Search Results

Search found 1745 results on 70 pages for 'probability theory'.

Page 31/70 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • is there a proper way to handle multiple errors/exceptions?

    - by toPeerOrNotToPeer
    in OO programming, is there some conceptual pattern, ideas, about handling multiple errors? for example, i have a method that performs some checks and should return an error message for each error found ['name is too short', 'name contains invalid unicode sequences', 'name is too long'] now, should i use an array of exceptions (not thrown exceptions)? or something like this is better: class MyExceptionList extends Exception{ public Void addException(Exception e){} public Array getExceptions(){} } any theory behind this argument will be appreciated! (this isn't a request about a specific programming language, but a pure theoretical one) thank you in advance

    Read the article

  • PHP debugging or performance Hook

    - by Joshua
    In an interpreted language like PHP it is possible in theory to set up some sort of callback function that would be run indiscriminately after every line of code. I am wondering if such a thing exists in PHP or if such a thing could be accomplished in any way? Such a feature could be useful for diagnostics or performance tests. Does anyone know of such a mechanism in PHP?

    Read the article

  • Is there possible in clojure to make a deadlock (or anything bad case) using agents?

    - by hsestupin
    CLojure agents is powerful tool. So actions to the agents are asynchronously sent using functions "send" and "send-off". And in theory there couldn't appear something like deadlock. Is there possible to write some clojure code (for example invoking from some action another action to another agent) using agents in which we have some concurrency problem - it could be deadlock, race condition or anything else. (guys, i'm very sorry for my english)

    Read the article

  • What are the latest tools that I can use to write a DSL (Domain-specific language) in 2009 Sep?

    - by servicesxiaodai
    I looked into Logix and EasyExtend for Python. Logix hasn't been around for a while and it failed to install on Python 2.6. EasyExtend's tutorial is hopeless, the code in the tutorial doesn't even work. I am looking for something so I can write my DSL. My DSL will be used as a research tool. And I don't want to spend time learning all that parsing and compiler theory.

    Read the article

  • Exception in the OnIdle event does not bubble up

    - by sthay
    On my main form, I subscribed to two events: Application.ThreadException and Application.Idle. In theory, any exception that is not caught should get bubbled up to the main form. However, this does not work if the exception happens in the OnIdle event. The system just crashes. Does anyone know how to solve this problem? Thanks so much.

    Read the article

  • Scaling vectors from a center point?

    - by user146780
    I'm trying to figure out if I have points that make for example a square: * * * * and let's say I know the center of this square. I want a formula that will make it for eample twice its size but from the center * * * * * * * * Therefore the new shape is twice as large and from the center of the polygon. It has to work for any shape not just squares. I'm looking more for the theory behind it more than the implementation. Thanks

    Read the article

  • Functional Programming Equivalent of Design Patterns Book?

    - by JasonFruit
    Is there a functional-programming equivalent to the Gang of Four Design Patterns book? That is, is there a book that explains and gives examples of how commonly-needed code structures are implemented functionally? I think seeing that would give me a better idea of how to go about using in practice the functional concepts whose theory I understand.

    Read the article

  • Localization of icon and default screen in iPhone

    - by hgpc
    Can the app icon and default screen be localized in iPhone? Has anyone tried it? In theory it should be possible as they're just image resources, but I found no explicit mention of this in the documentation, and I wouldn't like to have my app rejected or failing for this.

    Read the article

  • .NET Compact Framework app that will run on both Professional and Standard

    - by CJCraft.com
    Is there any guidance on creating apps that will run on both professional (touch-screen) and standard (non-touch-screen) devices. I have a simple application that is mostly text and buttons that in theory should be able to run on both professional and standard devices with little if any modification. It seems the IDE wants to make this hard to impossible, but I expect it to be possible. Any advice?

    Read the article

  • Brighton Rocks: UA Europe 2011

    - by ultan o'broin
    User Assistance Europe 2011 was held in Brighton, UK. Having seen Quadrophenia a dozen times, I just had to go along (OK, I wanted to talk about messages in enterprise applications). Sadly, it rained a lot, though that was still eminently more tolerable than being stuck home in Dublin during Bloomsday. So, here are my somewhat selective highlights and observations from the conference, massively skewed towards my own interests, as usual. Enjoyed Leah Guren's (Cow TC) great start ‘keynote’ on the Cultural Dimensions of Software Help Usage. Starting out by revisiting Hofstede's and Hall's work on culture (how many times I have done this for Multilingual magazine?) and then Neilsen’s findings on age as an indicator of performance, Leah showed how it is the expertise of the user that user assistance (UA) needs to be designed for (especially for high-end users), with some considerations made for age, while the gender and culture of users are not major factors. Help also needs to be contextual and concise, embedded close to the action. That users are saying things like “If I want help on Office, I go to Google ” isn't all that profound at this stage, but it is always worth reiterating how search can be optimized to return better results for users. Interestingly, regardless of user education level, the issue of information quality--hinging on the lynchpin of terminology reflecting that of the user--is critical. Major takeaway for me there. Matthew Ellison’s sessions on embedded help and demos were also impressive. Embedded help that is concise and contextual is definitely a powerful UX enabler, and I’m pleased to say that in Oracle Fusion Applications we have embraced the concept fully. Matthew also mentioned in his session about successful software demos that the principle of modality with demos is a must. Look no further than Oracle User Productivity Kit demos See It!, Try It!, Know It, and Do It! modes, for example. I also found some key takeaways in the presentation by Marie-Louise Flacke on notes and warnings. Here, legal considerations seemed to take precedence over providing any real information to users. I was delighted when Marie-Louise called out the Oracle JDeveloper documentation as an exemplar of how to use notes and instructions instead of trying to scare the bejaysus out of people and not providing them with any real information they’d find useful instead. My own session on designing messages for enterprise applications was well attended. Knowing your user profiles (remember user expertise is the king maker for UA so write for each audience involved), how users really work, the required application business and UI rules, what your application technology supports, and how messages integrate with the enterprise help desk and support policies and you will go much further than relying solely on the guideline of "writing messages in plain language". And, remember the value in warnings and confirmation messages too, and how you can use them smartly. I hope y’all got something from my presentation and from my answers to questions afterwards. Ellis Pratt stole the show with his presentation on applying game theory to software UA, using plenty of colorful, relevant examples (check out the Atlassian and DropBox approaches, for example), and striking just the right balance between theory and practice. Completely agree that the approach to take here is not to make UA itself a game, but to invoke UA as part of a bigger game dynamic (time-to-task completion, personal and communal goals, personal achievement and status, and so on). Sure there are gotchas and limitations to gamification, and we need to do more research. However, we'll hear a lot more about this subject in coming years, particularly in the enterprise space. I hope. I also heard good things about the different sessions about DITA usage (including one by Sonja Fuga that clearly opens the door for major innovation in the community content space using WordPress), the progressive disclosure of information (Cerys Willoughby), an overview of controlled language (or "information quality", as I like to position it) solutions and rationale by Dave Gash, and others. I also spent time chatting with Mike Hamilton of MadCap Software, who showed me a cool demo of their Flare product, and the Lingo translation solution. I liked the idea of their licensing model for workers-on-the-go; that’s smart UX-awareness in itself. Also chatted with Julian Murfitt of Mekon about uptake of DITA in the enterprise space. In all, it's worth attending UA Europe. I was surprised, however, not to see conference topics about mobile UA, community conversation and content, and search in its own right. These are unstoppable forces now, and the latter is pretty central to providing assistance now to all but the most irredentist of hard-copy fetishists or advanced technical or functional users working away on the back end of applications and systems. Only saw one iPad too (says the guy who carries three laptops). Tweeting during the conference was pretty much nonexistent during the event, so no community energy there. Perhaps all this can be addressed next year. I would love to see the next UA Europe event come to Dublin (despite Bloomsday, it's not a bad place place, really) now that hotels are so cheap and all. So, what is my overall impression of the state of user assistance in Europe? Clearly, there are still many people in the industry who feel there is something broken with the traditional forms of user assistance (particularly printed doc) and something needs to be done about it. I would suggest they move on and try and embrace change, instead. Many others see new possibilities, offered by UX and technology, as well as the reality of online user behavior in an increasingly connected world and that is encouraging. Such thought leaders need to be listened to. As Ellis Pratt says in his great book, Trends in Technical Communication - Rethinking Help: “To stay relevant means taking a new perspective on the role (of technical writer), and delivering “products” over and above the traditional manual and online Help file... there are a number of new trends in this field - some complementary, some conflicting. Whatever trends emerge as the norm, it’s likely the status quo will change.” It already has, IMO. I hear similar debates in the professional translation world about the onset of translation crowd sourcing (the Facebook model) and machine translation (trust me, that battle is over). Neither of these initiatives has put anyone out of a job and probably won't, though the nature of the work might change. If anything, such innovations have increased the overall need for professional translators as user expectations rise, new audiences emerge, and organizations need to collate and curate user-generated content, combining it with their own. Perhaps user assistance professionals can learn from other professions and grow accordingly.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service

    - by Elton Stoneman
    We're in the process of delivering an enabling project to expose on-premise WCF services securely to Internet consumers. The Azure Service Bus Relay is doing the clever stuff, we register our on-premise service with Azure, consumers call into our .servicebus.windows.net namespace, and their requests are relayed and serviced on-premise. In theory it's all wonderfully simple; by using the relay we get lots of protocol options, free HTTPS and load balancing, and by integrating to ACS we get plenty of security options. Part of our delivery is a suite of sample consumers for the service - .NET, jQuery, PHP - and this set of posts will cover setting up the service and the consumers. Part 1: Exposing the on-premise service In theory, this is ultra-straightforward. In practice, and on a dev laptop it is - but in a corporate network with firewalls and proxies, it isn't, so we'll walkthrough some of the pitfalls. Note that I'm using the "old" Azure portal which will soon be out of date, but the new shiny portal should have the same steps available and be easier to use. We start with a simple WCF service which takes a string as input, reverses the string and returns it. The Part 1 version of the code is on GitHub here: on GitHub here: IPASBR Part 1. Configuring Azure Service Bus Start by logging into the Azure portal and registering a Service Bus namespace which will be our endpoint in the cloud. Give it a globally unique name, set it up somewhere near you (if you’re in Europe, remember Europe (North) is Ireland, and Europe (West) is the Netherlands), and  enable ACS integration by ticking "Access Control" as a service: Authenticating and authorizing to ACS When we try to register our on-premise service as a listener for the Service Bus endpoint, we need to supply credentials, which means only trusted service providers can act as listeners. We can use the default "owner" credentials, but that has admin permissions so a dedicated service account is better (Neil Mackenzie has a good post On Not Using owner with the Azure AppFabric Service Bus with lots of permission details). Click on "Access Control Service" for the namespace, navigate to Service Identities and add a new one. Give the new account a sensible name and description: Let ACS generate a symmetric key for you (this will be the shared secret we use in the on-premise service to authenticate as a listener), but be sure to set the expiration date to something usable. The portal defaults to expiring new identities after 1 year - but when your year is up *your identity will expire without warning* and everything will stop working. In production, you'll need governance to manage identity expiration and a process to make sure you renew identities and roll new keys regularly. The new service identity needs to be authorized to listen on the service bus endpoint. This is done through claim mapping in ACS - we'll set up a rule that says if the nameidentifier in the input claims has the value serviceProvider, in the output we'll have an action claim with the value Listen. In the ACS portal you'll see that there is already a Relying Party Application set up for ServiceBus, which has a Default rule group. Edit the rule group and click Add to add this new rule: The values to use are: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: serviceProvider Output claim type: net.windows.servicebus.action Output claim value: Listen When your service namespace and identity are set up, open the Part 1 solution and put your own namespace, service identity name and secret key into the file AzureConnectionDetails.xml in Solution Items, e.g: <azure namespace="sixeyed-ipasbr">    <!-- ACS credentials for the listening service (Part1):-->   <service identityName="serviceProvider"            symmetricKey="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>  </azure> Build the solution, and the T4 template will generate the Web.config for the service project with your Azure details in the transportClientEndpointBehavior:           <behavior name="SharedSecret">             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> , and your service namespace in the Azure endpoint:         <!-- Azure Service Bus endpoints -->          <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                   binding="netTcpRelayBinding"                   contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> The sample project is hosted in IIS, but it won't register with Azure until the service is activated. Typically you'd install AppFabric 1.1 for Widnows Server and set the service to auto-start in IIS, but for dev just navigate to the local REST URL, which will activate the service and register it with Azure. Testing the service locally As well as an Azure endpoint, the service has a WebHttpBinding for local REST access:         <!-- local REST endpoint for internal use -->         <endpoint address="rest"                   binding="webHttpBinding"                   behaviorConfiguration="RESTBehavior"                   contract="Sixeyed.Ipasbr.Services.IFormatService" /> Build the service, then navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 - and you should see the reversed string response: If your network allows it, you'll get the expected response as before, but in the background your service will also be listening in the cloud. Good stuff! Who needs network security? Onto the next post for consuming the service with the netTcpRelayBinding.  Setting up network access to Azure But, if you get an error, it's because your network is secured and it's doing something to stop the relay working. The Service Bus relay bindings try to use direct TCP connections to Azure, so if ports 9350-9354 are available *outbound*, then the relay will run through them. If not, the binding steps down to standard HTTP, and issues a CONNECT across port 443 or 80 to set up a tunnel for the relay. If your network security guys are doing their job, the first option will be blocked by the firewall, and the second option will be blocked by the proxy, so you'll get this error: System.ServiceModel.CommunicationException: Unable to reach sixeyed-ipasbr.servicebus.windows.net via TCP (9351, 9352) or HTTP (80, 443) - and that will probably be the start of lots of discussions. Network guys don't really like giving servers special permissions for the web proxy, and they really don't like opening ports, so they'll need to be convinced about this. The resolution in our case was to put up a dedicated box in a DMZ, tinker with the firewall and the proxy until we got a relay connection working, then run some traffic which the the network guys monitored to do a security assessment afterwards. Along the way we hit a few more issues, diagnosed mainly with Fiddler and Wireshark: System.Net.ProtocolViolationException: Chunked encoding upload is not supported on the HTTP/1.0 protocol - this means the TCP ports are not available, so Azure tries to relay messaging traffic across HTTP. The service can access the endpoint, but the proxy is downgrading traffic to HTTP 1.0, which does not support tunneling, so Azure can’t make its connection. We were using the Squid proxy, version 2.6. The Squid project is incrementally adding HTTP 1.1 support, but there's no definitive list of what's supported in what version (here are some hints). System.ServiceModel.Security.SecurityNegotiationException: The X.509 certificate CN=servicebus.windows.net chain building failed. The certificate that was used has a trust chain that cannot be verified. Replace the certificate or change the certificateValidationMode. The evocation function was unable to check revocation because the revocation server was offline. - by this point we'd given up on the HTTP proxy and opened the TCP ports. We got this error when the relay binding does it's authentication hop to ACS. The messaging traffic is TCP, but the control traffic still goes over HTTP, and as part of the ACS authentication the process checks with a revocation server to see if Microsoft’s ACS cert is still valid, so the proxy still needs some clearance. The service account (the IIS app pool identity) needs access to: www.public-trust.com mscrl.microsoft.com We still got this error periodically with different accounts running the app pool. We fixed that by ensuring the machine-wide proxy settings are set up, so every account uses the correct proxy: netsh winhttp set proxy proxy-server="http://proxy.x.y.z" - and you might need to run this to clear out your credential cache: certutil -urlcache * delete If your network guys end up grudgingly opening ports, they can restrict connections to the IP address range for your chosen Azure datacentre, which might make them happier - see Windows Azure Datacenter IP Ranges. After all that you've hopefully got an on-premise service listening in the cloud, which you can consume from pretty much any technology.

    Read the article

  • Book Review: Brownfield Application Development in .NET

    - by DotNetBlues
    I recently finished reading the book Brownfield Application Development in .NET by Kyle Baley and Donald Belcham.  The book is available from Manning.  First off, let me say that I'm a huge fan of Manning as a publisher.  I've found their books to be top-quality, over all.  As a Kindle owner, I also appreciate getting an ebook copy along with the dead tree copy.  I find ebooks to be much more convenient to read, but hard-copies are easier to reference. The book covers, surprisingly enough, working with brownfield applications.  Which is well and good, if that term has meaning to you.  It didn't for me.  Without retreading a chunk of the first chapter, the authors break code bases into three broad categories: greenfield, brownfield, and legacy.  Greenfield is, essentially, new development that hasn't had time to rust and is (hopefully) being approached with some discipline.  Legacy applications are those that are more or less stable and functional, that do not expect to see a lot of work done to them, and are more likely to be replaced than reworked. Brownfield code is the gray (brown?) area between the two and the authors argue, quite effectively, that it is the most likely state for an application to be in.  Brownfield code has, in some way, been allowed to tarnish around the edges and can be difficult to work with.  Although I hadn't realized it, most of the code I've worked on has been brownfield.  Sometimes, there's talk of scrapping and starting over.  Sometimes, the team dismisses increased discipline as ivory tower nonsense.  And, sometimes, I've been the ignorant culprit vexing my future self. The book is broken into two major sections, plus an introduction chapter and an appendix.  The first section covers what the authors refer to as "The Ecosystem" which consists of version control, build and integration, testing, metrics, and defect management.  The second section is on actually writing code for brownfield applications and discusses object-oriented principles, architecture, external dependencies, and, of course, how to deal with these when coming into an existing code base. The ecosystem section is just shy of 140 pages long and brings some real meat to the matter.  The focus on "pain points" immediately sets the tone as problem-solution, rather than academic.  The authors also approach some of the topics from a different angle than some essays I've read on similar topics.  For example, the chapter on automated testing is on just that -- automated testing.  It's all well and good to criticize a project as conflating integration tests with unit tests, but it really doesn't make anyone's life better.  The discussion on testing is more focused on the "right" level of testing for existing projects.  Sometimes, an integration test is the best you can do without gutting a section of functional code.  Even if you can sell other developers and/or management on doing so, it doesn't actually provide benefit to your customers to rewrite code that works.  This isn't to say the authors encourage sloppy coding.  Far from it.  Just that they point out the wisdom of ignoring the sleeping bear until after you deal with the snarling wolf. The other sections take a similarly real-world, workable approach to the pain points they address.  As the section moves from technical solutions like version control and continuous integration (CI) to the softer, process issues of metrics and defect tracking, the authors begin to gently suggest moving toward a zero defect count.  While that really sounds like an unreasonable goal for a lot of ongoing projects, it's quite apparent that the authors have first-hand experience with taming some gruesome projects.  The suggestions are grounded and workable, and the difficulty of some situations is explicitly acknowledged. I have to admit that I started getting bored by the end of the ecosystem section.  No matter how valuable I think a good project manager or business analyst is to a successful ALM, at the end of the day, I'm a gear-head.  Also, while I agreed with a lot of the ecosystem ideas, in theory, I didn't necessarily feel that a lot of the single-developer projects that I'm often involved in really needed that level of rigor.  It's only after reading the sidebars and commentary in the coding section that I had the context for the arguments made in favor of a strong ecosystem supporting the development process.  That isn't to say that I didn't support good product management -- indeed, I've probably pushed too hard, on occasion, for a strong ALM outside of just development.  This book gave me deeper insight into why some corners shouldn't be cut and how damaging certain sins of omission can be. The code section, though, kept me engaged for its entirety.  Many technical books can be used as reference material from day one.  The authors were clear, however, that this book is not one of these.  The first chapter of the section (chapter seven, over all) addresses object oriented (OO) practices.  I've read any number of definitions, discussions, and treatises on OO.  None of the chapter was new to me, but it was a good review, and I'm of the opinion that it's good to review the foundations of what you do, from time to time, so I didn't mind. The remainder of the book is really just about how to apply OOP to existing code -- and, just because all your code exists in classes does not mean that it's object oriented.  That topic has the potential to be extremely condescending, but the authors miraculously managed to never once make me feel like a dolt or that they were wagging their finger at me for my prior sins.  Instead, they continue the "pain points" and problem-solution presentation to give concrete examples of how to apply some pretty academic-sounding ideas.  That's a point worth emphasizing, as my experience with most OO discussions is that they stay in the academic realm.  This book gives some very, very good explanations of why things like the Liskov Substitution Principle exist and why a corporate programmer should even care.  Even if you know, with absolute certainty, that you'll never have to work on an existing code-base, I would recommend this book just for the clarity it provides on OOP. This book goes beyond just theory, or even real-world application.  It presents some methods for fixing problems that any developer can, and probably will, encounter in the wild.  First, the authors address refactoring application layers and internal dependencies.  Then, they take you through those layers from the UI to the data access layer and external dependencies.  Finally, they come full circle to tie it all back to the overall process.  By the time the book is done, you're left with a lot of ideas, but also a reasonable plan to begin to improve an existing project structure. Throughout the book, it's apparent that the authors have their own preferred methodology (TDD and domain-driven design), as well as some preferred tools.  The "Our .NET Toolbox" is something of a neon sign pointing to that latter point.  They do not beat the reader over the head with anything resembling a "One True Way" mentality.  Even for the most emphatic points, the tone is quite congenial and helpful.  With some of the near-theological divides that exist within the tech community, I found this to be one of the more remarkable characteristics of the book.  Although the authors favor tools that might be considered Alt.NET, there is no reason the advice and techniques given couldn't be quite successful in a pure Microsoft shop with Team Foundation Server.  For that matter, even though the book specifically addresses .NET, it could be applied to a Java and Oracle shop, as well.

    Read the article

  • sequential search homework question

    - by Phenom
    Consider a disk file containing 100 records a. How many comparisons would be required on the average to find a record using sequential search, if the record is known to be in the file? I figured out that this is 100/2 = 50. b. If the record has a 68% probability of being in the file, how many comparisons are required on average? This is the part I'm having trouble with. At first I thought it was 68% * 50, but then realized that was wrong after thinking about it. Then I thought it was (100% - 68%) * 50, but I still feel that that is wrong. Any hints?

    Read the article

  • DataMining / Analyzing responses to Multiple Choice Questions in a survey

    - by Shailesh Tainwala
    Hi, I have a set of training data consisting of 20 multiple choice questions (A/B/C/D) answered by a hundred respondents. The answers are purely categorical and cannot be scaled to numerical values. 50 of these respondents were selected for free product trial. The selection process is not known. What interesting knowledge can be mined from this information? The following is a list of what I have come up with so far- A study of percentages (Example - Percentage of people who answered B on Qs.5 and got selected for free product trial) Conditional probabilities (Example - What is the probability that a person will get selected for free product trial given that he answered B on Qs.5) Naive Bayesian classifier (This can be used to predict whether a person will be selected or not for a given set of values for any subset of questions). Can you think of any other interesting analysis or data-mining activities that can be performed? The usual suspects like correlation can be eliminated as the response is not quantifiable/scoreable. Is my approach correct?

    Read the article

  • naive bayesian spam filter question

    - by Microkernel
    Hi guys, I am planning to implement spam filter using Naive Bayesian classification model. Online I see a lot of info on Naive Bayesian classification, but the problem is its a lot of mathematical stuff, than clearly stating how its done. And the problem is I am more of a programmer than a mathematician (yes I had learnt Probability and Bayesian theorem back in school, but out of touch for a long long time, and I don't have luxury of learning it now (Have nearly 3 weeks to come-up with a working prototype)). So if someone can explain or point me to location where its explained for programmers than a mathematician, it would be a great help. PS: By the way I have to implement it in C, if you want to know. :( Regards, Microkernel

    Read the article

  • Looking for calculator source code, BSD-licensed

    - by Horace Ho
    I have an urgent project which need many functions of a calculator (plus a few in-house business rule formulas). As I won't have time to re-invent the wheel so I am looking for source code directly. Requirements: BSD licensed (GPL won't help) in c/c++ programming language 32-bit CPU minimum dependency on platform API/data structure best with both RPN and prefix notation supported emulator/simulator code also acceptable (if not impossible to add custom formula) with following functions (from wikipedia) Scientific notation for calculating large numbers floating point arithmetic logarithmic functions, using both base 10 and base e trigonometry functions (some including hyperbolic trigonometry) exponents and roots beyond the square root quick access to constants such as pi and e plus hexadecimal, binary, and octal calculations, including basic Boolean math fractions optional statistics and probability calculations complex numbers programmability equation solving

    Read the article

  • To subclass or not to subclass

    - by poulenc
    I have three objects; Action, Issue and Risk. These all contain a nunber of common variables/attributes (for example: Description, title, Due date, Raised by etc.) and some specific fields (risk has probability). The question is: Should I create 3 separate classes Action, Risk and Issue each containing the repeat fields. Create a parent class "Abstract_Item" containing these fields and operations on them and then have Action, Risk and Issue subclass Abstract_Item. This would adhere to DRY principal.

    Read the article

  • Conceal packet loss in PCM stream

    - by ZeroDefect
    I am looking to use 'Packet Loss Concealment' to conceal lost PCM frames in an audio stream. Unfortunately, I cannot find a library that is accessible without all the licensing restrictions and code bloat (...up for some suggestions though). I have located some GPL code written by Steve Underwood for the Asterisk project which implements PLC. There are several limitations; although, as Steve suggests in his code, his algorithm can be applied to different streams with a bit of work. Currently, the code works with 8kHz 16-bit signed mono streams. Variations of the code can be found through a simple search of Google Code Search. My hope is that I can adapt the code to work with other streams. Initially, the goal is to adjust the algorithm for 8+ kHz, 16-bit signed, multichannel audio (all in a C++ environment). Eventually, I'm looking to make the code available under the GPL license in hopes that it could be of benefit to others... Attached is the code below with my efforts. The code includes a main function that will "drop" a number of frames with a given probability. Unfortunately, the code does not quite work as expected. I'm receiving EXC_BAD_ACCESS when running in gdb, but I don't get a trace from gdb when using 'bt' command. Clearly, I'm trampimg on memory some where but not sure exactly where. When I comment out the *amdf_pitch* function, the code runs without crashing... int main (int argc, char *argv[]) { std::ifstream fin("C:\\cc32kHz.pcm"); if(!fin.is_open()) { std::cout << "Failed to open input file" << std::endl; return 1; } std::ofstream fout_repaired("C:\\cc32kHz_repaired.pcm"); if(!fout_repaired.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } std::ofstream fout_lossy("C:\\cc32kHz_lossy.pcm"); if(!fout_lossy.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } audio::PcmConcealer Concealer; Concealer.Init(1, 16, 32000); //Generate random numbers; srand( time(NULL) ); int value = 0; int probability = 5; while(!fin.eof()) { char arr[2]; fin.read(arr, 2); //Generate's random number; value = rand() % 100 + 1; if(value <= probability) { char blank[2] = {0x00, 0x00}; fout_lossy.write(blank, 2); //Fill in data; Concealer.Fill((int16_t *)blank, 1); fout_repaired.write(blank, 2); } else { //Write data to file; fout_repaired.write(arr, 2); fout_lossy.write(arr, 2); Concealer.Receive((int16_t *)arr, 1); } } fin.close(); fout_repaired.close(); fout_lossy.close(); return 0; } PcmConcealer.hpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #ifndef __PCMCONCEALER_HPP__ #define __PCMCONCEALER_HPP__ /** 1. What does it do? The packet loss concealment module provides a suitable synthetic fill-in signal, to minimise the audible effect of lost packets in VoIP applications. It is not tied to any particular codec, and could be used with almost any codec which does not specify its own procedure for packet loss concealment. Where a codec specific concealment procedure exists, the algorithm is usually built around knowledge of the characteristics of the particular codec. It will, therefore, generally give better results for that particular codec than this generic concealer will. 2. How does it work? While good packets are being received, the plc_rx() routine keeps a record of the trailing section of the known speech signal. If a packet is missed, plc_fillin() is called to produce a synthetic replacement for the real speech signal. The average mean difference function (AMDF) is applied to the last known good signal, to determine its effective pitch. Based on this, the last pitch period of signal is saved. Essentially, this cycle of speech will be repeated over and over until the real speech resumes. However, several refinements are needed to obtain smooth pleasant sounding results. - The two ends of the stored cycle of speech will not always fit together smoothly. This can cause roughness, or even clicks, at the joins between cycles. To soften this, the 1/4 pitch period of real speech preceeding the cycle to be repeated is blended with the last 1/4 pitch period of the cycle to be repeated, using an overlap-add (OLA) technique (i.e. in total, the last 5/4 pitch periods of real speech are used). - The start of the synthetic speech will not always fit together smoothly with the tail of real speech passed on before the erasure was identified. Ideally, we would like to modify the last 1/4 pitch period of the real speech, to blend it into the synthetic speech. However, it is too late for that. We could have delayed the real speech a little, but that would require more buffer manipulation, and hurt the efficiency of the no-lost-packets case (which we hope is the dominant case). Instead we use a degenerate form of OLA to modify the start of the synthetic data. The last 1/4 pitch period of real speech is time reversed, and OLA is used to blend it with the first 1/4 pitch period of synthetic speech. The result seems quite acceptable. - As we progress into the erasure, the chances of the synthetic signal being anything like correct steadily fall. Therefore, the volume of the synthesized signal is made to decay linearly, such that after 50ms of missing audio it is reduced to silence. - When real speech resumes, an extra 1/4 pitch period of sythetic speech is blended with the start of the real speech. If the erasure is small, this smoothes the transition. If the erasure is long, and the synthetic signal has faded to zero, the blending softens the start up of the real signal, avoiding a kind of "click" or "pop" effect that might occur with a sudden onset. 3. How do I use it? Before audio is processed, call plc_init() to create an instance of the packet loss concealer. For each received audio packet that is acceptable (i.e. not including those being dropped for being too late) call plc_rx() to record the content of the packet. Note this may modify the packet a little after a period of packet loss, to blend real synthetic data smoothly. When a real packet is not available in time, call plc_fillin() to create a sythetic substitute. That's it! */ /*! Minimum allowed pitch (66 Hz) */ #define PLC_PITCH_MIN(SAMPLE_RATE) ((double)(SAMPLE_RATE) / 66.6) /*! Maximum allowed pitch (200 Hz) */ #define PLC_PITCH_MAX(SAMPLE_RATE) ((SAMPLE_RATE) / 200) /*! Maximum pitch OLA window */ //#define PLC_PITCH_OVERLAP_MAX(SAMPLE_RATE) ((PLC_PITCH_MIN(SAMPLE_RATE)) >> 2) /*! The length over which the AMDF function looks for similarity (20 ms) */ #define CORRELATION_SPAN(SAMPLE_RATE) ((20 * (SAMPLE_RATE)) / 1000) /*! History buffer length. The buffer must also be at leat 1.25 times PLC_PITCH_MIN, but that is much smaller than the buffer needs to be for the pitch assessment. */ //#define PLC_HISTORY_LEN(SAMPLE_RATE) ((CORRELATION_SPAN(SAMPLE_RATE)) + (PLC_PITCH_MIN(SAMPLE_RATE))) namespace audio { typedef struct { /*! Consecutive erased samples */ int missing_samples; /*! Current offset into pitch period */ int pitch_offset; /*! Pitch estimate */ int pitch; /*! Buffer for a cycle of speech */ float *pitchbuf;//[PLC_PITCH_MIN]; /*! History buffer */ short *history;//[PLC_HISTORY_LEN]; /*! Current pointer into the history buffer */ int buf_ptr; } plc_state_t; class PcmConcealer { public: PcmConcealer(); ~PcmConcealer(); void Init(int channels, int bit_depth, int sample_rate); //Process a block of received audio samples. int Receive(short amp[], int frames); //Fill-in a block of missing audio samples. int Fill(short amp[], int frames); void Destroy(); private: int amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames); void save_history(plc_state_t *s, short *buf, int channel_index, int frames); void normalise_history(plc_state_t *s); /** Holds the states of each of the channels **/ std::vector< plc_state_t * > ChannelStates; int plc_pitch_min; int plc_pitch_max; int plc_pitch_overlap_max; int correlation_span; int plc_history_len; int channel_count; int sample_rate; bool Initialized; }; } #endif PcmConcealer.cpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #include "audio/PcmConcealer.hpp" /* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */ #define ATTENUATION_INCREMENT 0.0025 /* Attenuation per sample */ #if !defined(INT16_MAX) #define INT16_MAX (32767) #define INT16_MIN (-32767-1) #endif #ifdef WIN32 inline double rint(double x) { return floor(x + 0.5); } #endif inline short fsaturate(double damp) { if (damp > 32767.0) return INT16_MAX; if (damp < -32768.0) return INT16_MIN; return (short)rint(damp); } namespace audio { PcmConcealer::PcmConcealer() : Initialized(false) { } PcmConcealer::~PcmConcealer() { Destroy(); } void PcmConcealer::Init(int channels, int bit_depth, int sample_rate) { if(Initialized) return; if(channels <= 0 || bit_depth != 16) return; Initialized = true; channel_count = channels; this->sample_rate = sample_rate; ////////////// double min = PLC_PITCH_MIN(sample_rate); int imin = (int)min; double max = PLC_PITCH_MAX(sample_rate); int imax = (int)max; plc_pitch_min = imin; plc_pitch_max = imax; plc_pitch_overlap_max = (plc_pitch_min >> 2); correlation_span = CORRELATION_SPAN(sample_rate); plc_history_len = correlation_span + plc_pitch_min; ////////////// for(int i = 0; i < channel_count; i ++) { plc_state_t *t = new plc_state_t; memset(t, 0, sizeof(plc_state_t)); t->pitchbuf = new float[plc_pitch_min]; t->history = new short[plc_history_len]; ChannelStates.push_back(t); } } void PcmConcealer::Destroy() { if(!Initialized) return; while(ChannelStates.size()) { plc_state_t *s = ChannelStates.at(0); if(s) { if(s->history) delete s->history; if(s->pitchbuf) delete s->pitchbuf; memset(s, 0, sizeof(plc_state_t)); delete s; } ChannelStates.erase(ChannelStates.begin()); } ChannelStates.clear(); Initialized = false; } //Process a block of received audio samples. int PcmConcealer::Receive(short amp[], int frames) { if(!Initialized) return 0; int j = 0; for(int k = 0; k < ChannelStates.size(); k++) { int i; int overlap_len; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples) { /* Although we have a real signal, we need to smooth it to fit well with the synthetic signal we used for the previous block */ /* The start of the real data is overlapped with the next 1/4 cycle of the synthetic data. */ pitch_overlap = s->pitch >> 2; if (pitch_overlap > frames) pitch_overlap = frames; gain = 1.0 - s->missing_samples * ATTENUATION_INCREMENT; if (gain < 0.0) gain = 0.0; new_step = 1.0/pitch_overlap; old_step = new_step*gain; new_weight = new_step; old_weight = (1.0 - new_step)*gain; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->pitchbuf[s->pitch_offset] + new_weight * amp[index]); if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->missing_samples = 0; } save_history(s, amp, j, frames); j++; } return frames; } //Fill-in a block of missing audio samples. int PcmConcealer::Fill(short amp[], int frames) { if(!Initialized) return 0; int j =0; for(int k = 0; k < ChannelStates.size(); k++) { short *tmp = new short[plc_pitch_overlap_max]; int i; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; short *orig_amp; int orig_len; orig_amp = amp; orig_len = frames; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples == 0) { // As the gap in real speech starts we need to assess the last known pitch, //and prepare the synthetic data we will use for fill-in normalise_history(s); s->pitch = amdf_pitch(plc_pitch_min, plc_pitch_max, s->history + plc_history_len - correlation_span - plc_pitch_min, j, correlation_span); // We overlap a 1/4 wavelength pitch_overlap = s->pitch >> 2; // Cook up a single cycle of pitch, using a single of the real signal with 1/4 //cycle OLA'ed to make the ends join up nicely // The first 3/4 of the cycle is a simple copy for (i = 0; i < s->pitch - pitch_overlap; i++) s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]; // The last 1/4 of the cycle is overlapped with the end of the previous cycle new_step = 1.0/pitch_overlap; new_weight = new_step; for ( ; i < s->pitch; i++) { s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]*(1.0 - new_weight) + s->history[plc_history_len - 2*s->pitch + i]*new_weight; new_weight += new_step; } // We should now be ready to fill in the gap with repeated, decaying cycles // of what is in pitchbuf // We need to OLA the first 1/4 wavelength of the synthetic data, to smooth // it into the previous real data. To avoid the need to introduce a delay // in the stream, reverse the last 1/4 wavelength, and OLA with that. gain = 1.0; new_step = 1.0/pitch_overlap; old_step = new_step; new_weight = new_step; old_weight = 1.0 - new_step; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->history[plc_history_len - 1 - i] + new_weight * s->pitchbuf[i]); new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->pitch_offset = i; } else { gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT; i = 0; } for ( ; gain > 0.0 && i < frames; i++) { int index = (i * channel_count) + j; amp[index] = s->pitchbuf[s->pitch_offset]*gain; gain -= ATTENUATION_INCREMENT; if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; } for ( ; i < frames; i++) { int index = (i * channel_count) + j; amp[i] = 0; } s->missing_samples += orig_len; save_history(s, amp, j, frames); delete [] tmp; j++; } return frames; } void PcmConcealer::save_history(plc_state_t *s, short *buf, int channel_index, int frames) { if (frames >= plc_history_len) { /* Just keep the last part of the new data, starting at the beginning of the buffer */ //memcpy(s->history, buf + len - plc_history_len, sizeof(short)*plc_history_len); int frames_to_copy = plc_history_len; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + frames - plc_history_len)) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = 0; return; } if (s->buf_ptr + frames > plc_history_len) { /* Wraps around - must break into two sections */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*(plc_history_len - s->buf_ptr)); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = plc_history_len - s->buf_ptr; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } frames -= (plc_history_len - s->buf_ptr); //memcpy(s->history, buf + (plc_history_len - s->buf_ptr), sizeof(short)*len); frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + (plc_history_len - s->buf_ptr))) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = frames; return; } /* Can use just one section */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*len); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } s->buf_ptr += frames; } void PcmConcealer::normalise_history(plc_state_t *s) { short *tmp = new short[plc_history_len]; if (s->buf_ptr == 0) return; memcpy(tmp, s->history, sizeof(short)*s->buf_ptr); memcpy(s->history, s->history + s->buf_ptr, sizeof(short)*(plc_history_len - s->buf_ptr)); memcpy(s->history + plc_history_len - s->buf_ptr, tmp, sizeof(short)*s->buf_ptr); s->buf_ptr = 0; delete [] tmp; } int PcmConcealer::amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames) { int i; int j; int acc; int min_acc; int pitch; pitch = min_pitch; min_acc = INT_MAX; for (i = max_pitch; i <= min_pitch; i++) { acc = 0; for (j = 0; j < frames; j++) { int index1 = (channel_count * (i+j)) + channel_index; int index2 = (channel_count * j) + channel_index; //std::cout << "Index 1: " << index1 << ", Index 2: " << index2 << std::endl; acc += abs(amp[index1] - amp[index2]); } if (acc < min_acc) { min_acc = acc; pitch = i; } } std::cout << "Pitch: " << pitch << std::endl; return pitch; } } P.S. - I must confess that digital audio is not my forte...

    Read the article

  • How do you implement Software Transactional Memory?

    - by Joseph Garvin
    In terms of actual low level atomic instructions and memory fences (I assume they're used), how do you implement STM? The part that's mysterious to me is that given some arbitrary chunk of code, you need a way to go back afterward and determine if the values used in each step were valid. How do you do that, and how do you do it efficiently? This would also seem to suggest that just like any other 'locking' solution you want to keep your critical sections as small as possible (to decrease the probability of a conflict), am I right? Also, can STM simply detect "another thread entered this area while the computation was executing, therefore the computation is invalid" or can it actually detect whether clobbered values were used (and thus by luck sometimes two threads may execute the same critical section simultaneously without need for rollback)?

    Read the article

  • HMM for perspective estimation in document image, can't understand the algorithm

    - by maximus
    Hello! Here is a paper, it is about estimating the perspective of binary image containing text and some noise or non text objects. PDF document The algorithm uses the Hidden Markov Model: actually two conditions T - text B - backgrouond (i.e. noise) It is hard to understand the algorithm itself. The question is that I've read about Hidden Markov Models and I know that it uses probabilities that must be known. But in this algorithm I can't understand, if they use HMM, how do they get those probabilities (probability of changing the state from S1 to another state for example S2)? I didn't find anything about training there also in that paper. So, if somebody understands it, please tell me. Also is it possible to use HMM without knowing the state change probabilities?

    Read the article

  • How do you implement Software Transactional Memory?

    - by Joseph Garvin
    In terms of actual low level atomic instructions and memory fences (I assume they're used), how do you implement STM? The part that's mysterious to me is that given some arbitrary chunk of code, you need a way to go back afterward and determine if the values used in each step were valid. How do you do that, and how do you do it efficiently? This would also seem to suggest that just like any other 'locking' solution you want to keep your critical sections as small as possible (to decrease the probability of a conflict), am I right? Also, can STM simply detect "another thread entered this area while the computation was executing, therefore the computation is invalid" or can it actually detect whether clobbered values were used (and thus by luck sometimes two threads may execute the same critical section simultaneously without need for rollback)?

    Read the article

  • A simple explanation of Naive Bayes Classification

    - by Jaggerjack
    I am finding it hard to understand the process of Naive Bayes, and I was wondering if someone could explained it with a simple step by step process in English. I understand it takes comparisons by times occurred as a probability, but I have no idea how the training data is related to the actual dataset. Please give me an explanation of what role the training set plays. I am giving a very simple example for fruits here, like banana for example training set--- round-red round-orange oblong-yellow round-red dataset---- round-red round-orange round-red round-orange oblong-yellow round-red round-orange oblong-yellow oblong-yellow round-red

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >