Search Results

Search found 7738 results on 310 pages for 'calling convention'.

Page 307/310 | < Previous Page | 303 304 305 306 307 308 309 310  | Next Page >

  • Connect ps/2->usb keyboard to linux?

    - by Daniel
    I have a lovely ancient ergonomic keyboard (no name SK - 6000) connected via a DIN-ps/2 adapter to a ps/2-usb adapter to my docking station. After Grub it stops working. It takes either suspending and waking up or replugging it while Linux is running to get it to work. No extra kernel modules get loaded for this. When it works and I restart without power off, it will work immediately. Even when it does not work, it is visible (lsusb device number varies but output is identical whether working or not): $ lsusb -v -s 001:006 Bus 001 Device 006: ID 0a81:0205 Chesen Electronics Corp. PS/2 Keyboard+Mouse Adapter Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x0a81 Chesen Electronics Corp. idProduct 0x0205 PS/2 Keyboard+Mouse Adapter bcdDevice 0.10 iManufacturer 1 CHESEN iProduct 2 PS2 to USB Converter iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 2 PS2 to USB Converter bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 100mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 64 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 2 Mouse iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 148 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered) $ ll -R /sys/bus/hid/drivers/ /sys/bus/hid/drivers/: total 0 drwxr-xr-x 2 root root 0 Jul 8 2012 generic-usb/ /sys/bus/hid/drivers/generic-usb: total 0 lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:046D:C03D.0003 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.2/1-1.2.2:1.0/0003:046D:C03D.0003/ lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:0A81:0205.0001 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/ lrwxrwxrwx 1 root root 0 Jul 7 23:33 0003:0A81:0205.0002 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.1/0003:0A81:0205.0002/ --w------- 1 root root 4096 Jul 7 23:32 bind lrwxrwxrwx 1 root root 0 Jul 7 23:33 module -> ../../../../module/usbhid/ --w------- 1 root root 4096 Jul 7 23:32 new_id --w------- 1 root root 4096 Jul 8 2012 uevent --w------- 1 root root 4096 Jul 7 23:32 unbind When replugging, dmesg shows this (which except for the 1st line and different input numbers already came at boot time): [ 1583.295385] usb 1-1.2.1: new low-speed USB device number 6 using ehci_hcd [ 1583.446514] input: CHESEN PS2 to USB Converter as /devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/input/input17 [ 1583.446817] generic-usb 0003:0A81:0205.0001: input,hidraw0: USB HID v1.10 Keyboard [CHESEN PS2 to USB Converter] on usb-0000:00:1a.0-1.2.1/input0 [ 1583.454764] input: CHESEN PS2 to USB Converter as /devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.1/input/input18 [ 1583.455534] generic-usb 0003:0A81:0205.0002: input,hidraw1: USB HID v1.10 Mouse [CHESEN PS2 to USB Converter] on usb-0000:00:1a.0-1.2.1/input1 [ 1583.455578] usbcore: registered new interface driver usbhid [ 1583.455584] usbhid: USB HID core driver So I tried $ sudo udevadm test /sys/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 run_command: calling: test adm_test: version 175 This program is for debugging only, it does not run any program, specified by a RUN key. It may show incorrect results, because some values may be different, or not available at a simulation run. parse_file: reading '/lib/udev/rules.d/40-crda.rules' as rules file parse_file: reading '/lib/udev/rules.d/40-fuse.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/40-usb-media-players.rules' as rules file parse_file: reading '/lib/udev/rules.d/40-usb_modeswitch.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/42-qemu-usb.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/69-cd-sensors.rules' as rules file add_rule: IMPORT found builtin 'usb_id', replacing /lib/udev/rules.d/69-cd-sensors.rules:76 ... parse_file: reading '/lib/udev/rules.d/77-mm-usb-device-blacklist.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/85-usbmuxd.rules' as rules file ... parse_file: reading '/lib/udev/rules.d/95-upower-hid.rules' as rules file parse_file: reading '/lib/udev/rules.d/95-upower-wup.rules' as rules file parse_file: reading '/lib/udev/rules.d/97-bluetooth-hid2hci.rules' as rules file udev_rules_new: rules use 271500 bytes tokens (22625 * 12 bytes), 44331 bytes buffer udev_rules_new: temporary index used 76320 bytes (3816 * 20 bytes) udev_device_new_from_syspath: device 0x7f78a5e4d2d0 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' udev_device_new_from_syspath: device 0x7f78a5e5f820 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' udev_device_read_db: device 0x7f78a5e5f820 filled with db file data udev_device_new_from_syspath: device 0x7f78a5e60270 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001' udev_device_new_from_syspath: device 0x7f78a5e609c0 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0' udev_device_new_from_syspath: device 0x7f78a5e61160 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1' udev_device_new_from_syspath: device 0x7f78a5e61960 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2' udev_device_new_from_syspath: device 0x7f78a5e62150 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1/1-1' udev_device_new_from_syspath: device 0x7f78a5e62940 has devpath '/devices/pci0000:00/0000:00:1a.0/usb1' udev_device_new_from_syspath: device 0x7f78a5e630f0 has devpath '/devices/pci0000:00/0000:00:1a.0' udev_device_new_from_syspath: device 0x7f78a5e638a0 has devpath '/devices/pci0000:00' udev_event_execute_rules: no node name set, will use kernel supplied name 'hidraw0' udev_node_add: creating device node '/dev/hidraw0', devnum=251:0, mode=0600, uid=0, gid=0 udev_node_mknod: preserve file '/dev/hidraw0', because it has correct dev_t udev_node_mknod: preserve permissions /dev/hidraw0, 020600, uid=0, gid=0 node_symlink: preserve already existing symlink '/dev/char/251:0' to '../hidraw0' udev_device_update_db: created empty file '/run/udev/data/c251:0' for '/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0' ACTION=add DEVNAME=/dev/hidraw0 DEVPATH=/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 MAJOR=251 MINOR=0 SUBSYSTEM=hidraw UDEV_LOG=6 USEC_INITIALIZED=969079051 The later lines sound like it's already there. And none of these awakes the keyboard: $ sudo udevadm trigger --verbose --sysname-match=usb* /sys/devices/pci0000:00/0000:00:1a.0/usb1 /sys/devices/pci0000:00/0000:00:1a.0/usbmon/usbmon1 /sys/devices/pci0000:00/0000:00:1d.0/usb2 /sys/devices/pci0000:00/0000:00:1d.0/usbmon/usbmon2 /sys/devices/virtual/usbmon/usbmon0 $ sudo udevadm trigger --verbose --sysname-match=hidraw0 /sys/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2.1/1-1.2.1:1.0/0003:0A81:0205.0001/hidraw/hidraw0 $ sudo udevadm trigger I also tried this to no avail: # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/bind ksh: echo: write to 1 failed [No such device] # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/unbind # echo -n 0003:0A81:0205.0001 > /sys/bus/hid/drivers/generic-usb/bind # echo usb1 >/sys/bus/usb/drivers/usb/unbind # echo usb1 >/sys/bus/usb/drivers/usb/bind What else should I try to get the same result as replugging or suspending, by just issuing a command?

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • Why is Java EE 6 better than Spring ?

    - by arungupta
    Java EE 6 was released over 2 years ago and now there are 14 compliant application servers. In all my talks around the world, a question that is frequently asked is Why should I use Java EE 6 instead of Spring ? There are already several blogs covering that topic: Java EE wins over Spring by Bill Burke Why will I use Java EE instead of Spring in new Enterprise Java projects in 2012 ? by Kai Waehner (more discussion on TSS) Spring to Java EE migration (Part 1 and 2, 3 and 4 coming as well) by David Heffelfinger Spring to Java EE - A Migration Experience by Lincoln Baxter Migrating Spring to Java EE 6 by Bert Ertman and Paul Bakker at NLJUG Moving from Spring to Java EE 6 - The Age of Frameworks is Over at TSS Java EE vs Spring Shootout by Rohit Kelapure and Reza Rehman at JavaOne 2011 Java EE 6 and the Ewoks by Murat Yener Definite excuse to avoid Spring forever - Bert Ertman and Arun Gupta I will try to share my perspective in this blog. First of all, I'd like to start with a note: Thank you Spring framework for filling the interim gap and providing functionality that is now included in the mainstream Java EE 6 application servers. The Java EE platform has evolved over the years learning from frameworks like Spring and provides all the functionality to build an enterprise application. Thank you very much Spring framework! While Spring was revolutionary in its time and is still very popular and quite main stream in the same way Struts was circa 2003, it really is last generation's framework - some people are even calling it legacy. However my theory is "code is king". So my approach is to build/take a simple Hello World CRUD application in Java EE 6 and Spring and compare the deployable artifacts. I started looking at the official tutorial Developing a Spring Framework MVC Application Step-by-Step but it is using the older version 2.5. I wasn't able to find any updated version in the current 3.1 release. Next, I downloaded Spring Tool Suite and thought that would provide some template samples to get started. A least a quick search did not show any handy tutorials - either video or text-based. So I searched and found a link to their SVN repository at src.springframework.org/svn/spring-samples/. I tried the "mvc-basic" sample and the generated WAR file was 4.43 MB. While it was named a "basic" sample it seemed to come with 19 different libraries bundled but it was what I could find: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/joda-time-jsptags-1.0.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar And it is not even using any database! The app deployed fine on GlassFish 3.1.2 but the "@Controller Example" link did not work as it was missing the context root. With a bit of tweaking I could deploy the application and assume that the account got created because no error was displayed in the browser or server log. Next I generated the WAR for "mvc-ajax" and the 5.1 MB WAR had 20 JARs (1 removed, 2 added): ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.6.4.jar./WEB-INF/lib/jackson-mapper-asl-1.6.4.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar 2 more JARs for just doing Ajax. Anyway, deploying this application gave the following error: Caused by: java.lang.NoSuchMethodError: org.codehaus.jackson.map.SerializationConfig.<init>(Lorg/codehaus/jackson/map/ClassIntrospector;Lorg/codehaus/jackson/map/AnnotationIntrospector;Lorg/codehaus/jackson/map/introspect/VisibilityChecker;Lorg/codehaus/jackson/map/jsontype/SubtypeResolver;)V    at org.springframework.samples.mvc.ajax.json.ConversionServiceAwareObjectMapper.<init>(ConversionServiceAwareObjectMapper.java:20)    at org.springframework.samples.mvc.ajax.json.JacksonConversionServiceConfigurer.postProcessAfterInitialization(JacksonConversionServiceConfigurer.java:40)    at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:407) Seems like some incorrect repos in the "pom.xml". Next one is "mvc-showcase" and the 6.49 MB WAR now has 28 JARs as shown below: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/aspectjrt-1.6.10.jar./WEB-INF/lib/commons-fileupload-1.2.2.jar./WEB-INF/lib/commons-io-2.0.1.jar./WEB-INF/lib/el-api-2.2.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.8.1.jar./WEB-INF/lib/jackson-mapper-asl-1.8.1.jar./WEB-INF/lib/javax.inject-1.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/jdom-1.0.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-api-1.2.jar./WEB-INF/lib/jstl-impl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/rome-1.0.0.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.1.0.RELEASE.jar./WEB-INF/lib/spring-asm-3.1.0.RELEASE.jar./WEB-INF/lib/spring-beans-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-support-3.1.0.RELEASE.jar./WEB-INF/lib/spring-core-3.1.0.RELEASE.jar./WEB-INF/lib/spring-expression-3.1.0.RELEASE.jar./WEB-INF/lib/spring-web-3.1.0.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.1.0.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar The app at least deployed and showed results this time. But still no database! Next I tried building "jpetstore" and got the error: [ERROR] Failed to execute goal on project org.springframework.samples.jpetstore:Could not resolve dependencies for project org.springframework.samples:org.springframework.samples.jpetstore:war:1.0.0-SNAPSHOT: Failed to collect dependencies for [commons-fileupload:commons-fileupload:jar:1.2.1 (compile), org.apache.struts:com.springsource.org.apache.struts:jar:1.2.9 (compile), javax.xml.rpc:com.springsource.javax.xml.rpc:jar:1.1.0 (compile), org.apache.commons:com.springsource.org.apache.commons.dbcp:jar:1.2.2.osgi (compile), commons-io:commons-io:jar:1.3.2 (compile), hsqldb:hsqldb:jar:1.8.0.7 (compile), org.apache.tiles:tiles-core:jar:2.2.0 (compile), org.apache.tiles:tiles-jsp:jar:2.2.0 (compile), org.tuckey:urlrewritefilter:jar:3.1.0 (compile), org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-orm:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-context-support:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework.webflow:spring-js:jar:2.0.7.RELEASE (compile), org.apache.ibatis:com.springsource.com.ibatis:jar:2.3.4.726 (runtime), com.caucho:com.springsource.com.caucho:jar:3.2.1 (compile), org.apache.axis:com.springsource.org.apache.axis:jar:1.4.0 (compile), javax.wsdl:com.springsource.javax.wsdl:jar:1.6.1 (compile), javax.servlet:jstl:jar:1.2 (runtime), org.aspectj:aspectjweaver:jar:1.6.5 (compile), javax.servlet:servlet-api:jar:2.5 (provided), javax.servlet.jsp:jsp-api:jar:2.1 (provided), junit:junit:jar:4.6 (test)]: Failed to read artifact descriptor for org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT: Could not transfer artifact org.springframework:spring-webmvc:pom:3.0.0.BUILD-SNAPSHOT from/to JBoss repository (http://repository.jboss.com/maven2): Access denied to: http://repository.jboss.com/maven2/org/springframework/spring-webmvc/3.0.0.BUILD-SNAPSHOT/spring-webmvc-3.0.0.BUILD-SNAPSHOT.pom It appears the sample is broken - maybe I was pulling from the wrong repository - would be great if someone were to point me at a good target to use here. With a 50% hit on samples in this repository, I started searching through numerous blogs, most of which have either outdated information (using XML-heavy Spring 2.5), some piece of configuration (which is a typical "feature" of Spring) is missing, or too much complexity in the sample. I finally found this blog that worked like a charm. This blog creates a trivial Spring MVC 3 application using Hibernate and MySQL. This application performs CRUD operations on a single table in a database using typical Spring technologies.  I downloaded the sample code from the blog, deployed it on GlassFish 3.1.2 and could CRUD the "person" entity. The source code for this application can be downloaded here. More details on the application statistics below. And then I built a similar CRUD application in Java EE 6 using NetBeans wizards in a couple of minutes. The source code for the application can be downloaded here and the WAR here. The Spring Source Tool Suite may also offer similar wizard-driven capabilities but this blog focus primarily on comparing the runtimes. The lack of STS tutorials was slightly disappointing as well. NetBeans however has tons of text-based and video tutorials and tons of material even by the community. One more bit on the download size of tools bundle ... NetBeans 7.1.1 "All" is 211 MB (which includes GlassFish and Tomcat) Spring Tool Suite  2.9.0 is 347 MB (~ 65% bigger) This blog is not about the tooling comparison so back to the Java EE 6 version of the application .... In order to run the Java EE version on GlassFish, copy the MySQL Connector/J to glassfish3/glassfish/domains/domain1/lib/ext directory and create a JDBC connection pool and JDBC resource as: ./bin/asadmin create-jdbc-connection-pool --datasourceclassname \\ com.mysql.jdbc.jdbc2.optional.MysqlDataSource --restype \\ javax.sql.DataSource --property \\ portNumber=3306:user=mysql:password=mysql:databaseName=mydatabase \\ myConnectionPool ./bin/asadmin create-jdbc-resource --connectionpoolid myConnectionPool jdbc/myDataSource I generated WARs for the two projects and the table below highlights some differences between them: Java EE 6 Spring WAR File Size 0.021030 MB 10.87 MB (~516x) Number of files 20 53 (> 2.5x) Bundled libraries 0 36 Total size of libraries 0 12.1 MB XML files 3 5 LoC in XML files 50 (11 + 15 + 24) 129 (27 + 46 + 16 + 11 + 19) (~ 2.5x) Total .properties files 1 Bundle.properties 2 spring.properties, log4j.properties Cold Deploy 5,339 ms 11,724 ms Second Deploy 481 ms 6,261 ms Third Deploy 528 ms 5,484 ms Fourth Deploy 484 ms 5,576 ms Runtime memory ~73 MB ~101 MB Some points worth highlighting from the table ... 516x WAR file, 10x deployment time - With 12.1 MB of libraries (for a very basic application) bundled in your application, the WAR file size and the deployment time will naturally go higher. The WAR file for Spring-based application is 516x bigger and the deployment time is double during the first deployment and ~ 10x during subsequent deployments. The Java EE 6 application is fully portable and will run on any Java EE 6 compliant application server. 36 libraries in the WAR - There are 14 Java EE 6 compliant application servers today. Each of those servers provide all the functionality like transactions, dependency injection, security, persistence, etc typically required of an enterprise or web application. There is no need to bundle 36 libraries worth 12.1 MB for a trivial CRUD application. These 14 compliant application servers provide all the functionality baked in. Now you can also deploy these libraries in the container but then you don't get the "portability" offered by Spring in that case. Does your typical Spring deployment actually do that ? 3x LoC in XML - The number of XML files is about 1.6x and the LoC is ~ 2.5x. So much XML seems circa 2003 when the Java language had no annotations. The XML files can be further reduced, e.g. faces-config.xml can be replaced without providing i18n, but I just want to compare stock applications. Memory usage - Both the applications were deployed on default GlassFish 3.1.2 installation and any additional memory consumed as part of deployment/access was attributed to the application. This is by no means scientific but at least provides an initial ballpark. This area definitely needs more investigation. Another table that compares typical Java EE 6 compliant application servers and the custom-stack created for a Spring application ... Java EE 6 Spring Web Container ? 53 MB (tcServer 2.6.3 Developer Edition) Security ? 12 MB (Spring Security 3.1.0) Persistence ? 6.3 MB (Hibernate 4.1.0, required) Dependency Injection ? 5.3 MB (Framework) Web Services ? 796 KB (Spring WS 2.0.4) Messaging ? 3.4 MB (RabbitMQ Server 2.7.1) 936 KB (Java client 936) OSGi ? 1.3 MB (Spring OSGi 1.2.1) GlassFish and WebLogic (starting at 33 MB) 83.3 MB There are differentiating factors on both the stacks. But most of the functionality like security, persistence, and dependency injection is baked in a Java EE 6 compliant application server but needs to be individually managed and patched for a Spring application. This very quickly leads to a "stack explosion". The Java EE 6 servers are tested extensively on a variety of platforms in different combinations whereas a Spring application developer is responsible for testing with different JDKs, Operating Systems, Versions, Patches, etc. Oracle has both the leading OSS lightweight server with GlassFish and the leading enterprise Java server with WebLogic Server, both Java EE 6 and both with lightweight deployment options. The Web Container offered as part of a Java EE 6 application server not only deploys your enterprise Java applications but also provide operational management, diagnostics, and mission-critical capabilities required by your applications. The Java EE 6 platform also introduced the Web Profile which is a subset of the specifications from the entire platform. It is targeted at developers of modern web applications offering a reasonably complete stack, composed of standard APIs, and is capable out-of-the-box of addressing the needs of a large class of Web applications. As your applications grow, the stack can grow to the full Java EE 6 platform. The GlassFish Server Web Profile starting at 33MB (smaller than just the non-standard tcServer) provides most of the functionality typically required by a web application. WebLogic provides battle-tested functionality for a high throughput, low latency, and enterprise grade web application. No individual managing or patching, all tested and commercially supported for you! Note that VMWare does have a server, tcServer, but it is non-standard and not even certified to the level of the standard Web Profile most customers expect these days. Customers who choose this risk proprietary lock-in since VMWare does not seem to want to formally certify with either Java EE 6 Enterprise Platform or with Java EE 6 Web Profile but of course it would be great if they were to join the community and help their customers reduce the risk of deploying on VMWare software. Some more points to help you decide choose between Java EE 6 and Spring ... Freedom to choose container - There are 14 Java EE 6 compliant application servers today, with a variety of open source and commercial offerings. A Java EE 6 application can be deployed on any of those containers. So if you deployed your application on GlassFish today and would like to scale up with your demands then you can deploy the same application to WebLogic. And because of the portability of a Java EE 6 application, you can even take it a different vendor altogether. Spring requires a runtime which could be any of these app servers as well. But why use Spring when all the required functionality is already baked into the application server itself ? Spring also has a different definition of portability where they claim to bundle all the libraries in the WAR file and move to any application server. But we saw earlier how bloated that archive could be. The equivalent features in Spring runtime offerings (mainly tcServer) are not all open source, not as mature, and often require manual assembly.  Vendor choice - The Java EE 6 platform is created using the Java Community Process where all the big players like Oracle, IBM, RedHat, and Apache are conritbuting to make the platform successful. Each application server provides the basic Java EE 6 platform compliance and has its own competitive offerings. This allows you to choose an application server for deploying your Java EE 6 applications. If you are not happy with the support or feature of one vendor then you can move your application to a different vendor because of the portability promise offered by the platform. Spring is a set of products from a single company, one price book, one support organization, one sustaining organization, one sales organization, etc. If any of those cause a customer headache, where do you go ? Java EE, backed by multiple vendors, is a safer bet for those that are risk averse. Production support - With Spring, typically you need to get support from two vendors - VMWare and the container provider. With Java EE 6, all of this is typically provided by one vendor. For example, Oracle offers commercial support from systems, operating systems, JDK, application server, and applications on top of them. VMWare certainly offers complete production support but do you really want to put all your eggs in one basket ? Do you really use tcServer ? ;-) Maintainability - With Spring, you are likely building your own distribution with multiple JAR files, integrating, patching, versioning, etc of all those components. Spring's claim is that multiple JAR files allow you to go à la carte and pick the latest versions of different components. But who is responsible for testing whether all these versions work together ? Yep, you got it, its YOU! If something does not work, who patches and maintains the JARs ? Of course, you! Commercial support for such a configuration ? On your own! The Java EE application servers manage all of this for you and provide a well-tested and commercially supported bundle. While it is always good to realize that there is something new and improved that updates and replaces older frameworks like Spring, the good news is not only does a Java EE 6 container offer what is described here, most also will let you deploy and run your Spring applications on them while you go through an upgrade to a more modern architecture. End result, you get the best of both worlds - keeping your legacy investment but moving to a more agile, lightweight world of Java EE 6. A message to the Spring lovers ... The complexity in J2EE 1.2, 1.3, and 1.4 led to the genesis of Spring but that was in 2004. This is 2012 and the name has changed to "Java EE 6" :-) There are tons of improvements in the Java EE platform to make it easy-to-use and powerful. Some examples: Adding @Stateless on a POJO makes it an EJB EJBs can be packaged in a WAR with no special packaging or deployment descriptors "web.xml" and "faces-config.xml" are optional in most of the common cases Typesafe dependency injection is now part of the Java EE platform Add @Path on a POJO allows you to publish it as a RESTful resource EJBs can be used as backing beans for Facelets-driven JSF pages providing full MVC Java EE 6 WARs are known to be kilobytes in size and deployed in milliseconds Tons of other simplifications in the platform and application servers So if you moved away from J2EE to Spring many years ago and have not looked at Java EE 6 (which has been out since Dec 2009) then you should definitely try it out. Just be at least aware of what other alternatives are available instead of restricting yourself to one stack. Here are some workshops and screencasts worth trying: screencast #37 shows how to build an end-to-end application using NetBeans screencast #36 builds the same application using Eclipse javaee-lab-feb2012.pdf is a 3-4 hours self-paced hands-on workshop that guides you to build a comprehensive Java EE 6 application using NetBeans Each city generally has a "spring cleanup" program every year. It allows you to clean up the mess from your house. For your software projects, you don't need to wait for an annual event, just get started and reduce the technical debt now! Move away from your legacy Spring-based applications to a lighter and more modern approach of building enterprise Java applications using Java EE 6. Watch this beautiful presentation that explains how to migrate from Spring -> Java EE 6: List of files in the Java EE 6 project: ./index.xhtml./META-INF./person./person/Create.xhtml./person/Edit.xhtml./person/List.xhtml./person/View.xhtml./resources./resources/css./resources/css/jsfcrud.css./template.xhtml./WEB-INF./WEB-INF/classes./WEB-INF/classes/Bundle.properties./WEB-INF/classes/META-INF./WEB-INF/classes/META-INF/persistence.xml./WEB-INF/classes/org./WEB-INF/classes/org/javaee./WEB-INF/classes/org/javaee/javaeemysql./WEB-INF/classes/org/javaee/javaeemysql/AbstractFacade.class./WEB-INF/classes/org/javaee/javaeemysql/Person.class./WEB-INF/classes/org/javaee/javaeemysql/Person_.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$1.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$PersonControllerConverter.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController.class./WEB-INF/classes/org/javaee/javaeemysql/PersonFacade.class./WEB-INF/classes/org/javaee/javaeemysql/util./WEB-INF/classes/org/javaee/javaeemysql/util/JsfUtil.class./WEB-INF/classes/org/javaee/javaeemysql/util/PaginationHelper.class./WEB-INF/faces-config.xml./WEB-INF/web.xml List of files in the Spring 3.x project: ./META-INF ./META-INF/MANIFEST.MF./WEB-INF./WEB-INF/applicationContext.xml./WEB-INF/classes./WEB-INF/classes/log4j.properties./WEB-INF/classes/org./WEB-INF/classes/org/krams ./WEB-INF/classes/org/krams/tutorial ./WEB-INF/classes/org/krams/tutorial/controller ./WEB-INF/classes/org/krams/tutorial/controller/MainController.class ./WEB-INF/classes/org/krams/tutorial/domain ./WEB-INF/classes/org/krams/tutorial/domain/Person.class ./WEB-INF/classes/org/krams/tutorial/service ./WEB-INF/classes/org/krams/tutorial/service/PersonService.class ./WEB-INF/hibernate-context.xml ./WEB-INF/hibernate.cfg.xml ./WEB-INF/jsp ./WEB-INF/jsp/addedpage.jsp ./WEB-INF/jsp/addpage.jsp ./WEB-INF/jsp/deletedpage.jsp ./WEB-INF/jsp/editedpage.jsp ./WEB-INF/jsp/editpage.jsp ./WEB-INF/jsp/personspage.jsp ./WEB-INF/lib ./WEB-INF/lib/antlr-2.7.6.jar ./WEB-INF/lib/aopalliance-1.0.jar ./WEB-INF/lib/c3p0-0.9.1.2.jar ./WEB-INF/lib/cglib-nodep-2.2.jar ./WEB-INF/lib/commons-beanutils-1.8.3.jar ./WEB-INF/lib/commons-collections-3.2.1.jar ./WEB-INF/lib/commons-digester-2.1.jar ./WEB-INF/lib/commons-logging-1.1.1.jar ./WEB-INF/lib/dom4j-1.6.1.jar ./WEB-INF/lib/ejb3-persistence-1.0.2.GA.jar ./WEB-INF/lib/hibernate-annotations-3.4.0.GA.jar ./WEB-INF/lib/hibernate-commons-annotations-3.1.0.GA.jar ./WEB-INF/lib/hibernate-core-3.3.2.GA.jar ./WEB-INF/lib/javassist-3.7.ga.jar ./WEB-INF/lib/jstl-1.1.2.jar ./WEB-INF/lib/jta-1.1.jar ./WEB-INF/lib/junit-4.8.1.jar ./WEB-INF/lib/log4j-1.2.14.jar ./WEB-INF/lib/mysql-connector-java-5.1.14.jar ./WEB-INF/lib/persistence-api-1.0.jar ./WEB-INF/lib/slf4j-api-1.6.1.jar ./WEB-INF/lib/slf4j-log4j12-1.6.1.jar ./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-jdbc-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-orm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-tx-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar ./WEB-INF/lib/standard-1.1.2.jar ./WEB-INF/lib/xml-apis-1.0.b2.jar ./WEB-INF/spring-servlet.xml ./WEB-INF/spring.properties ./WEB-INF/web.xml So, are you excited about Java EE 6 ? Want to get started now ? Here are some resources: Java EE 6 SDK (including runtime, samples, tutorials etc) GlassFish Server Open Source Edition 3.1.2 (Community) Oracle GlassFish Server 3.1.2 (Commercial) Java EE 6 using WebLogic 12c and NetBeans (Video) Java EE 6 with NetBeans and GlassFish (Video) Java EE with Eclipse and GlassFish (Video)

    Read the article

  • Integrating HTML into Silverlight Applications

    - by dwahlin
    Looking for a way to display HTML content within a Silverlight application? If you haven’t tried doing that before it can be challenging at first until you know a few tricks of the trade.  Being able to display HTML is especially handy when you’re required to display RSS feeds (with embedded HTML), SQL Server Reporting Services reports, PDF files (not actually HTML – but the techniques discussed will work), or other HTML content.  In this post I'll discuss three options for displaying HTML content in Silverlight applications and describe how my company is using these techniques in client applications. Displaying HTML Overlays If you need to display HTML over a Silverlight application (such as an RSS feed containing HTML data in it) you’ll need to set the Silverlight control’s windowless parameter to true. This can be done using the object tag as shown next: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/HTMLAndSilverlight.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50401.0" /> <param name="autoUpgrade" value="true" /> <param name="windowless" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object> By setting the control to “windowless” you can overlay HTML objects by using absolute positioning and other CSS techniques. Keep in mind that on Windows machines the windowless setting can result in a performance hit when complex animations or HD video are running since the plug-in content is displayed directly by the browser window. It goes without saying that you should only set windowless to true when you really need the functionality it offers. For example, if I want to display my blog’s RSS content on top of a Silverlight application I could set windowless to true and create a user control that grabbed the content and output it using a DataList control: <style type="text/css"> a {text-decoration:none;font-weight:bold;font-size:14pt;} </style> <div style="margin-top:10px; margin-left:10px;margin-right:5px;"> <asp:DataList ID="RSSDataList" runat="server" DataSourceID="RSSDataSource"> <ItemTemplate> <a href='<%# XPath("link") %>'><%# XPath("title") %></a> <br /> <%# XPath("description") %> <br /> </ItemTemplate> </asp:DataList> <asp:XmlDataSource ID="RSSDataSource" DataFile="http://weblogs.asp.net/dwahlin/rss.aspx" XPath="rss/channel/item" CacheDuration="60" runat="server" /> </div> The user control can then be placed in the page hosting the Silverlight control as shown below. This example adds a Close button, additional content to display in the overlay window and the HTML generated from the user control. <div id="RSSDiv"> <div style="background-color:#484848;border:1px solid black;height:35px;width:100%;"> <img alt="Close Button" align="right" src="Images/Close.png" onclick="HideOverlay();" style="cursor:pointer;" /> </div> <div style="overflow:auto;width:800px;height:565px;"> <div style="float:left;width:100px;height:103px;margin-left:10px;margin-top:5px;"> <img src="http://weblogs.asp.net/blogs/dwahlin/dan2008.jpg" style="border:1px solid Gray" /> </div> <div style="float:left;width:300px;height:103px;margin-top:5px;"> <a href="http://weblogs.asp.net/dwahlin" style="margin-left:10px;font-size:20pt;">Dan Wahlin's Blog</a> </div> <br /><br /><br /> <div style="clear:both;margin-top:20px;"> <uc:BlogRoller ID="BlogRoller" runat="server" /> </div> </div> </div> Of course, we wouldn’t want the RSS HTML content to be shown until requested. Once it’s requested the absolute position of where it should show above the Silverlight control can be set using standard CSS styles. The following ID selector named #RSSDiv handles hiding the overlay div shown above and determines where it will be display on the screen. #RSSDiv { background-color:White; position:absolute; top:100px; left:300px; width:800px; height:600px; border:1px solid black; display:none; } Now that the HTML content to display above the Silverlight control is set, how can we show it as a user clicks a HyperlinkButton or other control in the application? Fortunately, Silverlight provides an excellent HTML bridge that allows direct access to content hosted within a page. The following code shows two JavaScript functions that can be called from Siverlight to handle showing or hiding HTML overlay content. The two functions rely on jQuery (http://www.jQuery.com) to make it easy to select HTML objects and manipulate their properties: function ShowOverlay() { rssDiv.css('display', 'block'); } function HideOverlay() { rssDiv.css('display', 'none'); } Calling the ShowOverlay function is as simple as adding the following code into the Silverlight application within a button’s Click event handler: private void OverlayHyperlinkButton_Click(object sender, RoutedEventArgs e) { HtmlPage.Window.Invoke("ShowOverlay"); } The result of setting the Silverlight control’s windowless parameter to true and showing the HTML overlay content is shown in the following screenshot:   Thinking Outside the Box to Show HTML Content Setting the windowless parameter to true may not be a viable option for some Silverlight applications or you may simply want to go about showing HTML content a different way. The next technique I’ll show takes advantage of simple HTML, CSS and JavaScript code to handle showing HTML content while a Silverlight application is running in the browser. Keep in mind that with Silverlight’s HTML bridge feature you can always pop-up HTML content in a new browser window using code similar to the following: System.Windows.Browser.HtmlPage.Window.Navigate( new Uri("http://silverlight.net"), "_blank"); For this example I’ll demonstrate how to hide the Silverlight application while maximizing a container div containing the HTML content to show. This allows HTML content to take up the full screen area of the browser without having to set windowless to true and when done right can make the user feel like they never left the Silverlight application. The following HTML shows several div elements that are used to display HTML within the same browser window as the Silverlight application: <div id="JobPlanDiv"> <div style="vertical-align:middle"> <img alt="Close Button" align="right" src="Images/Close.png" onclick="HideJobPlanIFrame();" style="cursor:pointer;" /> </div> <div id="JobPlan_IFrame_Container" style="height:95%;width:100%;margin-top:37px;"></div> </div> The JobPlanDiv element acts as a container for two other divs that handle showing a close button and hosting an iframe that will be added dynamically at runtime. JobPlanDiv isn’t visible when the Silverlight application loads due to the following ID selector added into the page: #JobPlanDiv { position:absolute; background-color:#484848; overflow:hidden; left:0; top:0; height:100%; width:100%; display:none; } When the HTML content needs to be shown or hidden the JavaScript functions shown next can be used: var jobPlanIFrameID = 'JobPlan_IFrame'; var slHost = null; var jobPlanContainer = null; var jobPlanIFrameContainer = null; var rssDiv = null; $(document).ready(function () { slHost = $('#silverlightControlHost'); jobPlanContainer = $('#JobPlanDiv'); jobPlanIFrameContainer = $('#JobPlan_IFrame_Container'); rssDiv = $('#RSSDiv'); }); function ShowJobPlanIFrame(url) { jobPlanContainer.css('display', 'block'); $('<iframe id="' + jobPlanIFrameID + '" src="' + url + '" style="height:100%;width:100%;" />') .appendTo(jobPlanIFrameContainer); slHost.css('width', '0%'); } function HideJobPlanIFrame() { jobPlanContainer.css('display', 'none'); $('#' + jobPlanIFrameID).remove(); slHost.css('width', '100%'); } ShowJobPlanIFrame() handles showing the JobPlanDiv div and adding an iframe into it dynamically. Once JobPlanDiv is shown, the Silverlight control host has its width set to a value of 0% to allow the control to stay alive while making it invisible to the user. I found that this technique works better across multiple browsers as opposed to manipulating the Silverlight control host div’s display or visibility properties. Now that you’ve seen the code to handle showing and hiding the HTML content area, let’s switch focus to the Silverlight application. As a user clicks on a link such as “View Report” the ShowJobPlanIFrame() JavaScript function needs to be called. The following code handles that task: private void ReportHyperlinkButton_Click(object sender, RoutedEventArgs e) { ShowBrowser(_BaseUrl + "/Report.aspx"); } public void ShowBrowser(string url) { HtmlPage.Window.Invoke("ShowJobPlanIFrame", url); } Any URL can be passed into the ShowBrowser() method which handles invoking the JavaScript function. This includes standard web pages or even PDF files. We’ve used this technique frequently with our SmartPrint control (http://www.smartwebcontrols.com) which converts Silverlight screens into PDF documents and displays them. Here’s an example of the content generated:   Silverlight 4’s WebBrowser Control Both techniques shown to this point work well when Silverlight is running in-browser but not so well when it’s running out-of-browser since there’s no host page that you can access using the HTML bridge. Fortunately, Silverlight 4 provides a WebBrowser control that can be used to perform the same functionality quite easily. We’re currently using it in client applications to display PDF documents, SSRS reports and standard HTML content. Using the WebBrowser control simplifies the application quite a bit since no JavaScript is required if the application only runs out-of-browser. Here’s a simple example of defining the WebBrowser control in XAML. I typically define it in MainPage.xaml when a Silverlight Navigation template is used to create the project so that I can re-use the functionality across multiple screens. <Grid x:Name="WebBrowserGrid" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" Visibility="Collapsed"> <StackPanel HorizontalAlignment="Stretch" VerticalAlignment="Stretch"> <Border Background="#484848" HorizontalAlignment="Stretch" Height="40"> <Image x:Name="WebBrowserImage" Width="100" Height="33" Cursor="Hand" HorizontalAlignment="Right" Source="/HTMLAndSilverlight;component/Assets/Images/Close.png" MouseLeftButtonDown="WebBrowserImage_MouseLeftButtonDown" /> </Border> <WebBrowser x:Name="JobPlanReportWebBrowser" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" /> </StackPanel> </Grid> Looking through the XAML you can see that a close image is defined along with the WebBrowser control. Because the URL that the WebBrowser should navigate to isn’t known at design time no value is assigned to the control’s Source property. If the XAML shown above is left “as is” you’ll find that any HTML content assigned to the WebBrowser doesn’t display properly. This is due to no height or width being set on the control. To handle this issue the following code is added into the XAML’s code-behind file to dynamically determine the height and width of the page and assign it to the WebBrowser. This is done by handling the SizeChanged event. void MainPage_SizeChanged(object sender, SizeChangedEventArgs e) { WebBrowserGrid.Height = JobPlanReportWebBrowser.Height = ActualHeight; WebBrowserGrid.Width = JobPlanReportWebBrowser.Width = ActualWidth; } When the user wants to view HTML content they click a button which executes the code shown in next: public void ShowBrowser(string url) { if (Application.Current.IsRunningOutOfBrowser) { JobPlanReportWebBrowser.NavigateToString("<html><body><iframe src='" + url + "' style='width:100%;height:97%;' /></body></html>"); WebBrowserGrid.Visibility = Visibility.Visible; } else { HtmlPage.Window.Invoke("ShowJobPlanIFrame", url); } } private void WebBrowserImage_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) { WebBrowserGrid.Visibility = Visibility.Collapsed; }   Looking through the code you’ll see that it checks to see if the Silverlight application is running out-of-browser and then either displays the WebBrowser control or runs the JavaScript function discussed earlier. Although the WebBrowser control’s Source property could be assigned the URI of the page to navigate to, by assigning HTML content using the NavigateToString() method and adding an iframe, content can be shown from any site including cross-domain sites. This is especially handy when you need to grab a page from a reporting site that’s in a different domain than the Silverlight application. Here’s an example of viewing  PDF file inside of an out-of-browser application. The first image shows the application running out-of-browser before the user clicks a PDF HyperlinkButton.  The second image shows the PDF being displayed.   While there are certainly other techniques that can be used, the ones shown here have worked well for us in different applications and provide the ability to display HTML content in-browser or out-of-browser. Feel free to add a comment if you have another tip or trick you like to use when working with HTML content in Silverlight applications.   Download Code Sample   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • SimpleMembership, Membership Providers, Universal Providers and the new ASP.NET 4.5 Web Forms and ASP.NET MVC 4 templates

    - by Jon Galloway
    The ASP.NET MVC 4 Internet template adds some new, very useful features which are built on top of SimpleMembership. These changes add some great features, like a much simpler and extensible membership API and support for OAuth. However, the new account management features require SimpleMembership and won't work against existing ASP.NET Membership Providers. I'll start with a summary of top things you need to know, then dig into a lot more detail. Summary: SimpleMembership has been designed as a replacement for traditional the previous ASP.NET Role and Membership provider system SimpleMembership solves common problems people ran into with the Membership provider system and was designed for modern user / membership / storage needs SimpleMembership integrates with the previous membership system, but you can't use a MembershipProvider with SimpleMembership The new ASP.NET MVC 4 Internet application template AccountController requires SimpleMembership and is not compatible with previous MembershipProviders You can continue to use existing ASP.NET Role and Membership providers in ASP.NET 4.5 and ASP.NET MVC 4 - just not with the ASP.NET MVC 4 AccountController The existing ASP.NET Role and Membership provider system remains supported as is part of the ASP.NET core ASP.NET 4.5 Web Forms does not use SimpleMembership; it implements OAuth on top of ASP.NET Membership The ASP.NET Web Site Administration Tool (WSAT) is not compatible with SimpleMembership The following is the result of a few conversations with Erik Porter (PM for ASP.NET MVC) to make sure I had some the overall details straight, combined with a lot of time digging around in ILSpy and Visual Studio's assembly browsing tools. SimpleMembership: The future of membership for ASP.NET The ASP.NET Membership system was introduces with ASP.NET 2.0 back in 2005. It was designed to solve common site membership requirements at the time, which generally involved username / password based registration and profile storage in SQL Server. It was designed with a few extensibility mechanisms - notably a provider system (which allowed you override some specifics like backing storage) and the ability to store additional profile information (although the additional  profile information was packed into a single column which usually required access through the API). While it's sometimes frustrating to work with, it's held up for seven years - probably since it handles the main use case (username / password based membership in a SQL Server database) smoothly and can be adapted to most other needs (again, often frustrating, but it can work). The ASP.NET Web Pages and WebMatrix efforts allowed the team an opportunity to take a new look at a lot of things - e.g. the Razor syntax started with ASP.NET Web Pages, not ASP.NET MVC. The ASP.NET Web Pages team designed SimpleMembership to (wait for it) simplify the task of dealing with membership. As Matthew Osborn said in his post Using SimpleMembership With ASP.NET WebPages: With the introduction of ASP.NET WebPages and the WebMatrix stack our team has really be focusing on making things simpler for the developer. Based on a lot of customer feedback one of the areas that we wanted to improve was the built in security in ASP.NET. So with this release we took that time to create a new built in (and default for ASP.NET WebPages) security provider. I say provider because the new stuff is still built on the existing ASP.NET framework. So what do we call this new hotness that we have created? Well, none other than SimpleMembership. SimpleMembership is an umbrella term for both SimpleMembership and SimpleRoles. Part of simplifying membership involved fixing some common problems with ASP.NET Membership. Problems with ASP.NET Membership ASP.NET Membership was very obviously designed around a set of assumptions: Users and user information would most likely be stored in a full SQL Server database or in Active Directory User and profile information would be optimized around a set of common attributes (UserName, Password, IsApproved, CreationDate, Comment, Role membership...) and other user profile information would be accessed through a profile provider Some problems fall out of these assumptions. Requires Full SQL Server for default cases The default, and most fully featured providers ASP.NET Membership providers (SQL Membership Provider, SQL Role Provider, SQL Profile Provider) require full SQL Server. They depend on stored procedure support, and they rely on SQL Server cache dependencies, they depend on agents for clean up and maintenance. So the main SQL Server based providers don't work well on SQL Server CE, won't work out of the box on SQL Azure, etc. Note: Cory Fowler recently let me know about these Updated ASP.net scripts for use with Microsoft SQL Azure which do support membership, personalization, profile, and roles. But the fact that we need a support page with a set of separate SQL scripts underscores the underlying problem. Aha, you say! Jon's forgetting the Universal Providers, a.k.a. System.Web.Providers! Hold on a bit, we'll get to those... Custom Membership Providers have to work with a SQL-Server-centric API If you want to work with another database or other membership storage system, you need to to inherit from the provider base classes and override a bunch of methods which are tightly focused on storing a MembershipUser in a relational database. It can be done (and you can often find pretty good ones that have already been written), but it's a good amount of work and often leaves you with ugly code that has a bunch of System.NotImplementedException fun since there are a lot of methods that just don't apply. Designed around a specific view of users, roles and profiles The existing providers are focused on traditional membership - a user has a username and a password, some specific roles on the site (e.g. administrator, premium user), and may have some additional "nice to have" optional information that can be accessed via an API in your application. This doesn't fit well with some modern usage patterns: In OAuth and OpenID, the user doesn't have a password Often these kinds of scenarios map better to user claims or rights instead of monolithic user roles For many sites, profile or other non-traditional information is very important and needs to come from somewhere other than an API call that maps to a database blob What would work a lot better here is a system in which you were able to define your users, rights, and other attributes however you wanted and the membership system worked with your model - not the other way around. Requires specific schema, overflow in blob columns I've already mentioned this a few times, but it bears calling out separately - ASP.NET Membership focuses on SQL Server storage, and that storage is based on a very specific database schema. SimpleMembership as a better membership system As you might have guessed, SimpleMembership was designed to address the above problems. Works with your Schema As Matthew Osborn explains in his Using SimpleMembership With ASP.NET WebPages post, SimpleMembership is designed to integrate with your database schema: All SimpleMembership requires is that there are two columns on your users table so that we can hook up to it – an “ID” column and a “username” column. The important part here is that they can be named whatever you want. For instance username doesn't have to be an alias it could be an email column you just have to tell SimpleMembership to treat that as the “username” used to log in. Matthew's example shows using a very simple user table named Users (it could be named anything) with a UserID and Username column, then a bunch of other columns he wanted in his app. Then we point SimpleMemberhip at that table with a one-liner: WebSecurity.InitializeDatabaseFile("SecurityDemo.sdf", "Users", "UserID", "Username", true); No other tables are needed, the table can be named anything we want, and can have pretty much any schema we want as long as we've got an ID and something that we can map to a username. Broaden database support to the whole SQL Server family While SimpleMembership is not database agnostic, it works across the SQL Server family. It continues to support full SQL Server, but it also works with SQL Azure, SQL Server CE, SQL Server Express, and LocalDB. Everything's implemented as SQL calls rather than requiring stored procedures, views, agents, and change notifications. Note that SimpleMembership still requires some flavor of SQL Server - it won't work with MySQL, NoSQL databases, etc. You can take a look at the code in WebMatrix.WebData.dll using a tool like ILSpy if you'd like to see why - there places where SQL Server specific SQL statements are being executed, especially when creating and initializing tables. It seems like you might be able to work with another database if you created the tables separately, but I haven't tried it and it's not supported at this point. Note: I'm thinking it would be possible for SimpleMembership (or something compatible) to run Entity Framework so it would work with any database EF supports. That seems useful to me - thoughts? Note: SimpleMembership has the same database support - anything in the SQL Server family - that Universal Providers brings to the ASP.NET Membership system. Easy to with Entity Framework Code First The problem with with ASP.NET Membership's system for storing additional account information is that it's the gate keeper. That means you're stuck with its schema and accessing profile information through its API. SimpleMembership flips that around by allowing you to use any table as a user store. That means you're in control of the user profile information, and you can access it however you'd like - it's just data. Let's look at a practical based on the AccountModel.cs class in an ASP.NET MVC 4 Internet project. Here I'm adding a Birthday property to the UserProfile class. [Table("UserProfile")] public class UserProfile { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int UserId { get; set; } public string UserName { get; set; } public DateTime Birthday { get; set; } } Now if I want to access that information, I can just grab the account by username and read the value. var context = new UsersContext(); var username = User.Identity.Name; var user = context.UserProfiles.SingleOrDefault(u => u.UserName == username); var birthday = user.Birthday; So instead of thinking of SimpleMembership as a big membership API, think of it as something that handles membership based on your user database. In SimpleMembership, everything's keyed off a user row in a table you define rather than a bunch of entries in membership tables that were out of your control. How SimpleMembership integrates with ASP.NET Membership Okay, enough sales pitch (and hopefully background) on why things have changed. How does this affect you? Let's start with a diagram to show the relationship (note: I've simplified by removing a few classes to show the important relationships): So SimpleMembershipProvider is an implementaiton of an ExtendedMembershipProvider, which inherits from MembershipProvider and adds some other account / OAuth related things. Here's what ExtendedMembershipProvider adds to MembershipProvider: The important thing to take away here is that a SimpleMembershipProvider is a MembershipProvider, but a MembershipProvider is not a SimpleMembershipProvider. This distinction is important in practice: you cannot use an existing MembershipProvider (including the Universal Providers found in System.Web.Providers) with an API that requires a SimpleMembershipProvider, including any of the calls in WebMatrix.WebData.WebSecurity or Microsoft.Web.WebPages.OAuth.OAuthWebSecurity. However, that's as far as it goes. Membership Providers still work if you're accessing them through the standard Membership API, and all of the core stuff  - including the AuthorizeAttribute, role enforcement, etc. - will work just fine and without any change. Let's look at how that affects you in terms of the new templates. Membership in the ASP.NET MVC 4 project templates ASP.NET MVC 4 offers six Project Templates: Empty - Really empty, just the assemblies, folder structure and a tiny bit of basic configuration. Basic - Like Empty, but with a bit of UI preconfigured (css / images / bundling). Internet - This has both a Home and Account controller and associated views. The Account Controller supports registration and login via either local accounts and via OAuth / OpenID providers. Intranet - Like the Internet template, but it's preconfigured for Windows Authentication. Mobile - This is preconfigured using jQuery Mobile and is intended for mobile-only sites. Web API - This is preconfigured for a service backend built on ASP.NET Web API. Out of these templates, only one (the Internet template) uses SimpleMembership. ASP.NET MVC 4 Basic template The Basic template has configuration in place to use ASP.NET Membership with the Universal Providers. You can see that configuration in the ASP.NET MVC 4 Basic template's web.config: <profile defaultProvider="DefaultProfileProvider"> <providers> <add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </profile> <membership defaultProvider="DefaultMembershipProvider"> <providers> <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembershipProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <roleManager defaultProvider="DefaultRoleProvider"> <providers> <add name="DefaultRoleProvider" type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </roleManager> <sessionState mode="InProc" customProvider="DefaultSessionProvider"> <providers> <add name="DefaultSessionProvider" type="System.Web.Providers.DefaultSessionStateProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" /> </providers> </sessionState> This means that it's business as usual for the Basic template as far as ASP.NET Membership works. ASP.NET MVC 4 Internet template The Internet template has a few things set up to bootstrap SimpleMembership: \Models\AccountModels.cs defines a basic user account and includes data annotations to define keys and such \Filters\InitializeSimpleMembershipAttribute.cs creates the membership database using the above model, then calls WebSecurity.InitializeDatabaseConnection which verifies that the underlying tables are in place and marks initialization as complete (for the application's lifetime) \Controllers\AccountController.cs makes heavy use of OAuthWebSecurity (for OAuth account registration / login / management) and WebSecurity. WebSecurity provides account management services for ASP.NET MVC (and Web Pages) WebSecurity can work with any ExtendedMembershipProvider. There's one in the box (SimpleMembershipProvider) but you can write your own. Since a standard MembershipProvider is not an ExtendedMembershipProvider, WebSecurity will throw exceptions if the default membership provider is a MembershipProvider rather than an ExtendedMembershipProvider. Practical example: Create a new ASP.NET MVC 4 application using the Internet application template Install the Microsoft ASP.NET Universal Providers for LocalDB NuGet package Run the application, click on Register, add a username and password, and click submit You'll get the following execption in AccountController.cs::Register: To call this method, the "Membership.Provider" property must be an instance of "ExtendedMembershipProvider". This occurs because the ASP.NET Universal Providers packages include a web.config transform that will update your web.config to add the Universal Provider configuration I showed in the Basic template example above. When WebSecurity tries to use the configured ASP.NET Membership Provider, it checks if it can be cast to an ExtendedMembershipProvider before doing anything else. So, what do you do? Options: If you want to use the new AccountController, you'll either need to use the SimpleMembershipProvider or another valid ExtendedMembershipProvider. This is pretty straightforward. If you want to use an existing ASP.NET Membership Provider in ASP.NET MVC 4, you can't use the new AccountController. You can do a few things: Replace  the AccountController.cs and AccountModels.cs in an ASP.NET MVC 4 Internet project with one from an ASP.NET MVC 3 application (you of course won't have OAuth support). Then, if you want, you can go through and remove other things that were built around SimpleMembership - the OAuth partial view, the NuGet packages (e.g. the DotNetOpenAuthAuth package, etc.) Use an ASP.NET MVC 4 Internet application template and add in a Universal Providers NuGet package. Then copy in the AccountController and AccountModel classes. Create an ASP.NET MVC 3 project and upgrade it to ASP.NET MVC 4 using the steps shown in the ASP.NET MVC 4 release notes. None of these are particularly elegant or simple. Maybe we (or just me?) can do something to make this simpler - perhaps a NuGet package. However, this should be an edge case - hopefully the cases where you'd need to create a new ASP.NET but use legacy ASP.NET Membership Providers should be pretty rare. Please let me (or, preferably the team) know if that's an incorrect assumption. Membership in the ASP.NET 4.5 project template ASP.NET 4.5 Web Forms took a different approach which builds off ASP.NET Membership. Instead of using the WebMatrix security assemblies, Web Forms uses Microsoft.AspNet.Membership.OpenAuth assembly. I'm no expert on this, but from a bit of time in ILSpy and Visual Studio's (very pretty) dependency graphs, this uses a Membership Adapter to save OAuth data into an EF managed database while still running on top of ASP.NET Membership. Note: There may be a way to use this in ASP.NET MVC 4, although it would probably take some plumbing work to hook it up. How does this fit in with Universal Providers (System.Web.Providers)? Just to summarize: Universal Providers are intended for cases where you have an existing ASP.NET Membership Provider and you want to use it with another SQL Server database backend (other than SQL Server). It doesn't require agents to handle expired session cleanup and other background tasks, it piggybacks these tasks on other calls. Universal Providers are not really, strictly speaking, universal - at least to my way of thinking. They only work with databases in the SQL Server family. Universal Providers do not work with Simple Membership. The Universal Providers packages include some web config transforms which you would normally want when you're using them. What about the Web Site Administration Tool? Visual Studio includes tooling to launch the Web Site Administration Tool (WSAT) to configure users and roles in your application. WSAT is built to work with ASP.NET Membership, and is not compatible with Simple Membership. There are two main options there: Use the WebSecurity and OAuthWebSecurity API to manage the users and roles Create a web admin using the above APIs Since SimpleMembership runs on top of your database, you can update your users as you would any other data - via EF or even in direct database edits (in development, of course)

    Read the article

  • Introducing the Earthquake Locator – A Bing Maps Silverlight Application, part 1

    - by Bobby Diaz
    Update: Live demo and source code now available!  The recent wave of earthquakes (no pun intended) being reported in the news got me wondering about the frequency and severity of earthquakes around the world. Since I’ve been doing a lot of Silverlight development lately, I decided to scratch my curiosity with a nice little Bing Maps application that will show the location and relative strength of recent seismic activity. Here is a list of technologies this application will utilize, so be sure to have everything downloaded and installed if you plan on following along. Silverlight 3 WCF RIA Services Bing Maps Silverlight Control * Managed Extensibility Framework (optional) MVVM Light Toolkit (optional) log4net (optional) * If you are new to Bing Maps or have not signed up for a Developer Account, you will need to visit www.bingmapsportal.com to request a Bing Maps key for your application. Getting Started We start out by creating a new Silverlight Application called EarthquakeLocator and specify that we want to automatically create the Web Application Project with RIA Services enabled. I cleaned up the web app by removing the Default.aspx and EarthquakeLocatorTestPage.html. Then I renamed the EarthquakeLocatorTestPage.aspx to Default.aspx and set it as my start page. I also set the development server to use a specific port, as shown below. RIA Services Next, I created a Services folder in the EarthquakeLocator.Web project and added a new Domain Service Class called EarthquakeService.cs. This is the RIA Services Domain Service that will provide earthquake data for our client application. I am not using LINQ to SQL or Entity Framework, so I will use the <empty domain service class> option. We will be pulling data from an external Atom feed, but this example could just as easily pull data from a database or another web service. This is an important distinction to point out because each scenario I just mentioned could potentially use a different Domain Service base class (i.e. LinqToSqlDomainService<TDataContext>). Now we can start adding Query methods to our EarthquakeService that pull data from the USGS web site. Here is the complete code for our service class: using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.ServiceModel.Syndication; using System.Web.DomainServices; using System.Web.Ria; using System.Xml; using log4net; using EarthquakeLocator.Web.Model;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// Provides earthquake data to client applications.     /// </summary>     [EnableClientAccess()]     public class EarthquakeService : DomainService     {         private static readonly ILog log = LogManager.GetLogger(typeof(EarthquakeService));           // USGS Data Feeds: http://earthquake.usgs.gov/earthquakes/catalogs/         private const string FeedForPreviousDay =             "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml";         private const string FeedForPreviousWeek =             "http://earthquake.usgs.gov/earthquakes/catalogs/7day-M2.5.xml";           /// <summary>         /// Gets the earthquake data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Earthquake"/> objects.</returns>         public IQueryable<Earthquake> GetEarthquakes()         {             var feed = GetFeed(FeedForPreviousWeek);             var list = new List<Earthquake>();               if ( feed != null )             {                 foreach ( var entry in feed.Items )                 {                     var quake = CreateEarthquake(entry);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates an <see cref="Earthquake"/> object for each entry in the Atom feed.         /// </summary>         /// <param name="entry">The Atom entry.</param>         /// <returns></returns>         private Earthquake CreateEarthquake(SyndicationItem entry)         {             Earthquake quake = null;             string title = entry.Title.Text;             string summary = entry.Summary.Text;             string point = GetElementValue<String>(entry, "point");             string depth = GetElementValue<String>(entry, "elev");             string utcTime = null;             string localTime = null;             string depthDesc = null;             double? magnitude = null;             double? latitude = null;             double? longitude = null;             double? depthKm = null;               if ( !String.IsNullOrEmpty(title) && title.StartsWith("M") )             {                 title = title.Substring(2, title.IndexOf(',')-3).Trim();                 magnitude = TryParse(title);             }             if ( !String.IsNullOrEmpty(point) )             {                 var values = point.Split(' ');                 if ( values.Length == 2 )                 {                     latitude = TryParse(values[0]);                     longitude = TryParse(values[1]);                 }             }             if ( !String.IsNullOrEmpty(depth) )             {                 depthKm = TryParse(depth);                 if ( depthKm != null )                 {                     depthKm = Math.Round((-1 * depthKm.Value) / 100, 2);                 }             }             if ( !String.IsNullOrEmpty(summary) )             {                 summary = summary.Replace("</p>", "");                 var values = summary.Split(                     new string[] { "<p>" },                     StringSplitOptions.RemoveEmptyEntries);                   if ( values.Length == 3 )                 {                     var times = values[1].Split(                         new string[] { "<br>" },                         StringSplitOptions.RemoveEmptyEntries);                       if ( times.Length > 0 )                     {                         utcTime = times[0];                     }                     if ( times.Length > 1 )                     {                         localTime = times[1];                     }                       depthDesc = values[2];                     depthDesc = "Depth: " + depthDesc.Substring(depthDesc.IndexOf(":") + 2);                 }             }               if ( latitude != null && longitude != null )             {                 quake = new Earthquake()                 {                     Id = entry.Id,                     Title = entry.Title.Text,                     Summary = entry.Summary.Text,                     Date = entry.LastUpdatedTime.DateTime,                     Url = entry.Links.Select(l => Path.Combine(l.BaseUri.OriginalString,                         l.Uri.OriginalString)).FirstOrDefault(),                     Age = entry.Categories.Where(c => c.Label == "Age")                         .Select(c => c.Name).FirstOrDefault(),                     Magnitude = magnitude.GetValueOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault(),                     DepthInKm = depthKm.GetValueOrDefault(),                     DepthDesc = depthDesc,                     UtcTime = utcTime,                     LocalTime = localTime                 };             }               return quake;         }           private T GetElementValue<T>(SyndicationItem entry, String name)         {             var el = entry.ElementExtensions.Where(e => e.OuterName == name).FirstOrDefault();             T value = default(T);               if ( el != null )             {                 value = el.GetObject<T>();             }               return value;         }           private double? TryParse(String value)         {             double d;             if ( Double.TryParse(value, out d) )             {                 return d;             }             return null;         }           /// <summary>         /// Gets the feed at the specified URL.         /// </summary>         /// <param name="url">The URL.</param>         /// <returns>A <see cref="SyndicationFeed"/> object.</returns>         public static SyndicationFeed GetFeed(String url)         {             SyndicationFeed feed = null;               try             {                 log.Debug("Loading RSS feed: " + url);                   using ( var reader = XmlReader.Create(url) )                 {                     feed = SyndicationFeed.Load(reader);                 }             }             catch ( Exception ex )             {                 log.Error("Error occurred while loading RSS feed: " + url, ex);             }               return feed;         }     } }   The only method that will be generated in the client side proxy class, EarthquakeContext, will be the GetEarthquakes() method. The reason being that it is the only public instance method and it returns an IQueryable<Earthquake> collection that can be consumed by the client application. GetEarthquakes() calls the static GetFeed(String) method, which utilizes the built in SyndicationFeed API to load the external data feed. You will need to add a reference to the System.ServiceModel.Web library in order to take advantage of the RSS/Atom reader. The API will also allow you to create your own feeds to serve up in your applications. Model I have also created a Model folder and added a new class, Earthquake.cs. The Earthquake object will hold the various properties returned from the Atom feed. Here is a sample of the code for that class. Notice the [Key] attribute on the Id property, which is required by RIA Services to uniquely identify the entity. using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ComponentModel.DataAnnotations;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     [DataContract]     public class Earthquake     {         /// <summary>         /// Gets or sets the id.         /// </summary>         /// <value>The id.</value>         [Key]         [DataMember]         public string Id { get; set; }           /// <summary>         /// Gets or sets the title.         /// </summary>         /// <value>The title.</value>         [DataMember]         public string Title { get; set; }           /// <summary>         /// Gets or sets the summary.         /// </summary>         /// <value>The summary.</value>         [DataMember]         public string Summary { get; set; }           // additional properties omitted     } }   View Model The recent trend to use the MVVM pattern for WPF and Silverlight provides a great way to separate the data and behavior logic out of the user interface layer of your client applications. I have chosen to use the MVVM Light Toolkit for the Earthquake Locator, but there are other options out there if you prefer another library. That said, I went ahead and created a ViewModel folder in the Silverlight project and added a EarthquakeViewModel class that derives from ViewModelBase. Here is the code: using System; using System.Collections.ObjectModel; using System.ComponentModel.Composition; using System.ComponentModel.Composition.Hosting; using Microsoft.Maps.MapControl; using GalaSoft.MvvmLight; using EarthquakeLocator.Web.Model; using EarthquakeLocator.Web.Services;   namespace EarthquakeLocator.ViewModel {     /// <summary>     /// Provides data for views displaying earthquake information.     /// </summary>     public class EarthquakeViewModel : ViewModelBase     {         [Import]         public EarthquakeContext Context;           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         public EarthquakeViewModel()         {             var catalog = new AssemblyCatalog(GetType().Assembly);             var container = new CompositionContainer(catalog);             container.ComposeParts(this);             Initialize();         }           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         /// <param name="context">The context.</param>         public EarthquakeViewModel(EarthquakeContext context)         {             Context = context;             Initialize();         }           private void Initialize()         {             MapCenter = new Location(20, -170);             ZoomLevel = 2;         }           #region Private Methods           private void OnAutoLoadDataChanged()         {             LoadEarthquakes();         }           private void LoadEarthquakes()         {             var query = Context.GetEarthquakesQuery();             Context.Earthquakes.Clear();               Context.Load(query, (op) =>             {                 if ( !op.HasError )                 {                     foreach ( var item in op.Entities )                     {                         Earthquakes.Add(item);                     }                 }             }, null);         }           #endregion Private Methods           #region Properties           private bool autoLoadData;         /// <summary>         /// Gets or sets a value indicating whether to auto load data.         /// </summary>         /// <value><c>true</c> if auto loading data; otherwise, <c>false</c>.</value>         public bool AutoLoadData         {             get { return autoLoadData; }             set             {                 if ( autoLoadData != value )                 {                     autoLoadData = value;                     RaisePropertyChanged("AutoLoadData");                     OnAutoLoadDataChanged();                 }             }         }           private ObservableCollection<Earthquake> earthquakes;         /// <summary>         /// Gets the collection of earthquakes to display.         /// </summary>         /// <value>The collection of earthquakes.</value>         public ObservableCollection<Earthquake> Earthquakes         {             get             {                 if ( earthquakes == null )                 {                     earthquakes = new ObservableCollection<Earthquake>();                 }                   return earthquakes;             }         }           private Location mapCenter;         /// <summary>         /// Gets or sets the map center.         /// </summary>         /// <value>The map center.</value>         public Location MapCenter         {             get { return mapCenter; }             set             {                 if ( mapCenter != value )                 {                     mapCenter = value;                     RaisePropertyChanged("MapCenter");                 }             }         }           private double zoomLevel;         /// <summary>         /// Gets or sets the zoom level.         /// </summary>         /// <value>The zoom level.</value>         public double ZoomLevel         {             get { return zoomLevel; }             set             {                 if ( zoomLevel != value )                 {                     zoomLevel = value;                     RaisePropertyChanged("ZoomLevel");                 }             }         }           #endregion Properties     } }   The EarthquakeViewModel class contains all of the properties that will be bound to by the various controls in our views. Be sure to read through the LoadEarthquakes() method, which handles calling the GetEarthquakes() method in our EarthquakeService via the EarthquakeContext proxy, and also transfers the loaded entities into the view model’s Earthquakes collection. Another thing to notice is what’s going on in the default constructor. I chose to use the Managed Extensibility Framework (MEF) for my composition needs, but you can use any dependency injection library or none at all. To allow the EarthquakeContext class to be discoverable by MEF, I added the following partial class so that I could supply the appropriate [Export] attribute: using System; using System.ComponentModel.Composition;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// The client side proxy for the EarthquakeService class.     /// </summary>     [Export]     public partial class EarthquakeContext     {     } }   One last piece I wanted to point out before moving on to the user interface, I added a client side partial class for the Earthquake entity that contains helper properties that we will bind to later: using System;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     public partial class Earthquake     {         /// <summary>         /// Gets the location based on the current Latitude/Longitude.         /// </summary>         /// <value>The location.</value>         public string Location         {             get { return String.Format("{0},{1}", Latitude, Longitude); }         }           /// <summary>         /// Gets the size based on the Magnitude.         /// </summary>         /// <value>The size.</value>         public double Size         {             get { return (Magnitude * 3); }         }     } }   View Now the fun part! Usually, I would create a Views folder to place all of my View controls in, but I took the easy way out and added the following XAML code to the default MainPage.xaml file. Be sure to add the bing prefix associating the Microsoft.Maps.MapControl namespace after adding the assembly reference to your project. The MVVM Light Toolkit project templates come with a ViewModelLocator class that you can use via a static resource, but I am instantiating the EarthquakeViewModel directly in my user control. I am setting the AutoLoadData property to true as a way to trigger the LoadEarthquakes() method call. The MapItemsControl found within the <bing:Map> control binds its ItemsSource property to the Earthquakes collection of the view model, and since it is an ObservableCollection<T>, we get the automatic two way data binding via the INotifyCollectionChanged interface. <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">             <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />         </bing:Map>       </Grid> </UserControl>   The EarthquakeTemplate defines the Ellipse that will represent each earthquake, the Width and Height that are determined by the Magnitude, the Position on the map, and also the tooltip that will appear when we mouse over each data point. Running the application will give us the following result (shown with a tooltip example): That concludes this portion of our show but I plan on implementing additional functionality in later blog posts. Be sure to come back soon to see the next installments in this series. Enjoy!   Additional Resources USGS Earthquake Data Feeds Brad Abrams shows how RIA Services and MVVM can work together

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Deploy ASP.NET Web Applications with Web Deployment Projects

    - by Ben Griswold
    One may quickly build and deploy an ASP.NET web application via the Publish option in Visual Studio.  This option works great for most simple deployment scenarios but it won’t always cut it.  Let’s say you need to automate your deployments. Or you have environment-specific configuration settings. Or you need to execute pre/post build operations when you do your builds.  If so, you should consider using Web Deployment Projects. The Web Deployment Project type doesn’t come out-of-the-box with Visual Studio 2008.  You’ll need to Download Visual Studio® 2008 Web Deployment Projects – RTW and install if you want to follow along with this tutorial. I’ve created a shiny new ASP.NET MVC project.  Web Deployment Projects work with websites, web applications and MVC projects so feel free to go with any web project type you’d like.  Once your web application is in place, it’s time to add the Web Deployment project.  You can hunt and peck around the File > New > New Project… dialogue as long as you’d like, but you aren’t going to find what you need.  Instead, select the web project and then choose the “Add Web Deployment Project…” hiding behind the Build menu option. I prefer to name my projects based on the environment in which I plan to deploy.  In this case, I’ll be rolling to the QA machine. Don’t expect too much to happen at this point.  A seemingly empty project with a funny icon will be added to your solution.  That’s it. I want to take a minute and talk about configuration settings before we continue.  Some of the common settings which might change from environment to environment are appSettings, connectionStrings and mailSettings.  Here’s a look at my updated web.config: <appSettings>   <add key="MvcApplication293.Url" value="http://localhost:50596/" />     </appSettings> <connectionStrings>   <add name="ApplicationServices"        connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true"        providerName="System.Data.SqlClient"/> </connectionStrings>   <system.net>   <mailSettings>     <smtp from="[email protected]">         <network host="server.com" userName="username" password="password" port="587" defaultCredentials="false"/>     </smtp>   </mailSettings> </system.net> I want to update these values prior to deploying to the QA environment.  There are variations to this approach, but I like to maintain environment-specific settings for each of the web.config sections in the Config/[Environment] project folders.  I’ve provided a screenshot of the QA environment settings below. It may be obvious what one should include in each of the three files.  Basically, it is a copy of the associated web.config section with updated setting values.  For example, the AppSettings.config file may include a reference to the QA web url, the DB.config would include the QA database server and login information and the StmpSettings.config would include a QA Stmp server and user information. <?xml version="1.0" encoding="utf-8" ?> <appSettings>   <add key="MvcApplication293.Url" value="http://qa.MvcApplicatinon293.com/" /> </appSettings> AppSettings.config  <?xml version="1.0" encoding="utf-8" ?> <connectionStrings>   <add name="ApplicationServices"        connectionString="server=QAServer;integrated security=SSPI;database=MvcApplication293"        providerName="System.Data.SqlClient"/>   </connectionStrings> Db.config  <?xml version="1.0" encoding="utf-8" ?> <smtp from="[email protected]">     <network host="qaserver.com" userName="qausername" password="qapassword" port="587" defaultCredentials="false"/> </smtp> SmtpSettings.config  I think our web project is ready to deploy.  Now, it’s time to concentrate on the Web Deployment Project itself.  Right-click on the project file and open the Property Pages. The first thing to call out is the Configuration dropdown.  I only deploy a project which is built in Release Mode so I only setup the Web Deployment Project for this mode.  (This is when you change the Configuration selection to “Release.”)  I typically keep the Output Folder default value – .\Release\.  When the application is built, all artifacts will be dropped in the .\Release\ folder relative to the Web Deployment Project root.  The final option may be up for some debate.  I like to roll out updatable websites so I select the “Allow this precompiled site to be updatable” option.  I really do like to follow standard SDLC processes when I release my software but there are those times when you just have to make a hotfix to production and I like to keep this option open if need be.  If you are strongly opposed to this idea, please, by all means, don’t check the box. The next tab is boring.  I don’t like to deploy a crazy number of DLLs so I merge all outputs to a single assembly.  Again, you may have another option and feel free to change this selection if you so wish. If you follow my lead, take care when choosing a single assembly name.  The Assembly Name can not be the same as the website or any other project in your solution otherwise you’ll receive a circular reference build error.  In other words, I can’t name the assembly MvcApplication293 or my output window would start yelling at me. Remember when we called out our QA configuration files?  Click on the Deployment tab and you’ll see how where going to use them.  Notice the Web.config file section replacements value.  All this does is swap called out web.config sections with the content of the Config\QA\* files.  You can reduce or extend this list as you deem fit.  Did you see the “Use external configuration source file” option?  You know how you can point any of your web.config sections to an external file via the configSource attribute?  This option allows you to leverage that technique and instead of replacing the content of the sections, you will replace the configSource attribute value instead. <appSettings configSource="Config\QA\AppSettings.config" /> Go ahead and Apply your changes.  I’d like to take a look at the project file we just updated.  Right-click on the Web Deployment Project and select “Open Project File.” One of the first configuration blocks reflects core Release build settings.  There are a couple of points I’d like to call out here: DebugSymbols=false ensures the compilation debug attribute in your web.config is flipped to false as part of build process.  There’s some crumby (more likely old) documentation which implies you need a ToggleDebugCompilation task to make this happen.  Nope. Just make sure the DebugSymbols is set to false.  EnableUpdateable implies a single dll for the web application rather than a dll for each object and and empty view file. I think updatable applications are cleaner and include the benefit (or risk based on your perspective) that portions of the application can be updated directly on the server.  I called this out earlier but I wanted to reiterate. <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">     <DebugSymbols>false</DebugSymbols>     <OutputPath>.\Release</OutputPath>     <EnableUpdateable>true</EnableUpdateable>     <UseMerge>true</UseMerge>     <SingleAssemblyName>MvcApplication293</SingleAssemblyName>     <DeleteAppCodeCompiledFiles>true</DeleteAppCodeCompiledFiles>     <UseWebConfigReplacement>true</UseWebConfigReplacement>     <ValidateWebConfigReplacement>true</ValidateWebConfigReplacement>     <DeleteAppDataFolder>true</DeleteAppDataFolder>   </PropertyGroup> The next section is self-explanatory.  The content merely reflects the replacement value you provided via the Property Pages. <ItemGroup Condition="'$(Configuration)|$(Platform)' == 'Release|AnyCPU'">     <WebConfigReplacementFiles Include="Config\QA\AppSettings.config">       <Section>appSettings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\Db.config">       <Section>connectionStrings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\SmtpSettings.config">       <Section>system.net/mailSettings/smtp</Section>     </WebConfigReplacementFiles>   </ItemGroup> You’ll want to extend the ItemGroup section to include the files you wish to exclude from the build.  The sample ExcludeFromBuild nodes exclude all obj, svn, csproj, user, pdb artifacts from the build. Enough though they files aren’t included in your web project, you’ll need to exclude them or they’ll show up along with required deployment artifacts.  <ItemGroup Condition="'$(Configuration)|$(Platform)' == 'Release|AnyCPU'">     <WebConfigReplacementFiles Include="Config\QA\AppSettings.config">       <Section>appSettings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\Db.config">       <Section>connectionStrings</Section>     </WebConfigReplacementFiles>     <WebConfigReplacementFiles Include="Config\QA\SmtpSettings.config">       <Section>system.net/mailSettings/smtp</Section>     </WebConfigReplacementFiles>     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\obj\**\*.*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\.svn\**\*.*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\.svn\**\*" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\*.csproj" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\**\*.user" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\bin\*.pdb" />     <ExcludeFromBuild Include="$(SourceWebPhysicalPath)\Notes.txt" />   </ItemGroup> Pre/post build and Pre/post merge tasks are added to the final code block.  By default, your project file should look like the following – a completely commented out section. <!– To modify your build process, add your task inside one of        the targets below and uncomment it. Other similar extension        points exist, see Microsoft.WebDeployment.targets.   <Target Name="BeforeBuild">   </Target>   <Target Name="BeforeMerge">   </Target>   <Target Name="AfterMerge">   </Target>   <Target Name="AfterBuild">   </Target>   –> Update the section to remove all temporary Config folders and files after the build.  <!– To modify your build process, add your task inside one of        the targets below and uncomment it. Other similar extension        points exist, see Microsoft.WebDeployment.targets.     <Target Name="BeforeMerge">   </Target>   <Target Name="AfterMerge">   </Target>     <Target Name="BeforeBuild">      </Target>       –>   <Target Name="AfterBuild">     <!– WebConfigReplacement requires the Config files. Remove after build. –>     <RemoveDir Directories="$(OutputPath)\Config" />   </Target> That’s it for setup.  Save the project file, flip the solution to Release Mode and build.  If there’s an issue, consult the Output window for details.  If all went well, you will find your deployment artifacts in your Web Deployment Project folder like so. Both the code source and published application will be there. Inside the Release folder you will find your “published files” and you’ll notice the Config folder is no where to be found.  In the Source folder, all project files are found with the exception of the items which were excluded from the build. I’ll wrap up this tutorial by calling out a little Web Deployment pet peeve of mine: there doesn’t appear to be a way to add an existing web deployment project to a solution.  The best I can come up with is create a new web deployment project and then copy and paste the contents of the existing project file into the new project file.  It’s not a big deal but it bugs me. Download the Solution

    Read the article

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

  • Metro: Using Templates

    - by Stephen.Walther
    The goal of this blog post is to describe how templates work in the WinJS library. In particular, you learn how to use a template to display both a single item and an array of items. You also learn how to load a template from an external file. Why use Templates? Imagine that you want to display a list of products in a page. The following code is bad: var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productsHTML = ""; for (var i = 0; i < products.length; i++) { productsHTML += "<h1>Product Details</h1>" + "<div>Product Name: " + products[i].name + "</div>" + "<div>Product Price: " + products[i].price + "</div>"; } document.getElementById("productContainer").innerHTML = productsHTML; In the code above, an array of products is displayed by creating a for..next loop which loops through each element in the array. A string which represents a list of products is built through concatenation. The code above is a designer’s nightmare. You cannot modify the appearance of the list of products without modifying the JavaScript code. A much better approach is to use a template like this: <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> A template is simply a fragment of HTML that contains placeholders. Instead of displaying a list of products by concatenating together a string, you can render a template for each product. Creating a Simple Template Let’s start by using a template to render a single product. The following HTML page contains a template and a placeholder for rendering the template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> In the page above, the template is defined in a DIV element with the id productTemplate. The contents of the productTemplate are not displayed when the page is opened in the browser. The contents of a template are automatically hidden when you convert the productTemplate into a template in your JavaScript code. Notice that the template uses data-win-bind attributes to display the product name and price properties. You can use both data-win-bind and data-win-bindsource attributes within a template. To learn more about these attributes, see my earlier blog post on WinJS data binding: http://stephenwalther.com/blog/archive/2012/02/26/windows-web-applications-declarative-data-binding.aspx The page above also includes a DIV element named productContainer. The rendered template is added to this element. Here’s the code for the default.js script which creates and renders the template: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000 }; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); productTemplate.render(product, document.getElementById("productContainer")); } }; app.start(); })(); In the code above, a single product object is created with the following line of code: var product = { name: "Tesla", price: 80000 }; Next, the productTemplate element from the page is converted into an actual WinJS template with the following line of code: var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); The template is rendered to the templateContainer element with the following line of code: productTemplate.render(product, document.getElementById("productContainer")); The result of this work is that the product details are displayed: Notice that you do not need to call WinJS.Binding.processAll(). The Template render() method takes care of the binding for you. Displaying an Array in a Template If you want to display an array of products using a template then you simply need to create a for..next loop and iterate through the array calling the Template render() method for each element. (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); After each product in the array is rendered with the template, the result is appended to the productContainer element. No changes need to be made to the HTML page discussed in the previous section to display an array of products instead of a single product. The same product template can be used in both scenarios. Rendering an HTML TABLE with a Template When using the WinJS library, you create a template by creating an HTML element in your page. One drawback to this approach of creating templates is that your templates are part of your HTML page. In order for your HTML page to validate, the HTML within your templates must also validate. This means, for example, that you cannot enclose a single HTML table row within a template. The following HTML is invalid because you cannot place a TR element directly within the body of an HTML document:   <!-- Product Template --> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> This template won’t validate because, in a valid HTML5 document, a TR element must appear within a THEAD or TBODY element. Instead, you must create the entire TABLE element in the template. The following HTML page illustrates how you can create a template which contains a TR element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> <!-- Place where Product Template is Rendered --> <table> <thead> <tr> <th>Name</th><th>Price</th> </tr> </thead> <tbody id="productContainer"> </tbody> </table> </body> </html>   In the HTML page above, the product template includes TABLE and TBODY elements: <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> We discard these elements when we render the template. The only reason that we include the TABLE and THEAD elements in the template is to make the HTML page validate as valid HTML5 markup. Notice that the productContainer (the target of the template) in the page above is a TBODY element. We want to add the rows rendered by the template to the TBODY element in the page. The productTemplate is rendered in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); } } }; app.start(); })(); When the product template is rendered, the TR element is extracted from the rendered template by using the WinJS.Utilities.query() method. Next, only the TR element is added to the productContainer: productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); I discuss the WinJS.Utilities.query() method in depth in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/23/windows-web-applications-query-selectors.aspx When everything gets rendered, the products are displayed in an HTML table: You can see the actual HTML rendered by looking at the Visual Studio DOM Explorer window:   Loading an External Template Instead of embedding a template in an HTML page, you can place your template in an external HTML file. It makes sense to create a template in an external file when you need to use the same template in multiple pages. For example, you might need to use the same product template in multiple pages in your application. The following HTML page does not contain a template. It only contains a container that will act as a target for the rendered template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> The template is contained in a separate file located at the path /templates/productTemplate.html:   Here’s the contents of the productTemplate.html file: <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> Notice that the template file only contains the template and not the standard opening and closing HTML elements. It is an HTML fragment. If you prefer, you can include all of the standard opening and closing HTML elements in your external template – these elements get stripped away automatically: <html> <head><title>product template</title></head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> Either approach – using a fragment or using a full HTML document  — works fine. Finally, the following default.js file loads the external template, renders the template for each product, and appends the result to the product container: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(null, { href: "/templates/productTemplate.html" }); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); The path to the external template is passed to the constructor for the Template class as one of the options: var productTemplate = new WinJS.Binding.Template(null, {href:"/templates/productTemplate.html"}); When a template is contained in a page then you use the first parameter of the WinJS.Binding.Template constructor to represent the template – instead of null, you pass the element which contains the template. When a template is located in an external file, you pass the href for the file as part of the second parameter for the WinJS.Binding.Template constructor. Summary The goal of this blog entry was to describe how you can use WinJS templates to render either a single item or an array of items to a page. We also explored two advanced topics. You learned how to render an HTML table by extracting the TR element from a template. You also learned how to place a template in an external file.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • ASP.NET MVC 2 Model Binding for a Collection

    - by nmarun
    Yes, my yet another post on Model Binding (previous one is here), but this one uses features presented in MVC 2. How I got to writing this blog? Well, I’m on a project where we’re doing some MVC things for a shopping cart. Let me show you what I was working with. Below are my model classes: 1: public class Product 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public int Quantity { get; set; } 6: public decimal UnitPrice { get; set; } 7: } 8:   9: public class Totals 10: { 11: public decimal SubTotal { get; set; } 12: public decimal Tax { get; set; } 13: public decimal Total { get; set; } 14: } 15:   16: public class Basket 17: { 18: public List<Product> Products { get; set; } 19: public Totals Totals { get; set;} 20: } The view looks as below:  1: <h2>Shopping Cart</h2> 2:   3: <% using(Html.BeginForm()) { %> 4: 5: <h3>Products</h3> 6: <% for (int i = 0; i < Model.Products.Count; i++) 7: { %> 8: <div style="width: 100px;float:left;">Id</div> 9: <div style="width: 100px;float:left;"> 10: <%= Html.TextBox("ID", Model.Products[i].Id) %> 11: </div> 12: <div style="clear:both;"></div> 13: <div style="width: 100px;float:left;">Name</div> 14: <div style="width: 100px;float:left;"> 15: <%= Html.TextBox("Name", Model.Products[i].Name) %> 16: </div> 17: <div style="clear:both;"></div> 18: <div style="width: 100px;float:left;">Quantity</div> 19: <div style="width: 100px;float:left;"> 20: <%= Html.TextBox("Quantity", Model.Products[i].Quantity)%> 21: </div> 22: <div style="clear:both;"></div> 23: <div style="width: 100px;float:left;">Unit Price</div> 24: <div style="width: 100px;float:left;"> 25: <%= Html.TextBox("UnitPrice", Model.Products[i].UnitPrice)%> 26: </div> 27: <div style="clear:both;"><hr /></div> 28: <% } %> 29: 30: <h3>Totals</h3> 31: <div style="width: 100px;float:left;">Sub Total</div> 32: <div style="width: 100px;float:left;"> 33: <%= Html.TextBox("SubTotal", Model.Totals.SubTotal)%> 34: </div> 35: <div style="clear:both;"></div> 36: <div style="width: 100px;float:left;">Tax</div> 37: <div style="width: 100px;float:left;"> 38: <%= Html.TextBox("Tax", Model.Totals.Tax)%> 39: </div> 40: <div style="clear:both;"></div> 41: <div style="width: 100px;float:left;">Total</div> 42: <div style="width: 100px;float:left;"> 43: <%= Html.TextBox("Total", Model.Totals.Total)%> 44: </div> 45: <div style="clear:both;"></div> 46: <p /> 47: <input type="submit" name="Submit" value="Submit" /> 48: <% } %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Nothing fancy, just a bunch of div’s containing textboxes and a submit button. Just make note that the textboxes have the same name as the property they are going to display. Yea, yea, I know. I’m displaying unit price as a textbox instead of a label, but that’s beside the point (and trust me, this will not be how it’ll look on the production site!!). The way my controller works is that initially two dummy products are added to the basked object and the Totals are calculated based on what products were added in what quantities and their respective unit price. So when the page loads in edit mode, where the user can change the quantity and hit the submit button. In the ‘post’ version of the action method, the Totals get recalculated and the new total will be displayed on the screen. Here’s the code: 1: public ActionResult Index() 2: { 3: Product product1 = new Product 4: { 5: Id = 1, 6: Name = "Product 1", 7: Quantity = 2, 8: UnitPrice = 200m 9: }; 10:   11: Product product2 = new Product 12: { 13: Id = 2, 14: Name = "Product 2", 15: Quantity = 1, 16: UnitPrice = 150m 17: }; 18:   19: List<Product> products = new List<Product> { product1, product2 }; 20:   21: Basket basket = new Basket 22: { 23: Products = products, 24: Totals = ComputeTotals(products) 25: }; 26: return View(basket); 27: } 28:   29: [HttpPost] 30: public ActionResult Index(Basket basket) 31: { 32: basket.Totals = ComputeTotals(basket.Products); 33: return View(basket); 34: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s that. Now I run the app, I see two products with the totals section below them. I look at the view source and I see that the input controls have the right ID, the right name and the right value as well. 1: <input id="ID" name="ID" type="text" value="1" /> 2: <input id="Name" name="Name" type="text" value="Product 1" /> 3: ... 4: <input id="ID" name="ID" type="text" value="2" /> 5: <input id="Name" name="Name" type="text" value="Product 2" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } So just as a regular user would do, I change the quantity value of one of the products and hit the submit button. The ‘post’ version of the Index method gets called and I had put a break-point on line 32 in the above snippet. When I hovered my mouse on the ‘basked’ object, happily assuming that the object would be all bound and ready for use, I was surprised to see both basket.Products and basket.Totals were null. Huh? A little research and I found out that the reason the DefaultModelBinder could not do its job is because of a naming mismatch on the input controls. What I mean is that when you have to bind to a custom .net type, you need more than just the property name. You need to pass a qualified name to the name property of the input control. I modified my view and the emitted code looked as below: 1: <input id="Product_Name" name="Product.Name" type="text" value="Product 1" /> 2: ... 3: <input id="Product_Name" name="Product.Name" type="text" value="Product 2" /> 4: ... 5: <input id="Totals_SubTotal" name="Totals.SubTotal" type="text" value="550" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, I update the quantity and hit the submit button and I see that the Totals object is populated, but the Products list is still null. Once again I went: ‘Hmm.. time for more research’. I found out that the way to do this is to provide the name as: 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> 2: <!-- this will be rendered as --> 3: <input id="Products_0__ID" name="Products[0].ID" type="text" value="1" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } It was only now that I was able to see both the products and the totals being properly bound in the ‘post’ action method. Somehow, I feel this is kinda ‘clunky’ way of doing things. Seems like people at MS felt in a similar way and offered us a much cleaner way to solve this issue. The simple solution is that instead of using a Textbox, we can either use a TextboxFor or an EditorFor helper method. This one directly spits out the name of the input property as ‘Products[0].ID and so on. Cool right? I totally fell for this and changed my UI to contain EditorFor helper method. At this point, I ran the application, changed the quantity field and pressed the submit button. Of course my basket object parameter in my action method was correctly bound after these changes. I let the app complete the rest of the lines in the action method. When the page finally rendered, I did see that the quantity was changed to what I entered before the post. But, wait a minute, the totals section did not reflect the changes and showed the old values. My status: COMPLETELY PUZZLED! Just to recap, this is what my ‘post’ Index method looked like: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: basket.Totals = ComputeTotals(basket.Products); 5: return View(basket); 6: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } A careful debug confirmed that the basked.Products[0].Quantity showed the updated value and the ComputeTotals() method also returns the correct totals. But still when I passed this basket object, it ended up showing the old totals values only. I began playing a bit with the code and my first guess was that the input controls got their values from the ModelState object. For those who don’t know, the ModelState is a temporary storage area that ASP.NET MVC uses to retain incoming attempted values plus binding and validation errors. Also, the fact that input controls populate the values using data taken from: Previously attempted values recorded in the ModelState["name"].Value.AttemptedValue Explicitly provided value (<%= Html.TextBox("name", "Some value") %>) ViewData, by calling ViewData.Eval("name") FYI: ViewData dictionary takes precedence over ViewData's Model properties – read more here. These two indicators led to my guess. It took me quite some time, but finally I hit this post where Brad brilliantly explains why this is the preferred behavior. My guess was right and I, accordingly modified my code to reflect the following way: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: // read the following posts to see why the ModelState 5: // needs to be cleared before passing it the view 6: // http://forums.asp.net/t/1535846.aspx 7: // http://forums.asp.net/p/1527149/3687407.aspx 8: if (ModelState.IsValid) 9: { 10: ModelState.Clear(); 11: } 12:   13: basket.Totals = ComputeTotals(basket.Products); 14: return View(basket); 15: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } What this does is that in the case where your ModelState IS valid, it clears the dictionary. This enables the values to be read from the model directly and not from the ModelState. So the verdict is this: If you need to pass other parameters (like html attributes and the like) to your input control, use 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Since, in EditorFor, there is no direct and simple way of passing this information to the input control. If you don’t have to pass any such ‘extra’ piece of information to the control, then go the EditorFor way. The code used in the post can be found here.

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Sorting and Filtering By Model-Based LOV Display Value

    - by Steven Davelaar
    If you use a model-based LOV and you use display type "choice", then ADF nicely displays the display value, even if the table is read-only. In the screen shot below, you see the RegionName attribute displayed instead of the RegionId. This is accomplished by the model-based LOV, I did not modify the Countries view object to include a join with Regions.  Also note the sort icon, the table is sorted by RegionId. This sorting typically results in a bug reported by your test team. Europe really shouldn't come before America when sorting ascending, right? To fix this, we could of course change the Countries view object query and add a join with the Regions table to include the RegionName attribute. If the table is updateable, we still need the choice list, so we need to move the model-based LOV from the RegionId attribute to the RegionName attribute and hide the RegionId attribute in the table. But that is a lot of work for such a simple requirement, in particular if we have lots of model-based choice lists in our view object. Fortunately, there is an easier way to do this, with some generic code in your view object base class that fixes this at once for all model-based choice lists that we have defined in our application. The trick is to override the method getSortCriteria() in the base view object class. By default, this method returns null because the sorting is done in the database through a SQL Order By clause. However, if the getSortCriteria method does return a sort criteria the framework will perform in memory sorting which is what we need to achieve sorting by region name. So, inside this method we need to evaluate the Order By clause, and if the order by column matches an attribute that has a model-based LOV choicelist defined with a display attribute that is different from the value attribute, we need to return a sort criterria. Here is the complete code of this method: public SortCriteria[] getSortCriteria() {   String orderBy = getOrderByClause();          if (orderBy!=null )   {     boolean descending = false;     if (orderBy.endsWith(" DESC"))      {       descending = true;       orderBy = orderBy.substring(0,orderBy.length()-5);     }     // extract column name, is part after the dot     int dotpos = orderBy.lastIndexOf(".");     String columnName = orderBy.substring(dotpos+1);     // loop over attributes and find matching attribute     AttributeDef orderByAttrDef = null;     for (AttributeDef attrDef : getAttributeDefs())     {       if (columnName.equals(attrDef.getColumnName()))       {         orderByAttrDef = attrDef;         break;       }     }     if (orderByAttrDef!=null && "choice".equals(orderByAttrDef.getProperty("CONTROLTYPE"))          && orderByAttrDef.getListBindingDef()!=null)     {       String orderbyAttr = orderByAttrDef.getName();       String[] displayAttrs = orderByAttrDef.getListBindingDef().getListDisplayAttrNames();       String[] listAttrs = orderByAttrDef.getListBindingDef().getListAttrNames();       // if first list display attributes is not the same as first list attribute, than the value       // displayed is different from the value copied back to the order by attribute, in which case we need to       // use our custom comparator       if (displayAttrs!=null && listAttrs!=null && displayAttrs.length>0 && !displayAttrs[0].equals(listAttrs[0]))       {                  SortCriteriaImpl sc1 = new SortCriteriaImpl(orderbyAttr, descending);         SortCriteria[] sc = new SortCriteriaImpl[]{sc1};         return sc;                           }     }     }   return super.getSortCriteria(); } If this method returns a sort criteria, then the framework will call the sort method on the view object. The sort method uses a Comparator object to determine the sequence in which the rows should be returned. This comparator is retrieved by calling the getRowComparator method on the view object. So, to ensure sorting by our display value, we need to override this method to return our custom comparator: public Comparator getRowComparator() {   return new LovDisplayAttributeRowComparator(getSortCriteria()); } The custom comparator class extends the default RowComparator class and overrides the method compareRows and looks up the choice display value to compare the two rows. The complete code of this class is included in the sample application.  With this code in place, clicking on the Region sort icon nicely sorts the countries by RegionName, as you can see below. When using the Query-By-Example table filter at the top of the table, you typically want to use the same choice list to filter the rows. One way to do that is documented in ADF code corner sample 16 - How To Customize the ADF Faces Table Filter.The solution in this sample is perfectly fine to use. This sample requires you to define a separate iterator binding and associated tree binding to populate the choice list in the table filter area using the af:iterator tag. You might be able to reuse the same LOV view object instance in this iterator binding that is used as view accessor for the model-bassed LOV. However, I have seen quite a few customers who have a generic LOV view object (mapped to one "refcodes" table) with the bind variable values set in the LOV view accessor. In such a scenario, some duplicate work is needed to get a dedicated view object instance with the correct bind variables that can be used in the iterator binding. Looking for ways to maximize reuse, wouldn't it be nice if we could just reuse our model-based LOV to populate this filter choice list? Well we can. Here are the basic steps: 1. Create an attribute list binding in the page definition that we can use to retrieve the list of SelectItems needed to populate the choice list <list StaticList="false" Uses="LOV_RegionId"               IterBinding="CountriesView1Iterator" id="RegionId"/>  We need this "current row" list binding because the implicit list binding used by the item in the table is not accessible outside a table row, we cannot use the expression #{row.bindings.RegionId} in the table filter facet. 2. Create a Map-style managed bean with the get method retrieving the list binding as key, and returning the list of SelectItems. To return this list, we take the list of selectItems contained by the list binding and replace the index number that is normally used as key value with the actual attribute value that is set by the choice list. Here is the code of the get method:  public Object get(Object key) {   if (key instanceof FacesCtrlListBinding)   {     // we need to cast to internal class FacesCtrlListBinding rather than JUCtrlListBinding to     // be able to call getItems method. To prevent this import, we could evaluate an EL expression     // to get the list of items     FacesCtrlListBinding lb = (FacesCtrlListBinding) key;     if (cachedFilterLists.containsKey(lb.getName()))     {       return cachedFilterLists.get(lb.getName());     }     List<SelectItem> items = (List<SelectItem>)lb.getItems();     if (items==null || items.size()==0)     {       return items;     }     List<SelectItem> newItems = new ArrayList<SelectItem>();     JUCtrlValueDef def = ((JUCtrlValueDef)lb.getDef());     String valueAttr = def.getFirstAttrName();     // the items list has an index number as value, we need to replace this with the actual     // value of the attribute that is copied back by the choice list     for (int i = 0; i < items.size(); i++)     {       SelectItem si = (SelectItem) items.get(i);       Object value = lb.getValueFromList(i);       if (value instanceof Row)       {         Row row = (Row) value;         si.setValue(row.getAttribute(valueAttr));                 }       else       {         // this is the "empty" row, set value to empty string so all rows will be returned         // as user no longer wants to filter on this attribute         si.setValue("");       }       newItems.add(si);     }     cachedFilterLists.put(lb.getName(), newItems);     return newItems;   }   return null; } Note that we added caching to speed up performance, and to handle the situation where table filters or search criteria are set such that no rows are retrieved in the table. When there are no rows, there is no current row and the getItems method on the list binding will return no items.  An alternative approach to create the list of SelectItems would be to retrieve the iterator binding from the list binding and loop over the rows in the iterator binding rowset. Then we wouldn't need the import of the ADF internal oracle.adfinternal.view.faces.model.binding.FacesCtrlListBinding class, but then we need to figure out the display attributes from the list binding definition, and possible separate them with a dash if multiple display attributes are defined in the LOV. Doable but less reuse and more work. 3. Inside the filter facet for the column create an af:selectOneChoice with the value property of the f:selectItems tag referencing the get method of the managed bean:  <f:facet name="filter">   <af:selectOneChoice id="soc0" autoSubmit="true"                       value="#{vs.filterCriteria.RegionId}">     <!-- attention: the RegionId list binding must be created manually in the page definition! -->                       <f:selectItems id="si0"                    value="#{viewScope.TableFilterChoiceList[bindings.RegionId]}"/>   </af:selectOneChoice> </f:facet> Note that the managed bean is defined in viewScope for the caching to take effect. Here is a screen shot of the tabe filter in action: You can download the sample application here. 

    Read the article

  • Async ignored on AJAX requests on Nginx server

    - by eComEvo
    Despite sending an async request to the server over AJAX, the server will not respond until the previous unrelated request has finished. The following code is only broken in this way on Nginx, but runs perfectly on Apache. This call will start a background process and it waits for it to complete so it can display the final result. $.ajax({ type: 'GET', async: true, url: $(this).data('route'), data: $('input[name=data]').val(), dataType: 'json', success: function (data) { /* do stuff */} error: function (data) { /* handle errors */} }); The below is called after the above, which on Apache requires 100ms to execute and repeats itself, showing progress for data being written in the background: checkStatusInterval = setInterval(function () { $.ajax({ type: 'GET', async: false, cache: false, url: '/process-status?process=' + currentElement.attr('id'), dataType: 'json', success: function (data) { /* update progress bar and status message */ } }); }, 1000); Unfortunately, when this script is run from nginx, the above progress request never even finishes a single request until the first AJAX request that sent the data is done. If I change the async to TRUE in the above, it executes one every interval, but none of them complete until that very first AJAX request finishes. Here is the main nginx conf file: #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info; #pid logs/nginx.pid; events { worker_connections 1024; } http { include mime.types; default_type application/octet-stream; server_names_hash_bucket_size 64; # configure temporary paths # nginx is started with param -p, setting nginx path to serverpack installdir fastcgi_temp_path temp/fastcgi; uwsgi_temp_path temp/uwsgi; scgi_temp_path temp/scgi; client_body_temp_path temp/client-body 1 2; proxy_temp_path temp/proxy; log_format main '$remote_addr - $remote_user [$time_local] "$request" ' '$status $body_bytes_sent "$http_referer" ' '"$http_user_agent" "$http_x_forwarded_for"'; #access_log logs/access.log main; # Sendfile copies data between one FD and other from within the kernel. # More efficient than read() + write(), since the requires transferring data to and from the user space. sendfile on; # Tcp_nopush causes nginx to attempt to send its HTTP response head in one packet, # instead of using partial frames. This is useful for prepending headers before calling sendfile, # or for throughput optimization. tcp_nopush on; # don't buffer data-sends (disable Nagle algorithm). Good for sending frequent small bursts of data in real time. tcp_nodelay on; types_hash_max_size 2048; # Timeout for keep-alive connections. Server will close connections after this time. keepalive_timeout 90; # Number of requests a client can make over the keep-alive connection. This is set high for testing. keepalive_requests 100000; # allow the server to close the connection after a client stops responding. Frees up socket-associated memory. reset_timedout_connection on; # send the client a "request timed out" if the body is not loaded by this time. Default 60. client_header_timeout 20; client_body_timeout 60; # If the client stops reading data, free up the stale client connection after this much time. Default 60. send_timeout 60; # Size Limits client_body_buffer_size 64k; client_header_buffer_size 4k; client_max_body_size 8M; # FastCGI fastcgi_connect_timeout 60; fastcgi_send_timeout 120; fastcgi_read_timeout 300; # default: 60 secs; when step debugging with XDEBUG, you need to increase this value fastcgi_buffer_size 64k; fastcgi_buffers 4 64k; fastcgi_busy_buffers_size 128k; fastcgi_temp_file_write_size 128k; # Caches information about open FDs, freqently accessed files. open_file_cache max=200000 inactive=20s; open_file_cache_valid 30s; open_file_cache_min_uses 2; open_file_cache_errors on; # Turn on gzip output compression to save bandwidth. # http://wiki.nginx.org/HttpGzipModule gzip on; gzip_disable "MSIE [1-6]\.(?!.*SV1)"; gzip_http_version 1.1; gzip_vary on; gzip_proxied any; #gzip_proxied expired no-cache no-store private auth; gzip_comp_level 6; gzip_buffers 16 8k; gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript application/javascript; # show all files and folders autoindex on; server { # access from localhost only listen 127.0.0.1:80; server_name localhost; root www; # the following default "catch-all" configuration, allows access to the server from outside. # please ensure your firewall allows access to tcp/port 80. check your "skype" config. # listen 80; # server_name _; log_not_found off; charset utf-8; access_log logs/access.log main; # handle files in the root path /www location / { index index.php index.html index.htm; } #error_page 404 /404.html; # redirect server error pages to the static page /50x.html # error_page 500 502 503 504 /50x.html; location = /50x.html { root www; } # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9100 # location ~ \.php$ { try_files $uri =404; fastcgi_pass 127.0.0.1:9100; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; } # add expire headers location ~* ^.+.(gif|ico|jpg|jpeg|png|flv|swf|pdf|mp3|mp4|xml|txt|js|css)$ { expires 30d; } # deny access to .htaccess files (if Apache's document root concurs with nginx's one) # deny access to git & svn repositories location ~ /(\.ht|\.git|\.svn) { deny all; } } # include config files of "enabled" domains include domains-enabled/*.conf; } Here is the enabled domain conf file: access_log off; access_log C:/server/www/test.dev/logs/access.log; error_log C:/server/www/test.dev/logs/error.log; # HTTP Server server { listen 127.0.0.1:80; server_name test.dev; root C:/server/www/test.dev/public; index index.php; rewrite_log on; default_type application/octet-stream; #include /etc/nginx/mime.types; # Include common configurations. include domains-common/location.conf; } # HTTPS server server { listen 443 ssl; server_name test.dev; root C:/server/www/test.dev/public; index index.php; rewrite_log on; default_type application/octet-stream; #include /etc/nginx/mime.types; # Include common configurations. include domains-common/location.conf; include domains-common/ssl.conf; } Contents of ssl.conf: # OpenSSL for HTTPS connections. ssl on; ssl_certificate C:/server/bin/openssl/certs/cert.pem; ssl_certificate_key C:/server/bin/openssl/certs/cert.key; ssl_session_timeout 5m; ssl_protocols SSLv3 TLSv1 TLSv1.1 TLSv1.2; ssl_ciphers HIGH:!aNULL:!MD5; ssl_prefer_server_ciphers on; # Pass the PHP scripts to FastCGI server listening on 127.0.0.1:9100 location ~ \.php$ { try_files $uri =404; fastcgi_param HTTPS on; fastcgi_pass 127.0.0.1:9100; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; } Contents of location.conf: # Remove trailing slash to please Laravel routing system. if (!-d $request_filename) { rewrite ^/(.+)/$ /$1 permanent; } location / { try_files $uri $uri/ /index.php?$query_string; } # We don't need .ht files with nginx. location ~ /(\.ht|\.git|\.svn) { deny all; } # Added cache headers for images. location ~* \.(png|jpg|jpeg|gif)$ { expires 30d; log_not_found off; } # Only 3 hours on CSS/JS to allow me to roll out fixes during early weeks. location ~* \.(js|css)$ { expires 3h; log_not_found off; } # Add expire headers. location ~* ^.+.(gif|ico|jpg|jpeg|png|flv|swf|pdf|mp3|mp4|xml|txt)$ { expires 30d; } # Pass the PHP scripts to FastCGI server listening on 127.0.0.1:9100 location ~ \.php$ { try_files $uri /index.php =404; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; include fastcgi_params; fastcgi_pass 127.0.0.1:9100; } Any ideas where this is going wrong?

    Read the article

  • How to Upload a file from client to server using OFBIZ?

    - by SIVAKUMAR.J
    Hi all, Im new to ofbiz.So is my question is have any mistake forgive me for my mistakes.Im new to ofbiz so i did not know some terminologies in ofbiz.Sometimes my question is not clear because of lack of knowledge in ofbiz.So try to understand my question and give me a good solution with respect to my level.Because some solutions are in very high level cannot able to understand for me.So please give the solution with good examples. My problem is i created a project inside the ofbiz/hot-deploy folder namely "productionmgntSystem".Inside the folder "ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem" i created a .ftl file namely "app_details_1.ftl" .The following are the coding of this file <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Insert title here</title> <script TYPE="TEXT/JAVASCRIPT" language=""JAVASCRIPT"> function uploadFile() { //alert("Before calling upload.jsp"); window.location='<@ofbizUrl>testing_service1</@ofbizUrl>' } </script> </head> <!-- <form action="<@ofbizUrl>testing_service1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> --> <form action="<@ofbizUrl>logout1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> <center style="height: 299px; "> <table border="0" style="height: 177px; width: 788px"> <tr style="height: 115px; "> <td style="width: 103px; "> <td style="width: 413px; "><h1>APPLICATION DETAILS</h1> <td style="width: 55px; "> </tr> <tr> <td style="width: 125px; ">Application name : </td> <td> <input name="app_name_txt" id="txt_1" value=" " /> </td> </tr> <tr> <td style="width: 125px; ">Excell sheet &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;: </td> <td> <input type="file" name="filename"/> </td> </tr> <tr> <td> <!-- <input type="button" name="logout1_cmd" value="Logout" onclick="logout1()"/> --> <input type="submit" name="logout_cmd" value="logout"/> </td> <td> <!-- <input type="submit" name="upload_cmd" value="Submit" /> --> <input type="button" name="upload1_cmd" value="Upload" onclick="uploadFile()"/> </td> </tr> </table> </center> </form> </html> the following coding is present in the file "ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem\WEB-INF\controller.xml" ...... ....... ........ <request-map uri="testing_service1"> <security https="true" auth="true"/> <event type="java" path="org.ofbiz.productionmgntSystem.web_app_req.WebServices1" invoke="testingService"/> <response name="ok" type="view" value="ok_view"/> <response name="exception" type="view" value="exception_view"/> </request-map> .......... ............ .......... <view-map name="ok_view" type="ftl" page="ok_view.ftl"/> <view-map name="exception_view" type="ftl" page="exception_view.ftl"/> ................ ............. ............. The following are the coding present in the file "ofbiz\hot-deploy\productionmgntSystem\src\org\ofbiz\productionmgntSystem\web_app_req\WebServices1.java" package org.ofbiz.productionmgntSystem.web_app_req; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.io.DataInputStream; import java.io.FileOutputStream; import java.io.IOException; public class WebServices1 { public static String testingService(HttpServletRequest request, HttpServletResponse response) { //int i=0; String result="ok"; System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- Start"); String contentType=request.getContentType(); System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- contentType : "+contentType); String str=new String(); // response.setContentType("text/html"); //PrintWriter writer; if ((contentType != null) && (contentType.indexOf("multipart/form-data") >= 0)) { System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) after if (contentType != null)"); try { // writer=response.getWriter(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try Start"); DataInputStream in = new DataInputStream(request.getInputStream()); int formDataLength = request.getContentLength(); byte dataBytes[] = new byte[formDataLength]; int byteRead = 0; int totalBytesRead = 0; //this loop converting the uploaded file into byte code while (totalBytesRead < formDataLength) { byteRead = in.read(dataBytes, totalBytesRead,formDataLength); totalBytesRead += byteRead; } String file = new String(dataBytes); //for saving the file name String saveFile = file.substring(file.indexOf("filename=\"") + 10); saveFile = saveFile.substring(0, saveFile.indexOf("\n")); saveFile = saveFile.substring(saveFile.lastIndexOf("\\")+ 1,saveFile.indexOf("\"")); int lastIndex = contentType.lastIndexOf("="); String boundary = contentType.substring(lastIndex + 1,contentType.length()); int pos; //extracting the index of file pos = file.indexOf("filename=\""); pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; int boundaryLocation = file.indexOf(boundary, pos) - 4; int startPos = ((file.substring(0, pos)).getBytes()).length; int endPos = ((file.substring(0, boundaryLocation)).getBytes()).length; //creating a new file with the same name and writing the content in new file FileOutputStream fileOut = new FileOutputStream("/"+saveFile); fileOut.write(dataBytes, startPos, (endPos - startPos)); fileOut.flush(); fileOut.close(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try End"); } catch(IOException ioe) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch IOException"); //ioe.printStackTrace(); return("exception"); } catch(Exception ex) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch Exception"); return("exception"); } } else { System.out.println("\n\n\t********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) else part"); result="exception"; } System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- End"); return(result); } } I want to upload a file to the server.The file is get from user "<input type="file"..> tag in the "app_details_1.ftl" file & it is updated into the server by using the method "testingService(HttpServletRequest request, HttpServletResponse response)" in the class "WebServices1".But the file is not uploaded. Give me a good solution for uploading a file to the server. Thanks & Regards, Sivakumar.J

    Read the article

  • I need help on my C++ assignment using MS Visual C++

    - by krayzwytie
    Ok, so I don't want you to do my homework for me, but I'm a little lost with this final assignment and need all the help I can get. Learning about programming is tough enough, but doing it online is next to impossible for me... Now, to get to the program, I am going to paste what I have so far. This includes mostly //comments and what I have written so far. If you can help me figure out where all the errors are and how to complete the assignment, I will really appreciate it. Like I said, I don't want you to do my homework for me (it's my final), but any constructive criticism is welcome. This is my final assignment for this class and it is due tomorrow (Sunday before midnight, Arizona time). This is the assignment: Examine the following situation: o Your company, Datamax, Inc., is in the process of automating its payroll systems. Your manager has asked you to create a program that calculates overtime pay for all employees. Your program must take into account the employee’s salary, total hours worked, and hours worked more than 40 in a week, and then provide an output that is useful and easily understood by company management. • Compile your program utilizing the following background information and the code outline in Appendix D (included in the code section). • Submit your project as an attachment including the code and the output. Company Background: o Three employees: Mark, John, and Mary o The end user needs to be prompted for three specific pieces of input—name, hours worked, and hourly wage. o Calculate overtime if input is greater than 40 hours per week. o Provide six test plans to verify the logic within the program. o Plan 1 must display the proper information for employee #1 with overtime pay. o Plan 2 must display the proper information for employee #1 with no overtime pay. o Plans 3-6 are duplicates of plan 1 and 2 but for the other employees. Program Requirements: o Define a base class to use for the entire program. o The class holds the function calls and the variables related to the overtime pay calculations. o Define one object per employee. Note there will be three employees. o Your program must take the objects created and implement calculations based on total salaries, total hours, and the total number of overtime hours. See the Employee Summary Data section of the sample output. Logic Steps to Complete Your Program: o Define your base class. o Define your objects from your base class. o Prompt for user input, updating your object classes for all three users. o Implement your overtime pay calculations. o Display overtime or regular time pay calculations. See the sample output below. o Implement object calculations by summarizing your employee objects and display the summary information in the example below. And this is the code: // Final_Project.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <iostream> #include <string> #include <iomanip> using namespace std; // //CLASS DECLARATION SECTION // class CEmployee { public: void ImplementCalculations(string EmployeeName, double hours, double wage); void DisplayEmployInformation(void); void Addsomethingup (CEmployee, CEmployee, CEmployee); string EmployeeName ; int hours ; int overtime_hours ; int iTotal_hours ; int iTotal_OvertimeHours ; float wage ; float basepay ; float overtime_pay ; float overtime_extra ; float iTotal_salaries ; float iIndividualSalary ; }; int main() { system("cls"); cout << "Welcome to the Employee Pay Center"; /* Use this section to define your objects. You will have one object per employee. You have only three employees. The format is your class name and your object name. */ std::cout << "Please enter Employee's Name: "; std::cin >> EmployeeName; std::cout << "Please enter Total Hours for (EmployeeName): "; std::cin >> hours; std::cout << "Please enter Base Pay for(EmployeeName): "; std::cin >> basepay; /* Here you will prompt for the first employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Example of Prompts Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the second employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the third employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will implement a function call to implement the employ calcuations for each object defined above. You will do this for each of the three employees or objects. The format for this step is the following: [(object name.function name(objectname.name, objectname.hours, objectname.wage)] ; */ /* This section you will send all three objects to a function that will add up the the following information: - Total Employee Salaries - Total Employee Hours - Total Overtime Hours The format for this function is the following: - Define a new object. - Implement function call [objectname.functionname(object name 1, object name 2, object name 3)] /* } //End of Main Function void CEmployee::ImplementCalculations (string EmployeeName, double hours, double wage){ //Initialize overtime variables overtime_hours=0; overtime_pay=0; overtime_extra=0; if (hours > 40) { /* This section is for the basic calculations for calculating overtime pay. - base pay = 40 hours times the hourly wage - overtime hours = hours worked – 40 - overtime pay = hourly wage * 1.5 - overtime extra pay over 40 = overtime hours * overtime pay - salary = overtime money over 40 hours + your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // if (hours > 40) else { /* Here you are going to calculate the hours less than 40 hours. - Your base pay is = your hours worked times your wage - Salary = your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // End of the else } //End of Primary Function void CEmployee::DisplayEmployInformation(); { // This function displays all the employee output information. /* This is your cout statements to display the employee information: Employee Name ............. = Base Pay .................. = Hours in Overtime ......... = Overtime Pay Amount........ = Total Pay ................. = */ } // END OF Display Employee Information void CEmployee::Addsomethingup (CEmployee Employ1, CEmployee Employ2) { // Adds two objects of class Employee passed as // function arguments and saves them as the calling object's data member values. /* Add the total hours for objects 1, 2, and 3. Add the salaries for each object. Add the total overtime hours. */ /* Then display the information below. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% EMPLOYEE SUMMARY DATA%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Total Employee Salaries ..... = 576.43 %%%% Total Employee Hours ........ = 108 %%%% Total Overtime Hours......... = 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ } // End of function

    Read the article

  • How do I set the encoding statement in the XML declaration when performing an XSL transformation usi

    - by aspiehler
    I wrote a simple package installer in WinBatch that needs to update an XML file with information about the package contents. My first stab at it involved loading the file with Msxml2.DOMDocument, adding nodes and data as required, then saving the data back to disk. This worked well enough, except that it would not create tab and CR/LF whitespace in the new data. The solution I came up with was writing an XSL stylesheet that would recreate the XML file with whitespace added back in. I'm doing this by: loading the XSL file into an Msxml2.FreeThreadedDOMDocument object setting that object as the stylesheet property of an Msxml2.XSLTemplate object creating an XSL processor via Msxml2.XSLTemplate.createProcessor() setting my original Msxml2.DOMDocument as the input property of the XSL processor Calling transform() method of the XSL processor, and saving the output to a file. This works as for as reformatting the XML file with tabs and carriage returns, but my XML declaration comes out either as <?xml version="1.0"?> or <?xml version="1.0" encoding="UTF-16"?> depending on whether I used Msxml2.*.6.0 or Msxml2.* objects (a fall back if the system doesn't have 6.0). If the encoding is set to UTF-16, Msxml12.DOMDocument complains about trying to convert UTF-16 to 1-byte encoding the next time I run my package installer. I've tried creating and adding an XML declaration using both createProcessingInstruction() to both the XML and XSL DOM objects, but neither one seems to affect the output of the XSLTemplate processor. I've also set encoding to UTF-8 in the <xsl:output/> tag in my XSL file. Here is the relevant code in my Winbatch script: xmlDoc = ObjectCreate("Msxml2.DOMDocument.6.0") if !xmlDoc then xmlDoc = ObjectCreate("Msxml2.DOMDocument") xmlDoc.async = @FALSE xmlDoc.validateOnParse = @TRUE xmlDoc.resolveExternals = @TRUE xmlDoc.preserveWhiteSpace = @TRUE xmlDoc.setProperty("SelectionLanguge", "XPath") xmlDoc.setProperty("SelectionNamespaces", "xmlns:fns='http://www.abc.com/f_namespace'") xmlDoc.load(xml_file_path) xslStyleSheet = ObjectCreate("Msxml2.FreeThreadedDOMDocument.6.0") if !xslStyleSheet then xslStyleSheet = ObjectCreate("Msxml2.FreeThreadedDOMDocument") xslStyleSheet.async = @FALSE xslStyleSheet.validateOnParse = @TRUE xslStyleSheet.load(xsl_style_sheet_path) xslTemplate = ObjectCreate("Msxml2.XSLTemplate.6.0") if !xslTemplate then xslTemplate = ObjectCreate("Msxml2.XSLTemplate") xslTemplate.stylesheet = xslStyleSheet processor = xslTemplate.createProcessor() processor.input = xmlDoc processor.transform() ; create a new file and write the XML processor output to it fh = FileOpen(output_file_path, "WRITE" , @FALSE) FileWrite(fh, processor.output) FileClose(fh) The style sheet, with some slight changes to protect the innocent: <?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.1"> <xsl:output method="xml" indent="yes" encoding="UTF-8"/> <xsl:template match="/"> <fns:test_station xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:fns="http://www.abc.com/f_namespace"> <xsl:for-each select="/fns:test_station/identification"> <xsl:text>&#x0A; </xsl:text> <identification> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </identification> </xsl:for-each> <xsl:for-each select="/fns:test_station/software"> <xsl:text>&#x0A; </xsl:text> <software> <xsl:for-each select="./package"> <xsl:text>&#x0A; </xsl:text> <package> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </package> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </software> </xsl:for-each> <xsl:for-each select="/fns:test_station/calibration"> <xsl:text>&#x0A; </xsl:text> <calibration> <xsl:for-each select="./item"> <xsl:text>&#x0A; </xsl:text> <item> <xsl:for-each select="./*"> <xsl:text>&#x0A; </xsl:text> <xsl:copy-of select="."/> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </item> </xsl:for-each> <xsl:text>&#x0A; </xsl:text> </calibration> </xsl:for-each> </fns:test_station> </xsl:template> </xsl:stylesheet> And this is a sample output file: <?xml version="1.0" encoding="UTF-16"?> <fns:test_station xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:fns="http://www.abc.com/f_namespace"> <software> <package> <part_number>123456789</part_number> <version>00</version> <test_category>1</test_category> <description>name of software package</description> <execution_path>c:\program files\test\test.exe</execution_path> <execution_arguments>arguments</execution_arguments> <crc_path>c:\ste_config\crc\123456789.lst</crc_path> <uninstall_path>c:\ste_config\uninstall\uninst_123456789.bat</uninstall_path> <install_timestamp>2009-11-09T14:00:44</install_timestamp> </package> </software> </fns:test_station>

    Read the article

  • how to make a function recursive

    - by tom smith
    i have this huge function and i am wondering how to make it recursive. i have the base case which should never come true, so it should always go to else and keep calling itself with the variable t increases. any help would be great thanks def draw(x, y, t, planets): if 'Satellites' in planets["Moon"]: print ("fillcircle", x, y, planets["Moon"]['Radius']*scale) else: while True: print("refresh") print("colour 0 0 0") print("clear") print("colour 255 255 255") print("fillcircle",x,y,planets['Sun']['Radius']*scale) print("text ", "\"Sun\"",x+planets['Sun']['Radius']*scale,y) if "Mercury" in planets: r_Mercury=planets['Mercury']['Orbital Radius']*scale; print("circle",x,y,r_Mercury) r_Xmer=x+math.sin(t*2*math.pi/planets['Mercury']['Period'])*r_Mercury r_Ymer=y+math.cos(t*2*math.pi/planets['Mercury']['Period'])*r_Mercury print("fillcircle",r_Xmer,r_Ymer,3) print("text ", "\"Mercury\"",r_Xmer+planets['Mercury']['Radius']*scale,r_Ymer) if "Venus" in planets: r_Venus=planets['Venus']['Orbital Radius']*scale; print("circle",x,y,r_Venus) r_Xven=x+math.sin(t*2*math.pi/planets['Venus']['Period'])*r_Venus r_Yven=y+math.cos(t*2*math.pi/planets['Venus']['Period'])*r_Venus print("fillcircle",r_Xven,r_Yven,3) print("text ", "\"Venus\"",r_Xven+planets['Venus']['Radius']*scale,r_Yven) if "Earth" in planets: r_Earth=planets['Earth']['Orbital Radius']*scale; print("circle",x,y,r_Earth) r_Xe=x+math.sin(t*2*math.pi/planets['Earth']['Period'])*r_Earth r_Ye=y+math.cos(t*2*math.pi/planets['Earth']['Period'])*r_Earth print("fillcircle",r_Xe,r_Ye,3) print("text ", "\"Earth\"",r_Xe+planets['Earth']['Radius']*scale,r_Ye) if "Moon" in planets: r_Moon=planets['Moon']['Orbital Radius']*scale; print("circle",r_Xe,r_Ye,r_Moon) r_Xm=r_Xe+math.sin(t*2*math.pi/planets['Moon']['Period'])*r_Moon r_Ym=r_Ye+math.cos(t*2*math.pi/planets['Moon']['Period'])*r_Moon print("fillcircle",r_Xm,r_Ym,3) print("text ", "\"Moon\"",r_Xm+planets['Moon']['Radius']*scale,r_Ym) if "Mars" in planets: r_Mars=planets['Mars']['Orbital Radius']*scale; print("circle",x,y,r_Mars) r_Xmar=x+math.sin(t*2*math.pi/planets['Mars']['Period'])*r_Mars r_Ymar=y+math.cos(t*2*math.pi/planets['Mars']['Period'])*r_Mars print("fillcircle",r_Xmar,r_Ymar,3) print("text ", "\"Mars\"",r_Xmar+planets['Mars']['Radius']*scale,r_Ymar) if "Phobos" in planets: r_Phobos=planets['Phobos']['Orbital Radius']*scale; print("circle",r_Xmar,r_Ymar,r_Phobos) r_Xpho=r_Xmar+math.sin(t*2*math.pi/planets['Phobos']['Period'])*r_Phobos r_Ypho=r_Ymar+math.cos(t*2*math.pi/planets['Phobos']['Period'])*r_Phobos print("fillcircle",r_Xpho,r_Ypho,3) print("text ", "\"Phobos\"",r_Xpho+planets['Phobos']['Radius']*scale,r_Ypho) if "Deimos" in planets: r_Deimos=planets['Deimos']['Orbital Radius']*scale; print("circle",r_Xmar,r_Ymar,r_Deimos) r_Xdei=r_Xmar+math.sin(t*2*math.pi/planets['Deimos']['Period'])*r_Deimos r_Ydei=r_Ymar+math.cos(t*2*math.pi/planets['Deimos']['Period'])*r_Deimos print("fillcircle",r_Xdei,r_Ydei,3) print("text ", "\"Deimos\"",r_Xpho+planets['Deimos']['Radius']*scale,r_Ydei) if "Ceres" in planets: r_Ceres=planets['Ceres']['Orbital Radius']*scale; print("circle",x,y,r_Ceres) r_Xcer=x+math.sin(t*2*math.pi/planets['Ceres']['Period'])*r_Ceres r_Ycer=y+math.cos(t*2*math.pi/planets['Ceres']['Period'])*r_Ceres print("fillcircle",r_Xcer,r_Ycer,3) print("text ", "\"Ceres\"",r_Xcer+planets['Ceres']['Radius']*scale,r_Ycer) if "Jupiter" in planets: r_Jupiter=planets['Jupiter']['Orbital Radius']*scale; print("circle",x,y,r_Jupiter) r_Xjup=x+math.sin(t*2*math.pi/planets['Jupiter']['Period'])*r_Jupiter r_Yjup=y+math.cos(t*2*math.pi/planets['Jupiter']['Period'])*r_Jupiter print("fillcircle",r_Xjup,r_Yjup,3) print("text ", "\"Jupiter\"",r_Xjup+planets['Jupiter']['Radius']*scale,r_Yjup) if "Io" in planets: r_Io=planets['Io']['Orbital Radius']*scale; print("circle",r_Xjup,r_Yjup,r_Io) r_Xio=r_Xjup+math.sin(t*2*math.pi/planets['Io']['Period'])*r_Io r_Yio=r_Yjup+math.cos(t*2*math.pi/planets['Io']['Period'])*r_Io print("fillcircle",r_Xio,r_Yio,3) print("text ", "\"Io\"",r_Xio+planets['Io']['Radius']*scale,r_Yio) if "Europa" in planets: r_Europa=planets['Europa']['Orbital Radius']*scale; print("circle",r_Xjup,r_Yjup,r_Europa) r_Xeur=r_Xjup+math.sin(t*2*math.pi/planets['Europa']['Period'])*r_Europa r_Yeur=r_Yjup+math.cos(t*2*math.pi/planets['Europa']['Period'])*r_Europa print("fillcircle",r_Xeur,r_Yeur,3) print("text ", "\"Europa\"",r_Xeur+planets['Europa']['Radius']*scale,r_Yeur) if "Ganymede" in planets: r_Ganymede=planets['Ganymede']['Orbital Radius']*scale; print("circle",r_Xjup,r_Yjup,r_Ganymede) r_Xgan=r_Xjup+math.sin(t*2*math.pi/planets['Ganymede']['Period'])*r_Ganymede r_Ygan=r_Yjup+math.cos(t*2*math.pi/planets['Ganymede']['Period'])*r_Ganymede print("fillcircle",r_Xgan,r_Ygan,3) print("text ", "\"Ganymede\"",r_Xgan+planets['Ganymede']['Radius']*scale,r_Ygan) if "Callisto" in planets: r_Callisto=planets['Callisto']['Orbital Radius']*scale; print("circle",r_Xjup,r_Yjup,r_Callisto) r_Xcal=r_Xjup+math.sin(t*2*math.pi/planets['Callisto']['Period'])*r_Callisto r_Ycal=r_Yjup+math.cos(t*2*math.pi/planets['Callisto']['Period'])*r_Callisto print("fillcircle",r_Xcal,r_Ycal,3) print("text ", "\"Callisto\"",r_Xcal+planets['Callisto']['Radius']*scale,r_Ycal) if "Saturn" in planets: r_Saturn=planets['Saturn']['Orbital Radius']*scale; print("circle",x,y,r_Saturn) r_Xsat=x+math.sin(t*2*math.pi/planets['Saturn']['Period'])*r_Saturn r_Ysat=y+math.cos(t*2*math.pi/planets['Saturn']['Period'])*r_Saturn print("fillcircle",r_Xsat,r_Ysat,3) print("text ", "\"Saturn\"",r_Xsat+planets['Saturn']['Radius']*scale,r_Ysat) if "Mimas" in planets: r_Mimas=planets['Mimas']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Mimas) r_Xmim=r_Xsat+math.sin(t*2*math.pi/planets['Mimas']['Period'])*r_Mimas r_Ymim=r_Ysat+math.cos(t*2*math.pi/planets['Mimas']['Period'])*r_Mimas print("fillcircle",r_Xmim,r_Ymim,3) print("text ", "\"Mimas\"",r_Xmim+planets['Mimas']['Radius']*scale,r_Ymim) if "Enceladus" in planets: r_Enceladus=planets['Enceladus']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Enceladus) r_Xenc=r_Xsat+math.sin(t*2*math.pi/planets['Enceladus']['Period'])*r_Enceladus r_Yenc=r_Ysat+math.cos(t*2*math.pi/planets['Enceladus']['Period'])*r_Enceladus print("fillcircle",r_Xenc,r_Yenc,3) print("text ", "\"Enceladus\"",r_Xenc+planets['Enceladus']['Radius']*scale,r_Yenc) if "Tethys" in planets: r_Tethys=planets['Tethys']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Tethys) r_Xtet=r_Xsat+math.sin(t*2*math.pi/planets['Tethys']['Period'])*r_Tethys r_Ytet=r_Ysat+math.cos(t*2*math.pi/planets['Tethys']['Period'])*r_Tethys print("fillcircle",r_Xtet,r_Ytet,3) print("text ", "\"Tethys\"",r_Xtet+planets['Tethys']['Radius']*scale,r_Ytet) if "Dione" in planets: r_Dione=planets['Dione']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Dione) r_Xdio=r_Xsat+math.sin(t*2*math.pi/planets['Dione']['Period'])*r_Dione r_Ydio=r_Ysat+math.cos(t*2*math.pi/planets['Dione']['Period'])*r_Dione print("fillcircle",r_Xdio,r_Ydio,3) print("text ", "\"Dione\"",r_Xdio+planets['Dione']['Radius']*scale,r_Ydio) if "Rhea" in planets: r_Rhea=planets['Rhea']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Rhea) r_Xrhe=r_Xsat+math.sin(t*2*math.pi/planets['Rhea']['Period'])*r_Rhea r_Yrhe=r_Ysat+math.cos(t*2*math.pi/planets['Rhea']['Period'])*r_Rhea print("fillcircle",r_Xrhe,r_Yrhe,3) print("text ", "\"Rhea\"",r_Xrhe+planets['Rhea']['Radius']*scale,r_Yrhe) if "Titan" in planets: r_Titan=planets['Titan']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Titan) r_Xtit=r_Xsat+math.sin(t*2*math.pi/planets['Titan']['Period'])*r_Titan r_Ytit=r_Ysat+math.cos(t*2*math.pi/planets['Titan']['Period'])*r_Titan print("fillcircle",r_Xtit,r_Ytit,3) print("text ", "\"Titan\"",r_Xtit+planets['Titan']['Radius']*scale,r_Ytit) if "Iapetus" in planets: r_Iapetus=planets['Iapetus']['Orbital Radius']*scale; print("circle",r_Xsat,r_Ysat,r_Iapetus) r_Xiap=r_Xsat+math.sin(t*2*math.pi/planets['Iapetus']['Period'])*r_Iapetus r_Yiap=r_Ysat+math.cos(t*2*math.pi/planets['Iapetus']['Period'])*r_Iapetus print("fillcircle",r_Xiap,r_Yiap,3) print("text ", "\"Iapetus\"",r_Xiap+planets['Iapetus']['Radius']*scale,r_Yiap) if "Uranus" in planets: r_Uranus=planets['Uranus']['Orbital Radius']*scale; print("circle",x,y,r_Uranus) r_Xura=x+math.sin(t*2*math.pi/planets['Uranus']['Period'])*r_Uranus r_Yura=y+math.cos(t*2*math.pi/planets['Uranus']['Period'])*r_Uranus print("fillcircle",r_Xura,r_Yura,3) print("text ", "\"Uranus\"",r_Xura+planets['Uranus']['Radius']*scale,r_Yura) if "Puck" in planets: r_Puck=planets['Puck']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Puck) r_Xpuc=r_Xura+math.sin(t*2*math.pi/planets['Puck']['Period'])*r_Puck r_Ypuc=r_Yura+math.cos(t*2*math.pi/planets['Puck']['Period'])*r_Puck print("fillcircle",r_Xpuc,r_Ypuc,3) print("text ", "\"Puck\"",r_Xpuc+planets['Puck']['Radius']*scale,r_Ypuc) if "Miranda" in planets: r_Miranda=planets['Miranda']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Miranda) r_Xmira=r_Xura+math.sin(t*2*math.pi/planets['Miranda']['Period'])*r_Miranda r_Ymira=r_Yura+math.cos(t*2*math.pi/planets['Miranda']['Period'])*r_Miranda print("fillcircle",r_Xmira,r_Ymira,3) print("text ", "\"Miranda\"",r_Xmira+planets['Miranda']['Radius']*scale,r_Ymira) if "Ariel" in planets: r_Ariel=planets['Ariel']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Ariel) r_Xari=r_Xura+math.sin(t*2*math.pi/planets['Ariel']['Period'])*r_Ariel r_Yari=r_Yura+math.cos(t*2*math.pi/planets['Ariel']['Period'])*r_Ariel print("fillcircle",r_Xari,r_Yari,3) print("text ", "\"Ariel\"",r_Xari+planets['Ariel']['Radius']*scale,r_Yari) if "Umbriel" in planets: r_Umbriel=planets['Umbriel']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Umbriel) r_Xumb=r_Xura+math.sin(t*2*math.pi/planets['Umbriel']['Period'])*r_Umbriel r_Yumb=r_Yura+math.cos(t*2*math.pi/planets['Umbriel']['Period'])*r_Umbriel print("fillcircle",r_Xumb,r_Yumb,3) print("text ", "\"Umbriel\"",r_Xumb+planets['Umbriel']['Radius']*scale,r_Yumb) if "Titania" in planets: r_Titania=planets['Titania']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Titania) r_Xtita=r_Xura+math.sin(t*2*math.pi/planets['Titania']['Period'])*r_Titania r_Ytita=r_Yura+math.cos(t*2*math.pi/planets['Titania']['Period'])*r_Titania print("fillcircle",r_Xtita,r_Ytita,3) print("text ", "\"Titania\"",r_Xtita+planets['Titania']['Radius']*scale,r_Ytita) if "Oberon" in planets: r_Oberon=planets['Oberon']['Orbital Radius']*scale; print("circle",r_Xura,r_Yura,r_Oberon) r_Xober=r_Xura+math.sin(t*2*math.pi/planets['Oberon']['Period'])*r_Oberon r_Yober=r_Yura+math.cos(t*2*math.pi/planets['Oberon']['Period'])*r_Oberon print("fillcircle",r_Xober,r_Yober,3) print("text ", "\"Oberon\"",r_Xober+planets['Oberon']['Radius']*scale,r_Yober) if "Neptune" in planets: r_Neptune=planets['Neptune']['Orbital Radius']*scale; print("circle",x,y,r_Neptune) r_Xnep=x+math.sin(t*2*math.pi/planets['Neptune']['Period'])*r_Neptune r_Ynep=y+math.cos(t*2*math.pi/planets['Neptune']['Period'])*r_Neptune print("fillcircle",r_Xnep,r_Ynep,3) print("text ", "\"Neptune\"",r_Xnep+planets['Neptune']['Radius']*scale,r_Ynep) if "Titan" in planets: r_Titan=planets['Titan']['Orbital Radius']*scale; print("circle",r_Xnep,r_Ynep,r_Titan) r_Xtita=r_Xnep+math.sin(t*2*math.pi/planets['Titan']['Period'])*r_Titan r_Ytita=r_Ynep+math.cos(t*2*math.pi/planets['Titan']['Period'])*r_Titan print("fillcircle",r_Xtita,r_Ytita,3) print("text ", "\"Titan\"",r_Xtita+planets['Titan']['Radius']*scale,r_Ytita) t += 0.003 print(draw(x, y, t, planets))

    Read the article

  • Regarding playing media file in Android media player application

    - by Mangesh
    Hi. I am new to android development. I just started with creating my own media player application by looking at the code samples given in Android SDK. While I am trying to play a local media file (m.3gp), I am getting IOException error :: error(1,-4). Please can somebody help me in this regard. Here is my code. package com.mediaPlayer; import java.io.IOException; import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.media.MediaPlayer; import android.media.MediaPlayer.OnBufferingUpdateListener; import android.media.MediaPlayer.OnCompletionListener; import android.media.MediaPlayer.OnPreparedListener; import android.media.MediaPlayer.OnVideoSizeChangedListener; import android.view.SurfaceHolder; import android.util.Log; public class MediaPlayer1 extends Activity implements OnBufferingUpdateListener, OnCompletionListener,OnPreparedListener, OnVideoSizeChangedListener,SurfaceHolder.Callback { private static final String TAG = "MediaPlayerByMangesh"; // Widgets in the application private Button btnPlay; private Button btnPause; private Button btnStop; private MediaPlayer mMediaPlayer; private String path = "m.3gp"; private SurfaceHolder holder; private int mVideoWidth; private int mVideoHeight; private boolean mIsVideoSizeKnown = false; private boolean mIsVideoReadyToBePlayed = false; // For the id of radio button selected private int radioCheckedId = -1; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { Log.d(TAG, "Entered OnCreate:"); super.onCreate(savedInstanceState); setContentView(R.layout.main); Log.d(TAG, "Creatinging Buttons:"); btnPlay = (Button) findViewById(R.id.btnPlay); btnPause = (Button) findViewById(R.id.btnPause); // On app load, the Pause button is disabled btnPause.setEnabled(false); btnStop = (Button) findViewById(R.id.btnStop); btnStop.setEnabled(false); /* * Attach a OnCheckedChangeListener to the radio group to monitor radio * buttons selected by user */ Log.d(TAG, "Watching for Click"); /* Attach listener to the Calculate and Reset buttons */ btnPlay.setOnClickListener(mClickListener); btnPause.setOnClickListener(mClickListener); btnStop.setOnClickListener(mClickListener); } /* * ClickListener for the Calculate and Reset buttons. Depending on the * button clicked, the corresponding method is called. */ private OnClickListener mClickListener = new OnClickListener() { @Override public void onClick(View v) { switch (v.getId()) { case R.id.btnPlay: Log.d(TAG, "Clicked Play Button"); Log.d(TAG, "Calling Play Function"); Play(); break; case R.id.btnPause: Pause(); break; case R.id.btnStop: Stop(); break; } } }; /** * Play the Video. */ private void Play() { // Create a new media player and set the listeners mMediaPlayer = new MediaPlayer(); Log.d(TAG, "Entered Play function:"); try { mMediaPlayer.setDataSource(path); } catch(IOException ie) { Log.d(TAG, "IO Exception:" + path); } mMediaPlayer.setDisplay(holder); try { mMediaPlayer.prepare(); } catch(IOException ie) { Log.d(TAG, "IO Exception:" + path); } mMediaPlayer.setOnBufferingUpdateListener(this); mMediaPlayer.setOnCompletionListener(this); mMediaPlayer.setOnPreparedListener(this); //mMediaPlayer.setOnVideoSizeChangedListener(this); //mMediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC); } public void onBufferingUpdate(MediaPlayer arg0, int percent) { Log.d(TAG, "onBufferingUpdate percent:" + percent); } public void onCompletion(MediaPlayer arg0) { Log.d(TAG, "onCompletion called"); } public void onVideoSizeChanged(MediaPlayer mp, int width, int height) { Log.v(TAG, "onVideoSizeChanged called"); if (width == 0 || height == 0) { Log.e(TAG, "invalid video width(" + width + ") or height(" + height + ")"); return; } mIsVideoSizeKnown = true; mVideoWidth = width; mVideoHeight = height; if (mIsVideoReadyToBePlayed && mIsVideoSizeKnown) { startVideoPlayback(); } } public void onPrepared(MediaPlayer mediaplayer) { Log.d(TAG, "onPrepared called"); mIsVideoReadyToBePlayed = true; if (mIsVideoReadyToBePlayed && mIsVideoSizeKnown) { startVideoPlayback(); } } public void surfaceChanged(SurfaceHolder surfaceholder, int i, int j, int k) { Log.d(TAG, "surfaceChanged called"); } public void surfaceDestroyed(SurfaceHolder surfaceholder) { Log.d(TAG, "surfaceDestroyed called"); } public void surfaceCreated(SurfaceHolder holder) { Log.d(TAG, "surfaceCreated called"); Play(); } private void startVideoPlayback() { Log.v(TAG, "startVideoPlayback"); holder.setFixedSize(176, 144); mMediaPlayer.start(); } /** * Pause the Video */ private void Pause() { ; /* * If all fields are populated with valid values, then proceed to * calculate the tips */ } /** * Stop the Video. */ private void Stop() { ; /* * If all fields are populated with valid values, then proceed to * calculate the tips */ } /** * Shows the error message in an alert dialog * * @param errorMessage * String the error message to show * @param fieldId * the Id of the field which caused the error. This is required * so that the focus can be set on that field once the dialog is * dismissed. */ private void showErrorAlert(String errorMessage, final int fieldId) { new AlertDialog.Builder(this).setTitle("Error") .setMessage(errorMessage).setNeutralButton("Close", new DialogInterface.OnClickListener() { @Override public void onClick(DialogInterface dialog, int which) { findViewById(fieldId).requestFocus(); } }).show(); } } Thanks, Mangesh Kumar K.

    Read the article

< Previous Page | 303 304 305 306 307 308 309 310  | Next Page >