new Button("line"); Button empty=new Button(""); JButton save=new JButton("Save"); JButton erase=new JButton("Erase"); String selected; int ex,ey;//eraser DatagramSocket dataSocket; JButton button = new JButton("test"); Client client; Point p=new Point(); int w,h; public Paper(DatagramSocket dataSocket) { this.dataSocket=dataSocket; client=new Client(dataSocket); System.out.println("paper"); setBackground(Color.white); addMouseListener(this); addMouseMotionListener(this); color = Color.black; setBorder(BorderFactory.createLineBorder(Color.black)); //save.setPreferredSize(new Dimension(100,20)); save.setMaximumSize(new Dimension(75,27)); erase.setMaximumSize(new Dimension(75,27)); } public void paintComponent(Graphics g) { try { g.drawImage(image, 0, 0, this); Graphics2D g2 = (Graphics2D)g; g2.setPaint(Color.black); if(selected==("elipse")) g2.drawOval(start.x, start.y,(end.x-start.x),(end.y-start.y)); else if(selected==("rect")) g2.drawRect(start.x, start.y, (end.x-start.x),(end.y-start.y)); else if(selected==("line")) g2.drawLine(start.x,start.y,end.x,end.y); } catch(Exception e) {} } //Function to draw the shape on image public void draw() { Graphics2D g2 = image.createGraphics(); g2.setPaint(color); if(selected=="line") g2.drawLine(start.x, start.y, end.x, end.y); if(selected=="elipse") g2.drawOval(start.x, start.y, (end.x-start.x),(end.y-start.y)); if(selected=="rect") g2.drawRect(start.x, start.y, (end.x-start.x),(end.y-start.y)); repaint(); g2.dispose(); start=null; } //To add the point to the board which is broadcasted by the server public synchronized void addPoint(Point ps,String varname,String shape,String event) { try { if(end==null) end = new Point(); if(start==null) start = new Point(); if(shape.equals("elipse")) selected="elipse"; else if(shape.equals("line")) selected="line"; else if(shape.equals("rect")) selected="rect"; else if(shape.equals("erase")) { selected="erase"; erase(); } if(end!=null && start!=null) { if(varname.equals("end")) end=ps; if(varname.equals("mp")) mp=ps; if(varname.equals("start")) start=ps; if(event.equals("drag")) repaint(); else if(event.equals("release")) draw(); } } catch(Exception e) { e.printStackTrace(); } } //To set the size of the image public void setWidth(int x,int y) { System.out.println("("+x+","+y+")"); w=x; h=y; image = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB); Graphics2D g2 = image.createGraphics(); g2.setPaint(Color.white); g2.fillRect(0,0,w,h); g2.dispose(); } //Function which provides the erase functionality public void erase() { Graphics2D pic=(Graphics2D) image.getGraphics(); pic.setPaint(Color.white); pic.fillRect(start.x, start.y, 10, 10); } //Function to add buttons into the panel, calling this function returns a panel public JPanel addButtons() { JPanel buttonpanel=new JPanel(); JPanel row1=new JPanel(); JPanel row2=new JPanel(); JPanel row3=new JPanel(); JPanel row4=new JPanel(); buttonpanel.setPreferredSize(new Dimension(80,80)); //buttonpanel.setMinimumSize(new Dimension(150,150)); row1.setLayout(new BoxLayout(row1,BoxLayout.X_AXIS)); row1.setPreferredSize(new Dimension(150,150)); row2.setLayout(new BoxLayout(row2,BoxLayout.X_AXIS)); row3.setLayout(new BoxLayout(row3,BoxLayout.X_AXIS)); row4.setLayout(new BoxLayout(row4,BoxLayout.X_AXIS)); buttonpanel.setLayout(new BoxLayout(buttonpanel,BoxLayout.Y_AXIS)); elipse.addActionListener(this); rectangle.addActionListener(this); line.addActionListener( this); save.addActionListener( this); erase.addActionListener( this); buttonpanel.add(Box.createRigidArea(new Dimension(10,10))); row1.add(elipse); row1.add(Box.createRigidArea(new Dimension(5,0))); row1.add(rectangle); buttonpanel.add(row1); buttonpanel.add(Box.createRigidArea(new Dimension(10,10))); row2.add(line); row2.add(Box.createRigidArea(new Dimension(5,0))); row2.add(empty); buttonpanel.add(row2); buttonpanel.add(Box.createRigidArea(new Dimension(10,10))); row3.add(save); buttonpanel.add(row3); buttonpanel.add(Box.createRigidArea(new Dimension(10,10))); row4.add(erase); buttonpanel.add(row4); return buttonpanel; } //To save the image drawn public void save() { try { ByteArrayOutputStream bos = new ByteArrayOutputStream(); JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(bos); JFileChooser fc = new JFileChooser(); fc.showSaveDialog(this); encoder.encode(image); byte[] jpgData = bos.toByteArray(); FileOutputStream fos = new FileOutputStream(fc.getSelectedFile()+".jpeg"); fos.write(jpgData); fos.close(); //add replce confirmation here } catch (IOException e) { System.out.println(e); } } public void mouseClicked(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseEntered(MouseEvent arg0) { } public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } public void mousePressed(MouseEvent e) { if(selected=="line"||selected=="erase") { start=e.getPoint(); client.broadcast(start,"start", selected,"press"); } else if(selected=="elipse"||selected=="rect") { mp = e.getPoint(); client.broadcast(mp,"mp", selected,"press"); } } public void mouseReleased(MouseEvent e) { if(start!=null) { if(selected=="line") { end=e.getPoint(); client.broadcast(end,"end", selected,"release"); } else if(selected=="elipse"||selected=="rect") { end.x = Math.max(mp.x,e.getX()); end.y = Math.max(mp.y,e.getY()); client.broadcast(end,"end", selected,"release"); } draw(); } //start=null; } public void mouseDragged(MouseEvent e) { if(end==null) end = new Point(); if(start==null) start = new Point(); if(selected=="line") { end=e.getPoint(); client.broadcast(end,"end", selected,"drag"); } else if(selected=="erase") { start=e.getPoint(); erase(); client.broadcast(start,"start", selected,"drag"); } else if(selected=="elipse"||selected=="rect") { start.x = Math.min(mp.x,e.getX()); start.y = Math.min(mp.y,e.getY()); end.x = Math.max(mp.x,e.getX()); end.y = Math.max(mp.y,e.getY()); client.broadcast(start,"start", selected,"drag"); client.broadcast(end,"end", selected,"drag"); } repaint(); } @Override public void mouseMoved(MouseEvent arg0) { // TODO Auto-generated method stub } public void actionPerformed(ActionEvent e) { if(e.getSource()==elipse) selected="elipse"; if(e.getSource()==line) selected="line"; if(e.getSource()==rectangle) selected="rect"; if(e.getSource()==save) save(); if(e.getSource()==erase) { selected="erase"; erase(); } } } class Button extends JButton { String name; public Button(String name) { this.name=name; Dimension buttonSize = new Dimension(35,35); setMaximumSize(buttonSize); } public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D)g; g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); //g2.setStroke(new BasicStroke(1.2f)); if (name == "line") g.drawLine(5,5,30,30); if (name == "elipse") g.drawOval(5,7,25,20); if (name== "rect") g.drawRect(5,5,25,23); } }

    Read the article

  • Query on simple C++ threadpool implementation

    - by ticketman
    Stackoverflow has been a tremendous help to me and I'd to give something back to the community. I have been implementing a simple threadpool using the tinythread C++ portable thread library, using what I have learnt from Stackoverflow. I am new to thread programming, so not that comfortable with mutexes, etc. I have a question best asked after presenting the code (which runs quite well under Linux): // ThreadPool.h class ThreadPool { public: ThreadPool(); ~ThreadPool(); // Creates a pool of threads and gets them ready to be used void CreateThreads(int numOfThreads); // Assigns a job to a thread in the pool, but doesn't start the job // Each SubmitJob call will use up one thread of the pool. // This operation can only be undone by calling StartJobs and // then waiting for the jobs to complete. On completion, // new jobs may be submitted. void SubmitJob( void (*workFunc)(void *), void *workData ); // Begins execution of all the jobs in the pool. void StartJobs(); // Waits until all jobs have completed. // The wait will block the caller. // On completion, new jobs may be submitted. void WaitForJobsToComplete(); private: enum typeOfWorkEnum { e_work, e_quit }; class ThreadData { public: bool ready; // thread has been created and is ready for work bool haveWorkToDo; typeOfWorkEnum typeOfWork; // Pointer to the work function each thread has to call. void (*workFunc)(void *); // Pointer to work data void *workData; ThreadData() : ready(false), haveWorkToDo(false) { }; }; struct ThreadArgStruct { ThreadPool *threadPoolInstance; int threadId; }; // Data for each thread ThreadData *m_ThreadData; ThreadPool(ThreadPool const&); // copy ctor hidden ThreadPool& operator=(ThreadPool const&); // assign op. hidden // Static function that provides the function pointer that a thread can call // By including the ThreadPool instance in the void * parameter, // we can use it to access other data and methods in the ThreadPool instance. static void ThreadFuncWrapper(void *arg) { ThreadArgStruct *threadArg = static_cast<ThreadArgStruct *>(arg); threadArg->threadPoolInstance->ThreadFunc(threadArg->threadId); } // The function each thread calls void ThreadFunc( int threadId ); // Called by the thread pool destructor void DestroyThreadPool(); // Total number of threads available // (fixed on creation of thread pool) int m_numOfThreads; int m_NumOfThreadsDoingWork; int m_NumOfThreadsGivenJobs; // List of threads std::vector<tthread::thread *> m_ThreadList; // Condition variable to signal each thread has been created and executing tthread::mutex m_ThreadReady_mutex; tthread::condition_variable m_ThreadReady_condvar; // Condition variable to signal each thread to start work tthread::mutex m_WorkToDo_mutex; tthread::condition_variable m_WorkToDo_condvar; // Condition variable to signal the main thread that // all threads in the pool have completed their work tthread::mutex m_WorkCompleted_mutex; tthread::condition_variable m_WorkCompleted_condvar; }; cpp file: // // ThreadPool.cpp // #include "ThreadPool.h" // This is the thread function for each thread. // All threads remain in this function until // they are asked to quit, which only happens // when terminating the thread pool. void ThreadPool::ThreadFunc( int threadId ) { ThreadData *myThreadData = &m_ThreadData[threadId]; std::cout << "Hello world: Thread " << threadId << std::endl; // Signal that this thread is ready m_ThreadReady_mutex.lock(); myThreadData->ready = true; m_ThreadReady_condvar.notify_one(); // notify the main thread m_ThreadReady_mutex.unlock(); while(true) { //tthread::lock_guard<tthread::mutex> guard(m); m_WorkToDo_mutex.lock(); while(!myThreadData->haveWorkToDo) // check for work to do m_WorkToDo_condvar.wait(m_WorkToDo_mutex); // if no work, wait here myThreadData->haveWorkToDo = false; // need to do this before unlocking the mutex m_WorkToDo_mutex.unlock(); // Do the work switch(myThreadData->typeOfWork) { case e_work: std::cout << "Thread " << threadId << ": Woken with work to do\n"; // Do work myThreadData->workFunc(myThreadData->workData); std::cout << "#Thread " << threadId << ": Work is completed\n"; break; case e_quit: std::cout << "Thread " << threadId << ": Asked to quit\n"; return; // ends the thread } // Now to signal the main thread that my work is completed m_WorkCompleted_mutex.lock(); m_NumOfThreadsDoingWork--; // Unsure if this 'if' would make the program more efficient // if(NumOfThreadsDoingWork == 0) m_WorkCompleted_condvar.notify_one(); // notify the main thread m_WorkCompleted_mutex.unlock(); } } ThreadPool::ThreadPool() { m_numOfThreads = 0; m_NumOfThreadsDoingWork = 0; m_NumOfThreadsGivenJobs = 0; } ThreadPool::~ThreadPool() { if(m_numOfThreads) { DestroyThreadPool(); delete [] m_ThreadData; } } void ThreadPool::CreateThreads(int numOfThreads) { // Check a thread pool has already been created if(m_numOfThreads > 0) return; m_NumOfThreadsGivenJobs = 0; m_NumOfThreadsDoingWork = 0; m_numOfThreads = numOfThreads; m_ThreadData = new ThreadData[m_numOfThreads]; ThreadArgStruct threadArg; for(int i=0; i<m_numOfThreads; ++i) { threadArg.threadId = i; threadArg.threadPoolInstance = this; // Creates the thread and save in a list so we can destroy it later m_ThreadList.push_back( new tthread::thread( ThreadFuncWrapper, (void *)&threadArg ) ); // It takes a little time for a thread to get established. // Best wait until it gets established before creating the next thread. m_ThreadReady_mutex.lock(); while(!m_ThreadData[i].ready) // Check if thread is ready m_ThreadReady_condvar.wait(m_ThreadReady_mutex); // If not, wait here m_ThreadReady_mutex.unlock(); } } // Adds a job to the batch, but doesn't start the job void ThreadPool::SubmitJob(void (*workFunc)(void *), void *workData) { // Check that the thread pool has been created if(!m_numOfThreads) return; if(m_NumOfThreadsGivenJobs >= m_numOfThreads) return; m_ThreadData[m_NumOfThreadsGivenJobs].workFunc = workFunc; m_ThreadData[m_NumOfThreadsGivenJobs].workData = workData; std::cout << "Submitted job " << m_NumOfThreadsGivenJobs << std::endl; m_NumOfThreadsGivenJobs++; } void ThreadPool::StartJobs() { // Check that the thread pool has been created // and some jobs have been assigned if(!m_numOfThreads || !m_NumOfThreadsGivenJobs) return; // Set 'haveworkToDo' flag for all threads m_WorkToDo_mutex.lock(); for(int i=0; i<m_NumOfThreadsGivenJobs; ++i) m_ThreadData[i].haveWorkToDo = true; m_NumOfThreadsDoingWork = m_NumOfThreadsGivenJobs; // Reset this counter so we can resubmit jobs later m_NumOfThreadsGivenJobs = 0; // Notify all threads they have work to do m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); } void ThreadPool::WaitForJobsToComplete() { // Check that a thread pool has been created if(!m_numOfThreads) return; m_WorkCompleted_mutex.lock(); while(m_NumOfThreadsDoingWork > 0) // Check if all threads have completed their work m_WorkCompleted_condvar.wait(m_WorkCompleted_mutex); // If not, wait here m_WorkCompleted_mutex.unlock(); } void ThreadPool::DestroyThreadPool() { std::cout << "Ask threads to quit\n"; m_WorkToDo_mutex.lock(); for(int i=0; i<m_numOfThreads; ++i) { m_ThreadData[i].haveWorkToDo = true; m_ThreadData[i].typeOfWork = e_quit; } m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); // As each thread terminates, catch them here for(int i=0; i<m_numOfThreads; ++i) { tthread::thread *t = m_ThreadList[i]; // Wait for thread to complete t->join(); } m_numOfThreads = 0; } Example of usage: (this calculates pi-squared/6) struct CalculationDataStruct { int inputVal; double outputVal; }; void LongCalculation( void *theSums ) { CalculationDataStruct *sums = (CalculationDataStruct *)theSums; int terms = sums->inputVal; double sum; for(int i=1; i<terms; i++) sum += 1.0/( double(i)*double(i) ); sums->outputVal = sum; } int main(int argc, char** argv) { int numThreads = 10; // Create pool ThreadPool threadPool; threadPool.CreateThreads(numThreads); // Create thread workspace CalculationDataStruct sums[numThreads]; // Set up jobs for(int i=0; i<numThreads; i++) { sums[i].inputVal = 3000*(i+1); threadPool.SubmitJob(LongCalculation, &sums[i]); } // Run the jobs threadPool.StartJobs(); threadPool.WaitForJobsToComplete(); // Print results for(int i=0; i<numThreads; i++) std::cout << "Sum of " << sums[i].inputVal << " terms is " << sums[i].outputVal << std::endl; return 0; } Question: In the ThreadPool::ThreadFunc method, would better performance be obtained if the following if statement if(NumOfThreadsDoingWork == 0) was included? Also, I'd be grateful of criticisms and ways to improve the code. At the same time, I hope the code is of use to others.

    Read the article

  • Inserting instructions into method.

    - by Alix
    Hi, (First of all, this is a very lengthy post, but don't worry: I've already implemented all of it, I'm just asking your opinion.) I'm having trouble implementing the following; I'd appreciate some help: I get a Type as parameter. I define a subclass using reflection. Notice that I don't intend to modify the original type, but create a new one. I create a property per field of the original class, like so: [- ignore this text here; I had to add something or the formatting wouldn't work <-] public class OriginalClass { private int x; } public class Subclass : OriginalClass { private int x; public int X { get { return x; } set { x = value; } } } [This is number 4! Numbered lists don't work if you add code in between; sorry] For every method of the superclass, I create an analogous method in the subclass. The method's body must be the same except that I replace the instructions ldfld x with callvirt this.get_X, that is, instead of reading from the field directly I call the get accessor. I'm having trouble with step 4. I know you're not supposed to manipulate code like this, but I really need to. Here's what I've tried: Attempt #1: Use Mono.Cecil. This would allow me to parse the body of the method into human-readable Instructions, and easily replace instructions. However, the original type isn't in a .dll file, so I can't find a way to load it with Mono.Cecil. Writing the type to a .dll, then load it, then modify it and write the new type to disk (which I think is the way you create a type with Mono.Cecil), and then load it seems like a huge overhead. Attempt #2: Use Mono.Reflection. This would also allow me to parse the body into Instructions, but then I have no support for replacing instructions. I've implemented a very ugly and inefficient solution using Mono.Reflection, but it doesn't yet support methods that contain try-catch statements (although I guess I can implement this) and I'm concerned that there may be other scenarios in which it won't work, since I'm using the ILGenerator in a somewhat unusual way. Also, it's very ugly ;). Here's what I've done: private void TransformMethod(MethodInfo methodInfo) { // Create a method with the same signature. ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); // Declare the same local variables as in the original method. IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } // Get readable instructions. IList<Instruction> instructions = methodInfo.GetInstructions(); // I first need to define labels for every instruction in case I // later find a jump to that instruction. Once the instruction has // been emitted I cannot label it, so I'll need to do it in advance. // Since I'm doing a first pass on the method's body anyway, I could // instead just create labels where they are truly needed, but for // now I'm using this quick fix. Dictionary<int, Label> labels = new Dictionary<int, Label>(); foreach (Instruction instr in instructions) { labels[instr.Offset] = ilGen.DefineLabel(); } foreach (Instruction instr in instructions) { // Mark this instruction with a label, in case there's a branch // instruction that jumps here. ilGen.MarkLabel(labels[instr.Offset]); // If this is the instruction that I want to replace (ldfld x)... if (instr.OpCode == OpCodes.Ldfld) { // ...get the get accessor for the accessed field (get_X()) // (I have the accessors in a dictionary; this isn't relevant), MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // ...instead of emitting the original instruction (ldfld x), // emit a call to the get accessor, ilGen.Emit(OpCodes.Callvirt, safeReadAccessor); // Else (it's any other instruction), reemit the instruction, unaltered. } else { Reemit(instr, ilGen, labels); } } } And here comes the horrible, horrible Reemit method: private void Reemit(Instruction instr, ILGenerator ilGen, Dictionary<int, Label> labels) { // If the instruction doesn't have an operand, emit the opcode and return. if (instr.Operand == null) { ilGen.Emit(instr.OpCode); return; } // Else (it has an operand)... // If it's a branch instruction, retrieve the corresponding label (to // which we want to jump), emit the instruction and return. if (instr.OpCode.FlowControl == FlowControl.Branch) { ilGen.Emit(instr.OpCode, labels[Int32.Parse(instr.Operand.ToString())]); return; } // Otherwise, simply emit the instruction. I need to use the right // Emit call, so I need to cast the operand to its type. Type operandType = instr.Operand.GetType(); if (typeof(byte).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (byte) instr.Operand); else if (typeof(double).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (double) instr.Operand); else if (typeof(float).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (float) instr.Operand); else if (typeof(int).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (int) instr.Operand); ... // you get the idea. This is a pretty long method, all like this. } Branch instructions are a special case because instr.Operand is SByte, but Emit expects an operand of type Label. Hence the need for the Dictionary labels. As you can see, this is pretty horrible. What's more, it doesn't work in all cases, for instance with methods that contain try-catch statements, since I haven't emitted them using methods BeginExceptionBlock, BeginCatchBlock, etc, of ILGenerator. This is getting complicated. I guess I can do it: MethodBody has a list of ExceptionHandlingClause that should contain the necessary information to do this. But I don't like this solution anyway, so I'll save this as a last-resort solution. Attempt #3: Go bare-back and just copy the byte array returned by MethodBody.GetILAsByteArray(), since I only want to replace a single instruction for another single instruction of the same size that produces the exact same result: it loads the same type of object on the stack, etc. So there won't be any labels shifting and everything should work exactly the same. I've done this, replacing specific bytes of the array and then calling MethodBuilder.CreateMethodBody(byte[], int), but I still get the same error with exceptions, and I still need to declare the local variables or I'll get an error... even when I simply copy the method's body and don't change anything. So this is more efficient but I still have to take care of the exceptions, etc. Sigh. Here's the implementation of attempt #3, in case anyone is interested: private void TransformMethod(MethodInfo methodInfo, Dictionary<string, MethodInfo[]> dataMembersSafeAccessors, ModuleBuilder moduleBuilder) { ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } byte[] rawInstructions = methodInfo.GetMethodBody().GetILAsByteArray(); IList<Instruction> instructions = methodInfo.GetInstructions(); int k = 0; foreach (Instruction instr in instructions) { if (instr.OpCode == OpCodes.Ldfld) { MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; byte[] bytes = toByteArray(OpCodes.Callvirt.Value); for (int m = 0; m < OpCodes.Callvirt.Size; m++) { rawInstructions[k++] = bytes[put.Length - 1 - m]; } bytes = toByteArray(moduleBuilder.GetMethodToken(safeReadAccessor).Token); for (int m = instr.Size - OpCodes.Ldfld.Size - 1; m >= 0; m--) { rawInstructions[k++] = bytes[m]; } } else { k += instr.Size; } } methodBuilder.CreateMethodBody(rawInstructions, rawInstructions.Length); } private static byte[] toByteArray(int intValue) { byte[] intBytes = BitConverter.GetBytes(intValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } private static byte[] toByteArray(short shortValue) { byte[] intBytes = BitConverter.GetBytes(shortValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } (I know it isn't pretty. Sorry. I put it quickly together to see if it would work.) I don't have much hope, but can anyone suggest anything better than this? Sorry about the extremely lengthy post, and thanks.

    Read the article

  • How to Upload a file from client to server using OFBIZ?

    - by SIVAKUMAR.J
    Hi all, Im new to ofbiz.So is my question is have any mistake forgive me for my mistakes.Im new to ofbiz so i did not know some terminologies in ofbiz.Sometimes my question is not clear because of lack of knowledge in ofbiz.So try to understand my question and give me a good solution with respect to my level.Because some solutions are in very high level cannot able to understand for me.So please give the solution with good examples. My problem is i created a project inside the ofbiz/hot-deploy folder namely "productionmgntSystem".Inside the folder "ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem" i created a .ftl file namely "app_details_1.ftl" .The following are the coding of this file <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Insert title here</title> <script TYPE="TEXT/JAVASCRIPT" language=""JAVASCRIPT"> function uploadFile() { //alert("Before calling upload.jsp"); window.location='<@ofbizUrl>testing_service1</@ofbizUrl>' } </script> </head> <!-- <form action="<@ofbizUrl>testing_service1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> --> <form action="<@ofbizUrl>logout1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> <center style="height: 299px; "> <table border="0" style="height: 177px; width: 788px"> <tr style="height: 115px; "> <td style="width: 103px; "> <td style="width: 413px; "><h1>APPLICATION DETAILS</h1> <td style="width: 55px; "> </tr> <tr> <td style="width: 125px; ">Application name : </td> <td> <input name="app_name_txt" id="txt_1" value=" " /> </td> </tr> <tr> <td style="width: 125px; ">Excell sheet &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;: </td> <td> <input type="file" name="filename"/> </td> </tr> <tr> <td> <!-- <input type="button" name="logout1_cmd" value="Logout" onclick="logout1()"/> --> <input type="submit" name="logout_cmd" value="logout"/> </td> <td> <!-- <input type="submit" name="upload_cmd" value="Submit" /> --> <input type="button" name="upload1_cmd" value="Upload" onclick="uploadFile()"/> </td> </tr> </table> </center> </form> </html> the following coding is present in the file "ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem\WEB-INF\controller.xml" ...... ....... ........ <request-map uri="testing_service1"> <security https="true" auth="true"/> <event type="java" path="org.ofbiz.productionmgntSystem.web_app_req.WebServices1" invoke="testingService"/> <response name="ok" type="view" value="ok_view"/> <response name="exception" type="view" value="exception_view"/> </request-map> .......... ............ .......... <view-map name="ok_view" type="ftl" page="ok_view.ftl"/> <view-map name="exception_view" type="ftl" page="exception_view.ftl"/> ................ ............. ............. The following are the coding present in the file "ofbiz\hot-deploy\productionmgntSystem\src\org\ofbiz\productionmgntSystem\web_app_req\WebServices1.java" package org.ofbiz.productionmgntSystem.web_app_req; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.io.DataInputStream; import java.io.FileOutputStream; import java.io.IOException; public class WebServices1 { public static String testingService(HttpServletRequest request, HttpServletResponse response) { //int i=0; String result="ok"; System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- Start"); String contentType=request.getContentType(); System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- contentType : "+contentType); String str=new String(); // response.setContentType("text/html"); //PrintWriter writer; if ((contentType != null) && (contentType.indexOf("multipart/form-data") >= 0)) { System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) after if (contentType != null)"); try { // writer=response.getWriter(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try Start"); DataInputStream in = new DataInputStream(request.getInputStream()); int formDataLength = request.getContentLength(); byte dataBytes[] = new byte[formDataLength]; int byteRead = 0; int totalBytesRead = 0; //this loop converting the uploaded file into byte code while (totalBytesRead < formDataLength) { byteRead = in.read(dataBytes, totalBytesRead,formDataLength); totalBytesRead += byteRead; } String file = new String(dataBytes); //for saving the file name String saveFile = file.substring(file.indexOf("filename=\"") + 10); saveFile = saveFile.substring(0, saveFile.indexOf("\n")); saveFile = saveFile.substring(saveFile.lastIndexOf("\\")+ 1,saveFile.indexOf("\"")); int lastIndex = contentType.lastIndexOf("="); String boundary = contentType.substring(lastIndex + 1,contentType.length()); int pos; //extracting the index of file pos = file.indexOf("filename=\""); pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; int boundaryLocation = file.indexOf(boundary, pos) - 4; int startPos = ((file.substring(0, pos)).getBytes()).length; int endPos = ((file.substring(0, boundaryLocation)).getBytes()).length; //creating a new file with the same name and writing the content in new file FileOutputStream fileOut = new FileOutputStream("/"+saveFile); fileOut.write(dataBytes, startPos, (endPos - startPos)); fileOut.flush(); fileOut.close(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try End"); } catch(IOException ioe) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch IOException"); //ioe.printStackTrace(); return("exception"); } catch(Exception ex) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch Exception"); return("exception"); } } else { System.out.println("\n\n\t********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) else part"); result="exception"; } System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- End"); return(result); } } I want to upload a file to the server.The file is get from user "<input type="file"..> tag in the "app_details_1.ftl" file & it is updated into the server by using the method "testingService(HttpServletRequest request, HttpServletResponse response)" in the class "WebServices1".But the file is not uploaded. Give me a good solution for uploading a file to the server. Thanks & Regards, Sivakumar.J

    Read the article

  • Accelerated C++, problem 5-6 (copying values from inside a vector to the front)

    - by Darel
    Hello, I'm working through the exercises in Accelerated C++ and I'm stuck on question 5-6. Here's the problem description: (somewhat abbreviated, I've removed extraneous info.) 5-6. Write the extract_fails function so that it copies the records for the passing students to the beginning of students, and then uses the resize function to remove the extra elements from the end of students. (students is a vector of student structures. student structures contain an individual student's name and grades.) More specifically, I'm having trouble getting the vector.insert function to properly copy the passing student structures to the start of the vector students. Here's the extract_fails function as I have it so far (note it doesn't resize the vector yet, as directed by the problem description; that should be trivial once I get past my current issue.) // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } The code compiles and runs, but the students vector isn't adding any student structures to its front. My program's output displays that the students vector is unchanged. Here's my complete source code, followed by a sample input file (I redirect input from the console by typing " < grades" after the compiled program name at the command prompt.) #include <iostream> #include <string> #include <algorithm> // to get the declaration of `sort' #include <stdexcept> // to get the declaration of `domain_error' #include <vector> // to get the declaration of `vector' //driver program for grade partitioning examples using std::cin; using std::cout; using std::endl; using std::string; using std::domain_error; using std::sort; using std::vector; using std::max; using std::istream; struct Student_info { std::string name; double midterm, final; std::vector<double> homework; }; bool compare(const Student_info&, const Student_info&); std::istream& read(std::istream&, Student_info&); std::istream& read_hw(std::istream&, std::vector<double>&); double median(std::vector<double>); double grade(double, double, double); double grade(double, double, const std::vector<double>&); double grade(const Student_info&); bool fgrade(const Student_info&); void extract_fails(vector<Student_info>& v); int main() { vector<Student_info> vs; Student_info s; string::size_type maxlen = 0; while (read(cin, s)) { maxlen = max(maxlen, s.name.size()); vs.push_back(s); } sort(vs.begin(), vs.end(), compare); extract_fails(vs); // display the new, modified vector - it should be larger than // the input vector, due to some student structures being // added to the front of the vector. cout << "count: " << vs.size() << endl << endl; vector<Student_info>::iterator it = vs.begin(); while (it != vs.end()) cout << it++->name << endl; return 0; } // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } bool compare(const Student_info& x, const Student_info& y) { return x.name < y.name; } istream& read(istream& is, Student_info& s) { // read and store the student's name and midterm and final exam grades is >> s.name >> s.midterm >> s.final; read_hw(is, s.homework); // read and store all the student's homework grades return is; } // read homework grades from an input stream into a `vector<double>' istream& read_hw(istream& in, vector<double>& hw) { if (in) { // get rid of previous contents hw.clear(); // read homework grades double x; while (in >> x) hw.push_back(x); // clear the stream so that input will work for the next student in.clear(); } return in; } // compute the median of a `vector<double>' // note that calling this function copies the entire argument `vector' double median(vector<double> vec) { typedef vector<double>::size_type vec_sz; vec_sz size = vec.size(); if (size == 0) throw domain_error("median of an empty vector"); sort(vec.begin(), vec.end()); vec_sz mid = size/2; return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; } // compute a student's overall grade from midterm and final exam grades and homework grade double grade(double midterm, double final, double homework) { return 0.2 * midterm + 0.4 * final + 0.4 * homework; } // compute a student's overall grade from midterm and final exam grades // and vector of homework grades. // this function does not copy its argument, because `median' does so for us. double grade(double midterm, double final, const vector<double>& hw) { if (hw.size() == 0) throw domain_error("student has done no homework"); return grade(midterm, final, median(hw)); } double grade(const Student_info& s) { return grade(s.midterm, s.final, s.homework); } // predicate to determine whether a student failed bool fgrade(const Student_info& s) { return grade(s) < 60; } Sample input file: Moo 100 100 100 100 100 100 100 100 Fail1 45 55 65 80 90 70 65 60 Moore 75 85 77 59 0 85 75 89 Norman 57 78 73 66 78 70 88 89 Olson 89 86 70 90 55 73 80 84 Peerson 47 70 82 73 50 87 73 71 Baker 67 72 73 40 0 78 55 70 Davis 77 70 82 65 70 77 83 81 Edwards 77 72 73 80 90 93 75 90 Fail2 55 55 65 50 55 60 65 60 Thanks to anyone who takes the time to look at this!

    Read the article

  • Windows-1251 file inside UTF-8 site?

    - by Spoonk
    Hello everyone Masters Of Web Delevopment :) I have a piece of PHP script that fetches last 10 played songs from my winamp. This script is inside file (lets call it "lastplayed.php") which is included in my site with php include function inside a "div". My site is on UTF-8 encoding. The problem is that some songs titles are in Windows-1251 encoding. And in my site they displays like "??????"... Is there any known way to tell to this div with included "lastplayed.php" in it, to be with windows-1251 encoding? Or any other suggestions? P.S: The file with fetching script a.k.a. "lastplayed.php", is converted to UTF-8. But if it is ANCII it's the same result. I try to put and meta tag with windows-1251 between head tag but nothing happens again. P.P.S: Script that fetches the Winamp's data (lastplayed.php): <?php /****** * You may use and/or modify this script as long as you: * 1. Keep my name & webpage mentioned * 2. Don't use it for commercial purposes * * If you want to use this script without complying to the rules above, please contact me first at: [email protected] * * Author: Martijn Korse * Website: http://devshed.excudo.net * * Date: 08-05-2006 ***/ /** * version 2.0 */ class Radio { var $fields = array(); var $fieldsDefaults = array("Server Status", "Stream Status", "Listener Peak", "Average Listen Time", "Stream Title", "Content Type", "Stream Genre", "Stream URL", "Current Song"); var $very_first_str; var $domain, $port, $path; var $errno, $errstr; var $trackLists = array(); var $isShoutcast; var $nonShoutcastData = array( "Server Status" => "n/a", "Stream Status" => "n/a", "Listener Peak" => "n/a", "Average Listen Time" => "n/a", "Stream Title" => "n/a", "Content Type" => "n/a", "Stream Genre" => "n/a", "Stream URL" => "n/a", "Stream AIM" => "n/a", "Stream IRC" => "n/a", "Current Song" => "n/a" ); var $altServer = False; function Radio($url) { $parsed_url = parse_url($url); $this->domain = isset($parsed_url['host']) ? $parsed_url['host'] : ""; $this->port = !isset($parsed_url['port']) || empty($parsed_url['port']) ? "80" : $parsed_url['port']; $this->path = empty($parsed_url['path']) ? "/" : $parsed_url['path']; if (empty($this->domain)) { $this->domain = $this->path; $this->path = ""; } $this->setOffset("Current Stream Information"); $this->setFields(); // setting default fields $this->setTableStart("<table border=0 cellpadding=2 cellspacing=2>"); $this->setTableEnd("</table>"); } function setFields($array=False) { if (!$array) $this->fields = $this->fieldsDefaults; else $this->fields = $array; } function setOffset($string) { $this->very_first_str = $string; } function setTableStart($string) { $this->tableStart = $string; } function setTableEnd($string) { $this->tableEnd = $string; } function getHTML($page=False) { if (!$page) $page = $this->path; $contents = ""; $domain = (substr($this->domain, 0, 7) == "http://") ? substr($this->domain, 7) : $this->domain; if (@$fp = fsockopen($domain, $this->port, $this->errno, $this->errstr, 2)) { fputs($fp, "GET ".$page." HTTP/1.1\r\n". "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)\r\n". "Accept: */*\r\n". "Host: ".$domain."\r\n\r\n"); $c = 0; while (!feof($fp) && $c <= 20) { $contents .= fgets($fp, 4096); $c++; } fclose ($fp); preg_match("/(Content-Type:)(.*)/i", $contents, $matches); if (count($matches) > 0) { $contentType = trim($matches[2]); if ($contentType == "text/html") { $this->isShoutcast = True; return $contents; } else { $this->isShoutcast = False; $htmlContent = substr($contents, 0, strpos($contents, "\r\n\r\n")); $dataStr = str_replace("\r", "\n", str_replace("\r\n", "\n", $contents)); $lines = explode("\n", $dataStr); foreach ($lines AS $line) { if ($dp = strpos($line, ":")) { $key = substr($line, 0, $dp); $value = trim(substr($line, ($dp+1))); if (preg_match("/genre/i", $key)) $this->nonShoutcastData['Stream Genre'] = $value; if (preg_match("/name/i", $key)) $this->nonShoutcastData['Stream Title'] = $value; if (preg_match("/url/i", $key)) $this->nonShoutcastData['Stream URL'] = $value; if (preg_match("/content-type/i", $key)) $this->nonShoutcastData['Content Type'] = $value; if (preg_match("/icy-br/i", $key)) $this->nonShoutcastData['Stream Status'] = "Stream is up at ".$value."kbps"; if (preg_match("/icy-notice2/i", $key)) { $this->nonShoutcastData['Server Status'] = "This is <span style=\"color: red;\">not</span> a Shoutcast server!"; if (preg_match("/ultravox/i", $value)) $this->nonShoutcastData['Server Status'] .= " But an <a href=\"http://ultravox.aol.com/\" target=\"_blank\">Ultravox</a> Server"; $this->altServer = $value; } } } return nl2br($htmlContent); } } else return $contents; } else { return False; } } function getServerInfo($display_array=null, $very_first_str=null) { if (!isset($display_array)) $display_array = $this->fields; if (!isset($very_first_str)) $very_first_str = $this->very_first_str; if ($html = $this->getHTML()) { // parsing the contents $data = array(); foreach ($display_array AS $key => $item) { if ($this->isShoutcast) { $very_first_pos = stripos($html, $very_first_str); $first_pos = stripos($html, $item, $very_first_pos); $line_start = strpos($html, "<td>", $first_pos); $line_end = strpos($html, "</td>", $line_start) + 4; $difference = $line_end - $line_start; $line = substr($html, $line_start, $difference); $data[$key] = strip_tags($line); } else { $data[$key] = $this->nonShoutcastData[$item]; } } return $data; } else { return $this->errstr." (".$this->errno.")"; } } function createHistoryArray($page) { if (!in_array($page, $this->trackLists)) { $this->trackLists[] = $page; if ($html = $this->getHTML($page)) { $fromPos = stripos($html, $this->tableStart); $toPos = stripos($html, $this->tableEnd, $fromPos); $tableData = substr($html, $fromPos, ($toPos-$fromPos)); $lines = explode("</tr><tr>", $tableData); $tracks = array(); $c = 0; foreach ($lines AS $line) { $info = explode ("</td><td>", $line); $time = trim(strip_tags($info[0])); if (substr($time, 0, 9) != "Copyright" && !preg_match("/Tag Loomis, Tom Pepper and Justin Frankel/i", $info[1])) { $this->tracks[$c]['time'] = $time; $this->tracks[$c++]['track'] = trim(strip_tags($info[1])); } } if (count($this->tracks) > 0) { unset($this->tracks[0]); if (isset($this->tracks[1])) $this->tracks[1]['track'] = str_replace("Current Song", "", $this->tracks[1]['track']); } } else { $this->tracks[0] = array("time"=>$this->errno, "track"=>$this->errstr); } } } function getHistoryArray($page="/played.html") { if (!in_array($page, $this->trackLists)) $this->createHistoryArray($page); return $this->tracks; } function getHistoryTable($page="/played.html", $trackColText=False, $class=False) { $title_utf8 = mb_convert_encoding($trackArr ,"utf-8" ,"auto"); if (!in_array($page, $this->trackLists)) $this->createHistoryArray($page); if ($trackColText) $output .= " <div class='lastplayed_top'></div> <div".($class ? " class=\"".$class."\"" : "").">"; foreach ($this->tracks AS $title_utf8) $output .= "<div style='padding:2px 0;'>".$title_utf8['track']."</div>"; $output .= "</div><div class='lastplayed_bottom'></div> <div class='lastplayed_title'>".$trackColText."</div> \n"; return $output; } } // this is needed for those with a php version < 5 // the function is copied from the user comments @ php.net (http://nl3.php.net/stripos) if (!function_exists("stripos")) { function stripos($haystack, $needle, $offset=0) { return strpos(strtoupper($haystack), strtoupper($needle), $offset); } } ?> And the calling script outside the lastplayed.php: include "lastplayed.php"; $radio = new Radio($ip.":".$port); echo $radio->getHistoryTable("/played.html", "<b>Last played:</b>", "lastplayed_content");

    Read the article

  • Problem with richfaces ajax datatable + buttons

    - by Schyzotrop
    Hello i have another problem with RichFaces this is my application and it shows how i want it to work : http://www.screencast.com/users/Schyzotrop/folders/Jing/media/a299dc1e-7a10-440e-8c39-96b1ec6e85a4 this is video of some glitch that i can't solve http://screencast.com/t/MDFiMGMzY the problem is that when i am trying to press any buttons on others than 1st category it won't do anything IF 1st category has less rows than the one i am calling it from from 1st category it works always i am using follwoing code in jsp for collumns : <h:form id="categoryAttributeList"> <rich:panel> <f:facet name="header"> <h:outputText value="Category Attribute List" /> </f:facet> <rich:dataTable id="table" value="#{categoryAttributeBean.allCategoryAttribute}" var="cat" width="100%" rows="10" columnClasses="col1,col2,col2,col3"> <f:facet name="header"> <rich:columnGroup> <h:column>Name</h:column> <h:column>Description</h:column> <h:column>Category</h:column> <h:column>Actions</h:column> </rich:columnGroup> </f:facet> <rich:column filterMethod="#{categoryAttributeFilteringBean.filterNames}"> <f:facet name="header"> <h:inputText value="#{categoryAttributeFilteringBean.filterNameValue}" id="input"> <a4j:support event="onkeyup" reRender="table , ds" ignoreDupResponses="true" requestDelay="700" oncomplete="setCaretToEnd(event);" /> </h:inputText> </f:facet> <h:outputText value="#{cat.name}" /> </rich:column> <rich:column filterMethod="#{categoryAttributeFilteringBean.filterDescriptions}"> <f:facet name="header"> <h:inputText value="#{categoryAttributeFilteringBean.filterDescriptionValue}" id="input2"> <a4j:support event="onkeyup" reRender="table , ds" ignoreDupResponses="true" requestDelay="700" oncomplete="setCaretToEnd(event);" /> </h:inputText> </f:facet> <h:outputText value="#{cat.description}" /> </rich:column> <rich:column filterMethod="#{categoryAttributeFilteringBean.filterCategories}"> <f:facet name="header"> <h:selectOneMenu value="#{categoryAttributeFilteringBean.filterCategoryValue}"> <f:selectItems value="#{categoryAttributeFilteringBean.categories}" /> <a4j:support event="onchange" reRender="table, ds" /> </h:selectOneMenu> </f:facet> <h:outputText value="#{cat.categoryID.name}" /> </rich:column> <h:column> <a4j:commandButton value="Edit" reRender="pnl" action="#{categoryAttributeBean.editCategoryAttributeSetup}"> <a4j:actionparam name="categoryAttributeID" value="#{cat.categoryAttributeID}" assignTo="#{categoryAttributeBean.id}" /> <a4j:actionparam name="state" value="edit" /> <a4j:actionparam name="editId" value="#{cat.categoryAttributeID}" /> </a4j:commandButton> <a4j:commandButton reRender="categoryAttributeList" value="Delete" action="#{categoryAttributeBean.deleteCategoryAttribute}"> <a4j:actionparam name="categoryAttributeID" value="#{cat.categoryAttributeID}" assignTo="#{categoryAttributeBean.id}" /> </a4j:commandButton> </h:column> <f:facet name="footer"> <rich:datascroller id="ds" renderIfSinglePage="false"></rich:datascroller> </f:facet> </rich:dataTable> <rich:panel id="msg"> <h:messages errorStyle="color:red" infoStyle="color:green"></h:messages> </rich:panel> </rich:panel> </h:form> and here is code of my backing bean @EJB private CategoryBeanLocal categoryBean; private CategoryAttribute categoryAttribute = new CategoryAttribute(); private ArrayList<SelectItem> categories = new ArrayList<SelectItem>(); private int id; private int categoryid; // Actions public void newCategoryAttribute() { categoryAttribute.setCategoryID(categoryBean.findCategoryByID(categoryid)); categoryBean.addCategoryAttribute(categoryAttribute); FacesContext.getCurrentInstance().addMessage("newCategoryAttribute", new FacesMessage("CategoryAttribute " + categoryAttribute.getName() + " created.")); this.categoryAttribute = new CategoryAttribute(); } public void editCategoryAttributeSetup() { categoryAttribute = categoryBean.findCategoryAttributeByID(id); } public void editCategoryAttribute() { categoryAttribute.setCategoryID(categoryBean.findCategoryByID(categoryid)); categoryBean.updateCategoryAttribute(categoryAttribute); FacesContext.getCurrentInstance().addMessage("newCategoryAttribute", new FacesMessage("CategoryAttribute " + categoryAttribute.getName() + " edited.")); this.categoryAttribute = new CategoryAttribute(); } public void deleteCategoryAttribute() { categoryAttribute = categoryBean.findCategoryAttributeByID(id); categoryBean.removeCategoryAttribute(categoryAttribute); FacesContext.getCurrentInstance().addMessage("categoryAttributeList", new FacesMessage("CategoryAttribute " + categoryAttribute.getName() + " deleted.")); this.categoryAttribute = new CategoryAttribute(); } // Getters public CategoryAttribute getCategoryAttribute() { return categoryAttribute; } public List<CategoryAttribute> getAllCategoryAttribute() { return categoryBean.findAllCategoryAttributes(); } public ArrayList<SelectItem> getCategories() { categories.clear(); List<Category> allCategory = categoryBean.findAllCategory(); Iterator it = allCategory.iterator(); while (it.hasNext()) { Category cat = (Category) it.next(); SelectItem select = new SelectItem(); select.setLabel(cat.getName()); select.setValue(cat.getCategoryID()); categories.add(select); } return categories; } public int getId() { return id; } public int getCategoryid() { return categoryid; } // Setters public void setCategoryAttribute(CategoryAttribute categoryAttribute) { this.categoryAttribute = categoryAttribute; } public void setId(int id) { this.id = id; } public void setCategoryid(int categoryid) { this.categoryid = categoryid; } and here is filtering bean : @EJB private CategoryBeanLocal categoryBean; private String filterNameValue = ""; private String filterDescriptionValue = ""; private int filterCategoryValue = 0; private ArrayList<SelectItem> categories = new ArrayList<SelectItem>(); public boolean filterNames(Object current) { CategoryAttribute currentName = (CategoryAttribute) current; if (filterNameValue.length() == 0) { return true; } if (currentName.getName().toLowerCase().contains(filterNameValue.toLowerCase())) { return true; } else { System.out.println("name"); return false; } } public boolean filterDescriptions(Object current) { CategoryAttribute currentDescription = (CategoryAttribute) current; if (filterDescriptionValue.length() == 0) { return true; } if (currentDescription.getDescription().toLowerCase().contains(filterDescriptionValue.toLowerCase())) { return true; } else { System.out.println("desc"); return false; } } public boolean filterCategories(Object current) { if (filterCategoryValue == 0) { getCategories(); filterCategoryValue = new Integer(categories.get(0).getValue().toString()); } CategoryAttribute currentCategory = (CategoryAttribute) current; if (currentCategory.getCategoryID().getCategoryID() == filterCategoryValue) { return true; } else { System.out.println(currentCategory.getCategoryID().getCategoryID() + "cate" + filterCategoryValue); return false; } } public ArrayList<SelectItem> getCategories() { categories.clear(); List<Category> allCategory = categoryBean.findAllCategory(); Iterator it = allCategory.iterator(); while (it.hasNext()) { Category cat = (Category) it.next(); SelectItem select = new SelectItem(); select.setLabel(cat.getName()); select.setValue(cat.getCategoryID()); categories.add(select); } return categories; } public String getFilterDescriptionValue() { return filterDescriptionValue; } public String getFilterNameValue() { return filterNameValue; } public int getFilterCategoryValue() { return filterCategoryValue; } public void setFilterDescriptionValue(String filterDescriptionValue) { this.filterDescriptionValue = filterDescriptionValue; } public void setFilterNameValue(String filterNameValue) { this.filterNameValue = filterNameValue; } public void setFilterCategoryValue(int filterCategoryValue) { this.filterCategoryValue = filterCategoryValue; } unfortunetly i can't even imagine what could cause this problem that's why i even made videos to help u understand my problem thanks for help!

    Read the article

  • strange segmentation fault during function return

    - by Kyle
    I am running a program on 2 different machines. On one it works fine without issue. On the other it results in a segmentation fault. Through debugging, I have figured out where the fault occurs, but I can't figure out a logical reason for it to happen. In one function I have the following code: pass_particles(particle_grid, particle_properties, input_data, coll_eros_track, collision_number_part, world, grid_rank_lookup, grid_locations); cout<<"done passing particles"<<endl; The function pass_particles looks like: void pass_particles(map<int,map<int,Particle> > & particle_grid, std::vector<Particle_props> & particle_properties, User_input& input_data, data_tracking & coll_eros_track, vector<int> & collision_number_part, mpi::communicator & world, std::map<int,int> & grid_rank_lookup, map<int,std::vector<double> > & grid_locations) { //cout<<"east-west"<<endl; //east-west exchange (x direction) map<int, vector<Particle> > particles_to_be_sent_east; map<int, vector<Particle> > particles_to_be_sent_west; vector<Particle> particles_received_east; vector<Particle> particles_received_west; int counter_x_sent=0; int counter_x_received=0; for(grid_iter=particle_grid.begin();grid_iter!=particle_grid.end();grid_iter++) { map<int,Particle>::iterator part_iter; for (part_iter=grid_iter->second.begin();part_iter!=grid_iter->second.end();) { if (particle_properties[part_iter->second.global_part_num()].particle_in_box()[grid_iter->first]) { //decide if a particle has left the box...need to consider whether particle was already outside the box if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()>(grid_locations[grid_iter->first-input_data.z_numboxes()][0])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes()) && (part_iter->second.position().x()>(grid_locations[input_data.total_boxes()-1][0])))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()<(grid_locations[grid_iter->first+input_data.z_numboxes()][1])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1) && (part_iter->second.position().x()<(grid_locations[0][1]))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } //select particles in overlap areas to send to neighboring cells else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } ++part_iter; } else if (particles_received_current[grid_iter->first].find(part_iter->first)!=particles_received_current[grid_iter->first].end()) { if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } part_iter++; } else { particle_grid[grid_iter->first].erase(part_iter++); counter_removed++; } } } world.barrier(); mpi::request reqs_x_send[particles_to_be_sent_west.size()+particles_to_be_sent_east.size()]; vector<multimap<int,int> > box_sent_x_info; box_sent_x_info.resize(world.size()); vector<multimap<int,int> > box_received_x_info; box_received_x_info.resize(world.size()); int counter_x_reqs=0; //send particles for(grid_iter_vec=particles_to_be_sent_west.begin();grid_iter_vec!=particles_to_be_sent_west.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 50 will be "west" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)], grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(), grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()], grid_iter_vec->first - input_data.z_numboxes(), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()]].insert(pair<int,int>(world.rank(),grid_iter_vec->first - input_data.z_numboxes())); } } } for(grid_iter_vec=particles_to_be_sent_east.begin();grid_iter_vec!=particles_to_be_sent_east.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 60 will be "east" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)], 2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(),2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()], 2000000000-(grid_iter_vec->first + input_data.z_numboxes()), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()]].insert(pair<int,int>(world.rank(), 2000000000-(grid_iter_vec->first + input_data.z_numboxes()))); } } } counter=0; for (int i=0;i<world.size();i++) { //if (world.rank()!=i) //{ reqs[counter++]=world.isend(i,1000000000,box_sent_x_info[i]); reqs[counter++]=world.irecv(i,1000000000,box_received_x_info[i]); //} } mpi::wait_all(reqs, reqs + world.size()*2); //receive particles //receive west particles for (int j=0;j<world.size();j++) { multimap<int,int>::iterator received_info_iter; for (received_info_iter=box_received_x_info[j].begin();received_info_iter!=box_received_x_info[j].end();received_info_iter++) { //receive the message if (received_info_iter->second<1000000000) { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_west); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_west.size();i++) { particle_grid[received_info_iter->second].insert(pair<int,Particle>(particles_received_west[i].global_part_num(),particles_received_west[i])); if(particles_received_west[i].position().x()>grid_locations[received_info_iter->second][0] && particles_received_west[i].position().x()<grid_locations[received_info_iter->second][1]) { particle_properties[particles_received_west[i].global_part_num()].particle_in_box()[received_info_iter->second]=true; } counter_received++; counter_x_received++; } } else { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_east); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_east.size();i++) { particle_grid[2000000000-received_info_iter->second].insert(pair<int,Particle>(particles_received_east[i].global_part_num(),particles_received_east[i])); if(particles_received_east[i].position().x()>grid_locations[2000000000-received_info_iter->second][0] && particles_received_east[i].position().x()<grid_locations[2000000000-received_info_iter->second][1]) { particle_properties[particles_received_east[i].global_part_num()].particle_in_box()[2000000000-received_info_iter->second]=true; } counter_received++; counter_x_received++; } } } } mpi::wait_all(reqs_y_send, reqs_y_send + particles_to_be_sent_bottom.size()+particles_to_be_sent_top.size()); mpi::wait_all(reqs_z_send, reqs_z_send + particles_to_be_sent_south.size()+particles_to_be_sent_north.size()); mpi::wait_all(reqs_x_send, reqs_x_send + particles_to_be_sent_west.size()+particles_to_be_sent_east.size()); cout<<"x sent "<<counter_x_sent<<" and received "<<counter_x_received<<" from rank "<<world.rank()<<endl; cout<<"rank "<<world.rank()<<" sent "<<counter_sent<<" and received "<<counter_received<<" and removed "<<counter_removed<<endl; cout<<"done passing"<<endl; } I only posted some of the code (so ignore the fact that some variables may appear to be undefined, as they are in a portion of the code I didn't post) When I run the code (on the machine in which it fails), I get done passing but not done passing particles I am lost as to what could possibly cause a segmentation fault between the end of the called function and the next line in the calling function and why it would happen on one machine and not another.

    Read the article

  • Cnoverting application to MVC architecture

    - by terence6
    I'm practicing writing MVC applications. I have a Mastermind game, that I would like to rewrite as MVC app. I have divided my code to parts, but instead of working game I'm getting empty Frame and an error in "public void paint( Graphics g )". Error comes from calling this method in my view with null argument. But how to overcome this ? MVC was quite simple with swing but awt and it's paint methods are much more complicated. Code of working app : http://paste.pocoo.org/show/224982/ App divided to MVC : Main : public class Main { public static void main(String[] args){ Model model = new Model(); View view = new View("Mastermind", 400, 590, model); Controller controller = new Controller(model, view); view.setVisible(true); } } Controller : import java.awt.*; import java.awt.event.*; public class Controller implements MouseListener, ActionListener { private Model model; private View view; public Controller(Model m, View v){ model = m; view = v; view.addWindowListener( new WindowAdapter(){ public void windowClosing(WindowEvent e){ System.exit(0); } }); view.addMouseListener(this); } public void actionPerformed( ActionEvent e ) { if(e.getSource() == view.checkAnswer){ if(model.isRowFull){ model.check(); } } } public void mousePressed(MouseEvent e) { Point mouse = new Point(); mouse = e.getPoint(); if (model.isPlaying){ if (mouse.x > 350) { int button = 1 + (int)((mouse.y - 32) / 50); if ((button >= 1) && (button <= 5)){ model.fillHole(button); } } } } public void mouseClicked(MouseEvent e) {} public void mouseReleased(MouseEvent e){} public void mouseEntered(MouseEvent e) {} public void mouseExited(MouseEvent e) {} } View : import java.awt.*; import javax.swing.*; import java.awt.event.*; public class View extends Frame implements ActionListener { Model model; JButton checkAnswer; private JPanel button; static final int HIT_X[] = {270,290,310,290,310}, HIT_Y[] = {506,496,496,516,516}; public View(String name, int w, int h, Model m){ model = m; setTitle( name ); setSize( w,h ); setResizable( false ); this.setLayout(new BorderLayout()); button = new JPanel(); button.setSize( new Dimension(400, 100)); button.setVisible(true); checkAnswer = new JButton("Check"); checkAnswer.addActionListener(this); checkAnswer.setSize( new Dimension(200, 30)); button.add( checkAnswer ); this.add( button, BorderLayout.SOUTH); button.setVisible(true); for ( int i=0; i < model.SCORE; i++ ){ for ( int j = 0; j < model.LINE; j++ ){ model.pins[i][j] = new Pin(20,0); model.pins[i][j].setPosition(j*50+30,510-i*50); model.pins[i+model.SCORE][j] = new Pin(8,0); model.pins[i+model.SCORE][j].setPosition(HIT_X[j],HIT_Y[j]-i*50); } } for ( int i=0; i < model.LINE; i++ ){ model.pins[model.OPTIONS][i] = new Pin( 20, i+2 ); model.pins[model.OPTIONS][i].setPosition( 370,i * 50 + 56); } model.combination(); model.paint(null); } public void actionPerformed( ActionEvent e ) { } } Model: import java.awt.*; public class Model extends Frame{ static final int LINE = 5, SCORE = 10, OPTIONS = 20; Pin pins[][] = new Pin[21][LINE]; int combination[] = new int[LINE]; int curPin = 0; int turn = 1; int repaintPin; boolean isUpdate = true, isPlaying = true, isRowFull = false; public Model(){ } void fillHole(int color) { pins[turn-1][curPin].setColor(color+1); repaintPins( turn ); curPin = (curPin+1) % LINE; if (curPin == 0){ isRowFull = true; } } public void paint( Graphics g ) { g.setColor( new Color(238, 238, 238)); g.fillRect( 0,0,400,590); for ( int i=0; i < pins.length; i++ ) { pins[i][0].paint(g); pins[i][1].paint(g); pins[i][2].paint(g); pins[i][3].paint(g); pins[i][4].paint(g); } } public void update( Graphics g ) { if ( isUpdate ) { paint(g); } else { isUpdate = true; pins[repaintPin-1][0].paint(g); pins[repaintPin-1][1].paint(g); pins[repaintPin-1][2].paint(g); pins[repaintPin-1][3].paint(g); pins[repaintPin-1][4].paint(g); } } void repaintPins( int pin ) { repaintPin = pin; isUpdate = false; repaint(); } void check() { int junkPegs[] = new int[LINE], junkCode[] = new int[LINE]; int pegCount = 0, pico = 0; for ( int i = 0; i < LINE; i++ ) { junkPegs[i] = pins[turn-1][i].getColor(); junkCode[i] = combination[i]; } for ( int i = 0; i < LINE; i++ ){ if (junkPegs[i]==junkCode[i]) { pins[turn+SCORE][pegCount].setColor(1); pegCount++; pico++; junkPegs[i] = 98; junkCode[i] = 99; } } for ( int i = 0; i < LINE; i++ ){ for ( int j = 0; j < LINE; j++ ) if (junkPegs[i]==junkCode[j]) { pins[turn+SCORE][pegCount].setColor(2); pegCount++; junkPegs[i] = 98; junkCode[j] = 99; j = LINE; } } repaintPins( turn+SCORE ); if ( pico == LINE ){ isPlaying = false; } else if ( turn >= 10 ){ isPlaying = false; } else{ curPin = 0; isRowFull = false; turn++; } } void combination() { for ( int i = 0; i < LINE; i++ ){ combination[i] = 1 + (int)(Math.random()*5); System.out.print(i+","); } } } class Pin{ private int color, X, Y, radius; private static final Color COLORS[] = { Color.black, Color.white, Color.red, Color.yellow, Color.green, Color.blue, new Color(7, 254, 250)}; public Pin(){ X = 0; Y = 0; radius = 0; color = 0; } public Pin( int r,int c ){ X = 0; Y = 0; radius = r; color = c; } public void paint( Graphics g ){ int x = X-radius; int y = Y-radius; if (color > 0){ g.setColor( COLORS[color]); g.fillOval( x,y,2*radius,2*radius ); } else{ g.setColor( new Color(238, 238, 238) ); g.drawOval( x,y,2*radius-1,2*radius-1 ); } g.setColor( Color.black ); g.drawOval( x,y,2*radius,2*radius ); } public void setPosition( int x,int y ){ this.X = x ; this.Y = y ; } public void setColor( int c ){ color = c; } public int getColor() { return color; } } Any clues on how to overcome this would be great. Have I divided my code improperly ?

    Read the article

  • Simple Physics Simulation in java not working.

    - by Static Void Main
    Dear experts, I wanted to implement ball physics and as i m newbie, i adapt the code in tutorial http://adam21.web.officelive.com/Documents/JavaPhysicsTutorial.pdf . i try to follow that as i much as i can, but i m not able to apply all physical phenomenon in code, can somebody please tell me, where i m mistaken or i m still doing some silly programming mistake. The balls are moving when i m not calling bounce method and i m unable to avail the bounce method and ball are moving towards left side instead of falling/ending on floor**, Can some body recommend me some better way or similar easy compact way to accomplish this task of applying physics on two ball or more balls with interactivity. here is code ; import java.awt.*; public class AdobeBall { protected int radius = 20; protected Color color; // ... Constants final static int DIAMETER = 40; // ... Instance variables private int m_x; // x and y coordinates upper left private int m_y; private double dx = 3.0; // delta x and y private double dy = 6.0; private double m_velocityX; // Pixels to move each time move() is called. private double m_velocityY; private int m_rightBound; // Maximum permissible x, y values. private int m_bottomBound; public AdobeBall(int x, int y, double velocityX, double velocityY, Color color1) { super(); m_x = x; m_y = y; m_velocityX = velocityX; m_velocityY = velocityY; color = color1; } public double getSpeed() { return Math.sqrt((m_x + m_velocityX - m_x) * (m_x + m_velocityX - m_x) + (m_y + m_velocityY - m_y) * (m_y + m_velocityY - m_y)); } public void setSpeed(double speed) { double currentSpeed = Math.sqrt(dx * dx + dy * dy); dx = dx * speed / currentSpeed; dy = dy * speed / currentSpeed; } public void setDirection(double direction) { m_velocityX = (int) (Math.cos(direction) * getSpeed()); m_velocityY = (int) (Math.sin(direction) * getSpeed()); } public double getDirection() { double h = ((m_x + dx - m_x) * (m_x + dx - m_x)) + ((m_y + dy - m_y) * (m_y + dy - m_y)); double a = (m_x + dx - m_x) / h; return a; } // ======================================================== setBounds public void setBounds(int width, int height) { m_rightBound = width - DIAMETER; m_bottomBound = height - DIAMETER; } // ============================================================== move public void move() { double gravAmount = 0.02; double gravDir = 90; // The direction for the gravity to be in. // ... Move the ball at the give velocity. m_x += m_velocityX; m_y += m_velocityY; // ... Bounce the ball off the walls if necessary. if (m_x < 0) { // If at or beyond left side m_x = 0; // Place against edge and m_velocityX = -m_velocityX; } else if (m_x > m_rightBound) { // If at or beyond right side m_x = m_rightBound; // Place against right edge. m_velocityX = -m_velocityX; } if (m_y < 0) { // if we're at top m_y = 0; m_velocityY = -m_velocityY; } else if (m_y > m_bottomBound) { // if we're at bottom m_y = m_bottomBound; m_velocityY = -m_velocityY; } // double speed = Math.sqrt((m_velocityX * m_velocityX) // + (m_velocityY * m_velocityY)); // ...Friction stuff double fricMax = 0.02; // You can use any number, preferably less than 1 double friction = getSpeed(); if (friction > fricMax) friction = fricMax; if (m_velocityX >= 0) { m_velocityX -= friction; } if (m_velocityX <= 0) { m_velocityX += friction; } if (m_velocityY >= 0) { m_velocityY -= friction; } if (m_velocityY <= 0) { m_velocityY += friction; } // ...Gravity stuff m_velocityX += Math.cos(gravDir) * gravAmount; m_velocityY += Math.sin(gravDir) * gravAmount; } public Color getColor() { return color; } public void setColor(Color newColor) { color = newColor; } // ============================================= getDiameter, getX, getY public int getDiameter() { return DIAMETER; } public double getRadius() { return radius; // radius should be a local variable in Ball. } public int getX() { return m_x; } public int getY() { return m_y; } } using adobeBall: import java.awt.*; import java.awt.event.*; import javax.swing.*; public class AdobeBallImplementation implements Runnable { private static final long serialVersionUID = 1L; private volatile boolean Play; private long mFrameDelay; private JFrame frame; private MyKeyListener pit; /** true means mouse was pressed in ball and still in panel. */ private boolean _canDrag = false; private static final int MAX_BALLS = 50; // max number allowed private int currentNumBalls = 2; // number currently active private AdobeBall[] ball = new AdobeBall[MAX_BALLS]; public AdobeBallImplementation(Color ballColor) { frame = new JFrame("simple gaming loop in java"); frame.setSize(400, 400); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); pit = new MyKeyListener(); pit.setPreferredSize(new Dimension(400, 400)); frame.setContentPane(pit); ball[0] = new AdobeBall(34, 150, 7, 2, Color.YELLOW); ball[1] = new AdobeBall(50, 50, 5, 3, Color.BLUE); frame.pack(); frame.setVisible(true); frame.setBackground(Color.white); start(); frame.addMouseListener(pit); frame.addMouseMotionListener(pit); } public void start() { Play = true; Thread t = new Thread(this); t.start(); } public void stop() { Play = false; } public void run() { while (Play == true) { // bounce(ball[0],ball[1]); runball(); pit.repaint(); try { Thread.sleep(mFrameDelay); } catch (InterruptedException ie) { stop(); } } } public void drawworld(Graphics g) { for (int i = 0; i < currentNumBalls; i++) { g.setColor(ball[i].getColor()); g.fillOval(ball[i].getX(), ball[i].getY(), 40, 40); } } public double pointDistance (double x1, double y1, double x2, double y2) { return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); } public void runball() { while (Play == true) { try { for (int i = 0; i < currentNumBalls; i++) { for (int j = 0; j < currentNumBalls; j++) { if (pointDistance(ball[i].getX(), ball[i].getY(), ball[j].getX(), ball[j].getY()) < ball[i] .getRadius() + ball[j].getRadius() + 2) { // bounce(ball[i],ball[j]); ball[i].setBounds(pit.getWidth(), pit.getHeight()); ball[i].move(); pit.repaint(); } } } try { Thread.sleep(50); } catch (Exception e) { System.exit(0); } } catch (Exception e) { e.printStackTrace(); } } } public static double pointDirection(int x1, int y1, int x2, int y2) { double H = Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); // The // hypotenuse double x = x2 - x1; // The opposite double y = y2 - y1; // The adjacent double angle = Math.acos(x / H); angle = angle * 57.2960285258; if (y < 0) { angle = 360 - angle; } return angle; } public static void bounce(AdobeBall b1, AdobeBall b2) { if (b2.getSpeed() == 0 && b1.getSpeed() == 0) { // Both balls are stopped. b1.setDirection(pointDirection(b1.getX(), b1.getY(), b2.getX(), b2 .getY())); b2.setDirection(pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY())); b1.setSpeed(1); b2.setSpeed(1); } else if (b2.getSpeed() == 0 && b1.getSpeed() != 0) { // B1 is moving. B2 is stationary. double angle = pointDirection(b1.getX(), b1.getY(), b2.getX(), b2 .getY()); b2.setSpeed(b1.getSpeed()); b2.setDirection(angle); b1.setDirection(angle - 90); } else if (b1.getSpeed() == 0 && b2.getSpeed() != 0) { // B1 is moving. B2 is stationary. double angle = pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY()); b1.setSpeed(b2.getSpeed()); b1.setDirection(angle); b2.setDirection(angle - 90); } else { // Both balls are moving. AdobeBall tmp = b1; double angle = pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY()); double origangle = b1.getDirection(); b1.setDirection(angle + origangle); angle = pointDirection(tmp.getX(), tmp.getY(), b2.getX(), b2.getY()); origangle = b2.getDirection(); b2.setDirection(angle + origangle); } } public static void main(String[] args) { javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { new AdobeBallImplementation(Color.red); } }); } } *EDIT:*ok splitting the code using new approach for gravity from this forum: this code also not working the ball is not coming on floor: public void mymove() { m_x += m_velocityX; m_y += m_velocityY; if (m_y + m_bottomBound > 400) { m_velocityY *= -0.981; // setY(400 - m_bottomBound); m_y = 400 - m_bottomBound; } // ... Bounce the ball off the walls if necessary. if (m_x < 0) { // If at or beyond left side m_x = 0; // Place against edge and m_velocityX = -m_velocityX; } else if (m_x > m_rightBound) { // If at or beyond right side m_x = m_rightBound - 20; // Place against right edge. m_velocityX = -m_velocityX; } if (m_y < 0) { // if we're at top m_y = 1; m_velocityY = -m_velocityY; } else if (m_y > m_bottomBound) { // if we're at bottom m_y = m_bottomBound - 20; m_velocityY = -m_velocityY; } } thanks a lot for any correction and help. jibby

    Read the article

  • Converting application to MVC architecture

    - by terence6
    I'm practicing writing MVC applications. I have a Mastermind game, that I would like to rewrite as MVC app. I have divided my code to parts, but instead of working game I'm getting empty Frame and an error in "public void paint( Graphics g )". Error comes from calling this method in my view with null argument. But how to overcome this ? MVC was quite simple with swing but awt and it's paint methods are much more complicated. Code of working app : http://paste.pocoo.org/show/224982/ App divided to MVC : Main : public class Main { public static void main(String[] args){ Model model = new Model(); View view = new View("Mastermind", 400, 590, model); Controller controller = new Controller(model, view); view.setVisible(true); } } Controller : import java.awt.*; import java.awt.event.*; public class Controller implements MouseListener, ActionListener { private Model model; private View view; public Controller(Model m, View v){ model = m; view = v; view.addWindowListener( new WindowAdapter(){ public void windowClosing(WindowEvent e){ System.exit(0); } }); view.addMouseListener(this); } public void actionPerformed( ActionEvent e ) { if(e.getSource() == view.checkAnswer){ if(model.isRowFull){ model.check(); } } } public void mousePressed(MouseEvent e) { Point mouse = new Point(); mouse = e.getPoint(); if (model.isPlaying){ if (mouse.x > 350) { int button = 1 + (int)((mouse.y - 32) / 50); if ((button >= 1) && (button <= 5)){ model.fillHole(button); } } } } public void mouseClicked(MouseEvent e) {} public void mouseReleased(MouseEvent e){} public void mouseEntered(MouseEvent e) {} public void mouseExited(MouseEvent e) {} } View : import java.awt.*; import javax.swing.*; import java.awt.event.*; public class View extends Frame implements ActionListener { Model model; JButton checkAnswer; private JPanel button; static final int HIT_X[] = {270,290,310,290,310}, HIT_Y[] = {506,496,496,516,516}; public View(String name, int w, int h, Model m){ model = m; setTitle( name ); setSize( w,h ); setResizable( false ); this.setLayout(new BorderLayout()); button = new JPanel(); button.setSize( new Dimension(400, 100)); button.setVisible(true); checkAnswer = new JButton("Check"); checkAnswer.addActionListener(this); checkAnswer.setSize( new Dimension(200, 30)); button.add( checkAnswer ); this.add( button, BorderLayout.SOUTH); button.setVisible(true); for ( int i=0; i < model.SCORE; i++ ){ for ( int j = 0; j < model.LINE; j++ ){ model.pins[i][j] = new Pin(20,0); model.pins[i][j].setPosition(j*50+30,510-i*50); model.pins[i+model.SCORE][j] = new Pin(8,0); model.pins[i+model.SCORE][j].setPosition(HIT_X[j],HIT_Y[j]-i*50); } } for ( int i=0; i < model.LINE; i++ ){ model.pins[model.OPTIONS][i] = new Pin( 20, i+2 ); model.pins[model.OPTIONS][i].setPosition( 370,i * 50 + 56); } model.combination(); model.paint(null); } public void actionPerformed( ActionEvent e ) { } } Model: import java.awt.*; public class Model extends Frame{ static final int LINE = 5, SCORE = 10, OPTIONS = 20; Pin pins[][] = new Pin[21][LINE]; int combination[] = new int[LINE]; int curPin = 0; int turn = 1; int repaintPin; boolean isUpdate = true, isPlaying = true, isRowFull = false; public Model(){ } void fillHole(int color) { pins[turn-1][curPin].setColor(color+1); repaintPins( turn ); curPin = (curPin+1) % LINE; if (curPin == 0){ isRowFull = true; } } public void paint( Graphics g ) { g.setColor( new Color(238, 238, 238)); g.fillRect( 0,0,400,590); for ( int i=0; i < pins.length; i++ ) { pins[i][0].paint(g); pins[i][1].paint(g); pins[i][2].paint(g); pins[i][3].paint(g); pins[i][4].paint(g); } } public void update( Graphics g ) { if ( isUpdate ) { paint(g); } else { isUpdate = true; pins[repaintPin-1][0].paint(g); pins[repaintPin-1][1].paint(g); pins[repaintPin-1][2].paint(g); pins[repaintPin-1][3].paint(g); pins[repaintPin-1][4].paint(g); } } void repaintPins( int pin ) { repaintPin = pin; isUpdate = false; repaint(); } void check() { int junkPegs[] = new int[LINE], junkCode[] = new int[LINE]; int pegCount = 0, pico = 0; for ( int i = 0; i < LINE; i++ ) { junkPegs[i] = pins[turn-1][i].getColor(); junkCode[i] = combination[i]; } for ( int i = 0; i < LINE; i++ ){ if (junkPegs[i]==junkCode[i]) { pins[turn+SCORE][pegCount].setColor(1); pegCount++; pico++; junkPegs[i] = 98; junkCode[i] = 99; } } for ( int i = 0; i < LINE; i++ ){ for ( int j = 0; j < LINE; j++ ) if (junkPegs[i]==junkCode[j]) { pins[turn+SCORE][pegCount].setColor(2); pegCount++; junkPegs[i] = 98; junkCode[j] = 99; j = LINE; } } repaintPins( turn+SCORE ); if ( pico == LINE ){ isPlaying = false; } else if ( turn >= 10 ){ isPlaying = false; } else{ curPin = 0; isRowFull = false; turn++; } } void combination() { for ( int i = 0; i < LINE; i++ ){ combination[i] = 1 + (int)(Math.random()*5); System.out.print(i+","); } } } class Pin{ private int color, X, Y, radius; private static final Color COLORS[] = { Color.black, Color.white, Color.red, Color.yellow, Color.green, Color.blue, new Color(7, 254, 250)}; public Pin(){ X = 0; Y = 0; radius = 0; color = 0; } public Pin( int r,int c ){ X = 0; Y = 0; radius = r; color = c; } public void paint( Graphics g ){ int x = X-radius; int y = Y-radius; if (color > 0){ g.setColor( COLORS[color]); g.fillOval( x,y,2*radius,2*radius ); } else{ g.setColor( new Color(238, 238, 238) ); g.drawOval( x,y,2*radius-1,2*radius-1 ); } g.setColor( Color.black ); g.drawOval( x,y,2*radius,2*radius ); } public void setPosition( int x,int y ){ this.X = x ; this.Y = y ; } public void setColor( int c ){ color = c; } public int getColor() { return color; } } Any clues on how to overcome this would be great. Have I divided my code improperly ?

    Read the article

  • Delphi: EInvalidOp in neural network class (TD-lambda)

    - by user89818
    I have the following draft for a neural network class. This neural network should learn with TD-lambda. It is started by calling the getRating() function. But unfortunately, there is an EInvalidOp (invalid floading point operation) error after about 1000 iterations in the following lines: neuronsHidden[j] := neuronsHidden[j]+neuronsInput[t][i]*weightsInput[i][j]; // input -> hidden weightsHidden[j][k] := weightsHidden[j][k]+LEARNING_RATE_HIDDEN*tdError[k]*eligibilityTraceOutput[j][k]; // adjust hidden->output weights according to TD-lambda Why is this error? I can't find the mistake in my code :( Can you help me? Thank you very much in advance! unit uNeuronalesNetz; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, ExtCtrls, StdCtrls, Grids, Menus, Math; const NEURONS_INPUT = 43; // number of neurons in the input layer NEURONS_HIDDEN = 60; // number of neurons in the hidden layer NEURONS_OUTPUT = 1; // number of neurons in the output layer NEURONS_TOTAL = NEURONS_INPUT+NEURONS_HIDDEN+NEURONS_OUTPUT; // total number of neurons in the network MAX_TIMESTEPS = 42; // maximum number of timesteps possible (after 42 moves: board is full) LEARNING_RATE_INPUT = 0.25; // in ideal case: decrease gradually in course of training LEARNING_RATE_HIDDEN = 0.15; // in ideal case: decrease gradually in course of training GAMMA = 0.9; LAMBDA = 0.7; // decay parameter for eligibility traces type TFeatureVector = Array[1..43] of SmallInt; // definition of the array type TFeatureVector TArtificialNeuralNetwork = class // definition of the class TArtificialNeuralNetwork private // GENERAL SETTINGS START learningMode: Boolean; // does the network learn and change its weights? // GENERAL SETTINGS END // NETWORK CONFIGURATION START neuronsInput: Array[1..MAX_TIMESTEPS] of Array[1..NEURONS_INPUT] of Extended; // array of all input neurons (their values) for every timestep neuronsHidden: Array[1..NEURONS_HIDDEN] of Extended; // array of all hidden neurons (their values) neuronsOutput: Array[1..NEURONS_OUTPUT] of Extended; // array of output neurons (their values) weightsInput: Array[1..NEURONS_INPUT] of Array[1..NEURONS_HIDDEN] of Extended; // array of weights: input->hidden weightsHidden: Array[1..NEURONS_HIDDEN] of Array[1..NEURONS_OUTPUT] of Extended; // array of weights: hidden->output // NETWORK CONFIGURATION END // LEARNING SETTINGS START outputBefore: Array[1..NEURONS_OUTPUT] of Extended; // the network's output value in the last timestep (the one before) eligibilityTraceHidden: Array[1..NEURONS_INPUT] of Array[1..NEURONS_HIDDEN] of Array[1..NEURONS_OUTPUT] of Extended; // array of eligibility traces: hidden layer eligibilityTraceOutput: Array[1..NEURONS_TOTAL] of Array[1..NEURONS_TOTAL] of Extended; // array of eligibility traces: output layer reward: Array[1..MAX_TIMESTEPS] of Array[1..NEURONS_OUTPUT] of Extended; // the reward value for all output neurons in every timestep tdError: Array[1..NEURONS_OUTPUT] of Extended; // the network's error value for every single output neuron t: Byte; // current timestep cyclesTrained: Integer; // number of cycles trained so far (learning rates could be decreased accordingly) last50errors: Array[1..50] of Extended; // LEARNING SETTINGS END public constructor Create; // create the network object and do the initialization procedure UpdateEligibilityTraces; // update the eligibility traces for the hidden and output layer procedure tdLearning; // learning algorithm: adjust the network's weights procedure ForwardPropagation; // propagate the input values through the network to the output layer function getRating(state: TFeatureVector; explorative: Boolean): Extended; // get the rating for a given state (feature vector) function HyperbolicTangent(x: Extended): Extended; // calculate the hyperbolic tangent [-1;1] procedure StartNewCycle; // start a new cycle with everything set to default except for the weights procedure setLearningMode(activated: Boolean=TRUE); // switch the learning mode on/off procedure setInputs(state: TFeatureVector); // transfer the given feature vector to the input layer (set input neurons' values) procedure setReward(currentReward: SmallInt); // set the reward for the current timestep (with learning then or without) procedure nextTimeStep; // increase timestep t function getCyclesTrained(): Integer; // get the number of cycles trained so far procedure Visualize(imgHidden: Pointer); // visualize the neural network's hidden layer end; implementation procedure TArtificialNeuralNetwork.UpdateEligibilityTraces; var i, j, k: Integer; begin // how worthy is a weight to be adjusted? for j := 1 to NEURONS_HIDDEN do begin for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceOutput[j][k] := LAMBDA*eligibilityTraceOutput[j][k]+(neuronsOutput[k]*(1-neuronsOutput[k]))*neuronsHidden[j]; for i := 1 to NEURONS_INPUT do begin eligibilityTraceHidden[i][j][k] := LAMBDA*eligibilityTraceHidden[i][j][k]+(neuronsOutput[k]*(1-neuronsOutput[k]))*weightsHidden[j][k]*neuronsHidden[j]*(1-neuronsHidden[j])*neuronsInput[t][i]; end; end; end; end; procedure TArtificialNeuralNetwork.setReward; VAR i: Integer; begin for i := 1 to NEURONS_OUTPUT do begin // +1 = player A wins // 0 = draw // -1 = player B wins reward[t][i] := currentReward; end; end; procedure TArtificialNeuralNetwork.tdLearning; var i, j, k: Integer; begin if learningMode then begin for k := 1 to NEURONS_OUTPUT do begin if reward[t][k] = 0 then begin tdError[k] := GAMMA*neuronsOutput[k]-outputBefore[k]; // network's error value when reward is 0 end else begin tdError[k] := reward[t][k]-outputBefore[k]; // network's error value in the final state (reward received) end; for j := 1 to NEURONS_HIDDEN do begin weightsHidden[j][k] := weightsHidden[j][k]+LEARNING_RATE_HIDDEN*tdError[k]*eligibilityTraceOutput[j][k]; // adjust hidden->output weights according to TD-lambda for i := 1 to NEURONS_INPUT do begin weightsInput[i][j] := weightsInput[i][j]+LEARNING_RATE_INPUT*tdError[k]*eligibilityTraceHidden[i][j][k]; // adjust input->hidden weights according to TD-lambda end; end; end; end; end; procedure TArtificialNeuralNetwork.ForwardPropagation; var i, j, k: Integer; begin for j := 1 to NEURONS_HIDDEN do begin neuronsHidden[j] := 0; for i := 1 to NEURONS_INPUT do begin neuronsHidden[j] := neuronsHidden[j]+neuronsInput[t][i]*weightsInput[i][j]; // input -> hidden end; neuronsHidden[j] := HyperbolicTangent(neuronsHidden[j]); // activation of hidden neuron j end; for k := 1 to NEURONS_OUTPUT do begin neuronsOutput[k] := 0; for j := 1 to NEURONS_HIDDEN do begin neuronsOutput[k] := neuronsOutput[k]+neuronsHidden[j]*weightsHidden[j][k]; // hidden -> output end; neuronsOutput[k] := HyperbolicTangent(neuronsOutput[k]); // activation of output neuron k end; end; procedure TArtificialNeuralNetwork.setLearningMode; begin learningMode := activated; end; constructor TArtificialNeuralNetwork.Create; var i, j, k: Integer; begin inherited Create; Randomize; // initialize random numbers generator learningMode := TRUE; cyclesTrained := -2; // only set to -2 because it will be increased twice in the beginning StartNewCycle; for j := 1 to NEURONS_HIDDEN do begin for k := 1 to NEURONS_OUTPUT do begin weightsHidden[j][k] := abs(Random-0.5); // initialize weights: 0 <= random < 0.5 end; for i := 1 to NEURONS_INPUT do begin weightsInput[i][j] := abs(Random-0.5); // initialize weights: 0 <= random < 0.5 end; end; for i := 1 to 50 do begin last50errors[i] := 0; end; end; procedure TArtificialNeuralNetwork.nextTimeStep; begin t := t+1; end; procedure TArtificialNeuralNetwork.StartNewCycle; var i, j, k, m: Integer; begin t := 1; // start in timestep 1 cyclesTrained := cyclesTrained+1; // increase the number of cycles trained so far for j := 1 to NEURONS_HIDDEN do begin neuronsHidden[j] := 0; for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceOutput[j][k] := 0; outputBefore[k] := 0; neuronsOutput[k] := 0; for m := 1 to MAX_TIMESTEPS do begin reward[m][k] := 0; end; end; for i := 1 to NEURONS_INPUT do begin for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceHidden[i][j][k] := 0; end; end; end; end; function TArtificialNeuralNetwork.getCyclesTrained; begin result := cyclesTrained; end; procedure TArtificialNeuralNetwork.setInputs; var k: Integer; begin for k := 1 to NEURONS_INPUT do begin neuronsInput[t][k] := state[k]; end; end; function TArtificialNeuralNetwork.getRating; begin setInputs(state); ForwardPropagation; result := neuronsOutput[1]; if not explorative then begin tdLearning; // adjust the weights according to TD-lambda ForwardPropagation; // calculate the network's output again outputBefore[1] := neuronsOutput[1]; // set outputBefore which will then be used in the next timestep UpdateEligibilityTraces; // update the eligibility traces for the next timestep nextTimeStep; // go to the next timestep end; end; function TArtificialNeuralNetwork.HyperbolicTangent; begin if x > 5500 then // prevent overflow result := 1 else result := (Exp(2*x)-1)/(Exp(2*x)+1); end; end.

    Read the article

  • Inheritance issue

    - by VenkateshGudipati
    hi Friends i am facing a issue in Inheritance i have a interface called Irewhizz interface irewhzz { void object save(object obj); void object getdata(object obj); } i write definition in different class like public user:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } this is antoher class public client:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } now i have different classes like public partial class RwUser { #region variables IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private string _firstName; private string _lastName; private string _middleName; private string _email; private string _website; private int _addressId; private string _city; private string _zipcode; private string _phone; private string _fax; //private string _location; private string _aboutMe; private string _username; private string _password; private string _securityQuestion; private string _securityQAnswer; private Guid _user_Id; private long _rwuserid; private byte[] _image; private bool _changepassword; private string _mobilephone; private int _role; #endregion //IRewhizz is the interface and its functions are implimented by UserDataHelper class //RwUser Class is inheriting the UserDataHelper Properties and functions. //Here UserDataHelper functions are called with Irewhizz Interface Object but not with the //UserDataHelper class Object It will resolves the unit testing conflict. #region Constructors public RwUser() : this(new UserDataHelper(), new RewhizzRelationalDataHelper()) { } public RwUser(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } #endregion #region Properties public int Role { get { return _role; } set { _role = value; } } public string MobilePhone { get { return _mobilephone; } set { _mobilephone = value; } } public bool ChangePassword { get { return _changepassword; } set { _changepassword = value; } } public byte[] Image { get { return _image; } set { _image = value; } } public string FirstName { get { return _firstName; } set { _firstName = value; } } public string LastName { get { return _lastName; } set { _lastName = value; } } public string MiddleName { get { return _middleName; } set { _middleName = value; } } public string Email { get { return _email; } set { _email = value; } } public string Website { get { return _website; } set { _website = value; } } public int AddressId { get { return _addressId; } set { _addressId = value; } } public string City { get { return _city; } set { _city = value; } } public string Zipcode { get { return _zipcode; } set { _zipcode = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public string Fax { get { return _fax; } set { _fax = value; } } //public string Location //{ // get // { // return _location; // } // set // { // _location = value; // } //} public string AboutMe { get { return _aboutMe; } set { _aboutMe = value; } } public string username { get { return _username; } set { _username = value; } } public string password { get { return _password; } set { _password = value; } } public string SecurityQuestion { get { return _securityQuestion; } set { _securityQuestion = value; } } public string SecurityQAnswer { get { return _securityQAnswer; } set { _securityQAnswer = value; } } public Guid UserID { get { return _user_Id; } set { _user_Id = value; } } public long RwUserID { get { return _rwuserid; } set { _rwuserid = value; } } #endregion #region MemberFunctions // DataHelperDataContext db = new DataHelperDataContext(); // RewhizzDataHelper rwdh=new RewhizzDataHelper(); //It saves user information entered by user and returns the id of that user public object saveUserInfo(RwUser userObj) { userObj.UserID = irewhizzrelation.GetUserId(username); var res = irewhizz.saveData(userObj); return res; } //It returns the security questions for user registration } public class Agent : RwUser { IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private int _roleid; private int _speclisationid; private int[] _language; private string _brokaragecompany; private int _loctionType_lk; private string _rolename; private int[] _specialization; private string _agentID; private string _expDate; private string _regstates; private string _selLangs; private string _selSpels; private string _locations; public string Locations { get { return _locations; } set { _locations = value; } } public string SelectedLanguages { get { return _selLangs; } set { _selLangs = value; } } public string SelectedSpecialization { get { return _selSpels; } set { _selSpels = value; } } public string RegisteredStates { get { return _regstates; } set { _regstates = value; } } //private string _registeredStates; public string AgentID { get { return _agentID; } set { _agentID = value; } } public string ExpDate { get { return _expDate; } set { _expDate = value; } } private int[] _registeredStates; public SelectList RegisterStates { set; get; } public SelectList Languages { set; get; } public SelectList Specializations { set; get; } public int[] RegisterdStates { get { return _registeredStates; } set { _registeredStates = value; } } //public string RegisterdStates //{ // get // { // return _registeredStates; // } // set // { // _registeredStates = value; // } //} public int RoleId { get { return _roleid; } set { _roleid = value; } } public int SpeclisationId { get { return _speclisationid; } set { _speclisationid = value; } } public int[] Language { get { return _language; } set { _language = value; } } public int LocationTypeId { get { return _loctionType_lk; } set { _loctionType_lk = value; } } public string BrokarageCompany { get { return _brokaragecompany; } set { _brokaragecompany = value; } } public string Rolename { get { return _rolename; } set { _rolename = value; } } public int[] Specialization { get { return _specialization; } set { _specialization = value; } } public Agent() : this(new AgentDataHelper(), new RewhizzRelationalDataHelper()) { } public Agent(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } public void inviteclient() { //Code related to mailing } //DataHelperDataContext dataObj = new DataHelperDataContext(); //#region IRewhizzFactory Members //public List<object> getAgentInfo(string username) //{ // var res=dataObj.GetCompleteUserDetails(username); // return res.ToList(); // throw new NotImplementedException(); //} //public List<object> GetRegisterAgentData(string username) //{ // var res= dataObj.RegisteredUserdetails(username); // return res.ToList(); //} //public void saveAgentInfo(string username, string password, string firstname, string lastname, string middlename, string securityquestion, string securityQanswer) //{ // User userobj=new User(); // var result = dataObj.rw_Users_InsertUserInfo(firstname, middlename, lastname, dataObj.GetUserId(username), securityquestion, securityquestionanswer); // throw new NotImplementedException(); //} //#endregion public Agent updateData(Agent objectId) { objectId.UserID = irewhizzrelation.GetUserId(objectId.username); objectId = (Agent)irewhizz.updateData(objectId); return objectId; } public Agent GetAgentData(Agent agentodj) { agentodj.UserID = irewhizzrelation.GetUserId(agentodj.username); agentodj = (Agent)irewhizz.getData(agentodj); if (agentodj.RoleId != 0) agentodj.Rolename = (string)(string)irewhizzrelation.getValue(agentodj.RoleId); if (agentodj.RegisterdStates.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string regstates = ""; foreach (int i in agentodj.RegisterdStates) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); regstates += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.RegisterStates = selectlist; if(regstates!=null) agentodj.RegisteredStates = regstates.Remove(regstates.Length - 1); } if (agentodj.Language.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedlang = ""; foreach (int i in agentodj.Language) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedlang += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Languages = selectlist; // agentodj.SelectedLanguages = selectedlang; } if (agentodj.Specialization.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedspel = ""; foreach (int i in agentodj.Specialization) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedspel += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Specializations = selectlist; //agentodj.SelectedSpecialization = selectedspel; } return agentodj; } public void SaveImage(byte[] pic, String username) { irewhizzrelation.SaveImage(pic, username); } } now the issue is when ever i am calling agent class it is given error like null reference exception for rwuser class can any body give the solution thanks in advance

    Read the article

< Previous Page | 305 306 307 308 309 310  | Next Page >