Search Results

Search found 41396 results on 1656 pages for 'domain object'.

Page 314/1656 | < Previous Page | 310 311 312 313 314 315 316 317 318 319 320 321  | Next Page >

  • How to attach an object to a rotating circle?

    - by armands
    I am trying to make an object get attached on a collision point to a circle that is rotating, but the player needs to get attached with a constant point on the player. For example the player is moving back and forth and when the user touches the screen and the player jumps up but what I need is that when the player collides with the circle it attaches it's legs to it and continues rotating with the circle. So I wanted to know how to make this kind of collision joint in Cocos2d Box2d?

    Read the article

  • How to apply Data Oriented Design with Object Oriented Programming?

    - by Pombal
    Hi. I've read lots of articles about DOD and I understand it but I can't design an Object Oriented system with DOD in mind, I think my OOP education is blocking me. How should I think to mix the two? The objective is to have a nice OO interface while using DOD behind the scenes. I saw this too but didn't help much: http://stackoverflow.com/questions/3872354/how-to-apply-dop-and-keep-a-nice-user-interface

    Read the article

  • Custom Folders in SSMS Object Explorer? Yes, we can!

    - by Luca Zavarella
    When you have a huge objects’ number in SSMS Object Explorer, you often get lost in finding items. So it’d be useful to catalog those objects in folders, in order to follow an application’s logical layer subdivision, for example. There is a fantastic add-in for SSMS that helps us to do that: http://www.sqltreeo.com The developer of this add-in has written a related post in his blog: http://www.sqltreeo.com/wp/dowload-free-ssms-add-in-to-create-own-folder-for-database-objects/ So another useful tool to add to our  SQL Server toolbox

    Read the article

  • Why DbContext object shouldn't be referred in Service Layer?

    - by nazmoonnoor
    I've been looking for some implementations of Service Layer and Controller interaction in blogs and in some open source projects. All of them seem to refer DbContext object in repository classes but avoided to use in service classes. Service classes essentially using a IQueryable<T> references of DbSet<T>. I want to know why this practice is good and why DbContext shouldn't have a reference in Service Layer.

    Read the article

  • How to attach an object to a rotating circle in box2d cocos2d?

    - by armands
    I am trying to make an object get attached on a collision point to a circle that is rotating, but the player needs to get attached with a constant point on the player. For example the player is moving back and forth and when the user touches the screen and the player jumps up but what I need is that when the player collides with the circle it attaches it's legs to it and continues rotating with the circle. So I wanted to know how to make this kind of collision joint in cocos2d box2d?

    Read the article

  • How does cross domain authentication work in a firewalled environment?

    - by LVLAaron
    This is a simplification and the names have been changed to protect the innocent. The assets: Active Directory Domains corp.lan saas.lan User accounts [email protected] [email protected] Servers dc.corp.lan (domain controller) dc.saas.lan (domain controller) server.saas.lan A one way trust exists between the domains so user accounts in corp.lan and log into servers in saas.lan No firewall between dc.corp.lan and dc.saas.lan server.saas.lan is in a firewalled zone and a set of rules exist so it can talk to dc.saas.lan I can log into server.saas.lan with [email protected] - But I don't understand how it works. If I watch firewall logs, I see a bunch of login chatter between server.saas.lan and dc.saas.lan I also see a bunch of DROPPED chatter between server.saas.lan and dc.corp.lan. Presumably, this is because server.saas.lan is trying to authenticate [email protected] But no firewall rule exists that allows communication between these hosts. However, [email protected] can log in successfully to server.saas.lan - Once logged in, I can "echo %logonserver%" and get \dc.corp.lan. So.... I am a little confused how the account actually gets authenticated. Does dc.saas.lan eventually talk to dc.corp.lan after server.saas.lan can't talk to dc.corp.lan? Just trying to figure out what needs to be changed/fixed/altered.

    Read the article

  • What are the right reverse PTR, domain keys, and SPF settings for two domains running the same appli

    - by James A. Rosen
    I just read Jeff Atwood's recent post on DNS configuration for email and decided to give it a go on my application. I have a web-app that runs on one server under two different IPs and domain names, on both HTTP and HTTPS for each: <VirtualHost *:80> ServerName foo.org ServerAlias www.foo.org ... </VirtualHost> <VirtualHost 1.2.3.4:443> ServerName foo.org ServerAlias www.foo.org </VirtualHost> <VirtualHost *:80> ServerName bar.org ServerAlias www.bar.org ... </VirtualHost> <VirtualHost 2.3.4.5:443> ServerName bar.org ServerAlias www.bar.org </VirtualHost> I'm using GMail as my SMTP server. Do I need the reverse PTR and SenderID records? If so, do I put the same ones on all of my records (foo.org, www.foo.org, bar.org, www.bar.org, ASPMX.L.GOOGLE.COM, ASPMX2.GOOGLEMAIL.COM, ..)? I'm pretty sure I want the domain-keys records, but I'm not sure which domains to attach them to. The Google mail servers? foo.org and bar.org? Everything?

    Read the article

  • For Australian audiences, would an uncached .com.au domain resolve faster than an uncached .com?

    - by thomasrutter
    Is there any speed benefit to using a .com.au domain rather than a .com if your customers, hosting and DNS services are in Australia, specifically in the worst typical case (domain is not cached in any local DNS relay for customer)? Assuming that both domains pointed to the same nameservers in the end. I know this is mostly academic because we are talking about a DNS lookup that would take at most a few hundred milliseconds and would only be relevant once at the beginning of a session. I just was curious. I know that an uncached .com lookup will involve consulting at least one ?.gtld-servers.net. server and an uncached .com.au will involve consulting at least one ?.au. server. Now, what I guess I'd need to know is Are the various ?.gtld-servers.net. servers using anycast technology that would have local fully authoritative nodes in Australia, making them just as fast to Australians as ?.au. and avoiding a 200ms+ overseas latency, or are some or all of them hosted only in the US or in the northern hemisphere?

    Read the article

  • Ho can I recover from SharePoint configuration errors after promoting the server to a Domain Controller?

    - by jjr2527
    I have a SharePoint 2010 VM setup in VirtualBox and I was using local machine accounts to handle security on the server. While preparing for a demo it came time to have some meaningful users on my VM image. I followed some docs on promoting my server to a Domain Controller in a new forrest. So now I have [MachineName].SPDEMO.CONTOSO.com and I can add users as needed. However, when I try to connect to my SharePoint sites I am getting a white screen with the error: "Cannot connect to the configuration database" I changed the pool identity account of each of my IIS app pools to the new Administrator account and started the services successfully but I can't get the SQL services to start up. When I try to start them I get the following error: Windows could not start the SQL Server (MSSQLSERVER) on Local Computer. For more information, review the System Event Log. If this is a non-Microsoft service, contact the service vendor, and refer to service-specific error code 17058. In the event log I see the following error: The SQL Server (MSSQLSERVER) service terminated with service-specific error %%17058. Can I recover from this or should I roll back or just uninstall the Domain Controller role. I'd like to keep the server as a standalone DC so I can do some user profile creation/management but I need the SharePoint bits to work as well.

    Read the article

  • apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for ServerName

    - by user35402
    I keep getting this warning when I (re)start Apache. Restarting web server apache2 apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for ServerName ... waiting apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for ServerName [ OK ] This is the content of my etc/hosts file: #127.0.0.1 hpdtp-ubuntu910 #testproject.localhost localhost.localdomain localhost #127.0.1.1 hpdtp-ubuntu910 127.0.0.1 localhost 127.0.0.1 testproject.localhost 127.0.1.1 hpdtp-ubuntu910 # The following lines are desirable for IPv6 capable hosts ::1 localhost ip6-localhost ip6-loopback fe00::0 ip6-localnet ff00::0 ip6-mcastprefix ff02::1 ip6-allnodes ff02::2 ip6-allrouters ff02::3 ip6-allhosts This is the content of my /etc/apache2/sites-enabled/000-default file: <VirtualHost *:80> ServerName testproject.localhost DocumentRoot "/home/morpheous/work/websites/testproject/web" DirectoryIndex index.php <Directory "/home/morpheous/work/websites/testproject/web"> AllowOverride All Allow from All </Directory> Alias /sf /lib/vendor/symfony/symfony-1.3.2/data/web/sf <Directory "/lib/vendor/symfony/symfony-1.3.2/data/web/sf"> AllowOverride All Allow from All </Directory> </VirtualHost> When I go to http://testproject.localhost, I get a blank page can anyone spot what I am doing wrong?

    Read the article

  • How can I recover from SharePoint configuration errors after promoting the server to a Domain Controller?

    - by jjr2527
    I have a SharePoint 2010 VM setup in VirtualBox and I was using local machine accounts to handle security on the server. While preparing for a demo it came time to have some meaningful users on my VM image. I followed some docs on promoting my server to a Domain Controller in a new forrest. So now I have [MachineName].SPDEMO.CONTOSO.com and I can add users as needed. However, when I try to connect to my SharePoint sites I am getting a white screen with the error: "Cannot connect to the configuration database" I changed the pool identity account of each of my IIS app pools to the new Administrator account and started the services successfully but I can't get the SQL services to start up. When I try to start them I get the following error: Windows could not start the SQL Server (MSSQLSERVER) on Local Computer. For more information, review the System Event Log. If this is a non-Microsoft service, contact the service vendor, and refer to service-specific error code 17058. In the event log I see the following error: The SQL Server (MSSQLSERVER) service terminated with service-specific error %%17058. Can I recover from this or should I roll back or just uninstall the Domain Controller role. I'd like to keep the server as a standalone DC so I can do some user profile creation/management but I need the SharePoint bits to work as well.

    Read the article

  • Sendmail : Mail delivery of same domain to internal or external mail server.

    - by Silkograph
    Its bit difficult to explain but very simple problem. We have internal sendmail server and hosted server. Both are set to same domain name. We have mixed mail accounts. For example we have two user in one office. [email protected] is local only [email protected] is internal plus external. Internal means we create user on local linux box where sendmail is set. External means we create user on local and hosted server. [email protected] can send mails to any internal user created on Linux box where sendmail is installed. But he can not send mail to outside domain and no mail can be sent to him as there is no account created on external hosted server. [email protected] can send mails to internal as well as all other domains through sendmail's smart_host feature, which uses hosted server's smtp. [email protected] can get all external emails internally through Fetchmail on linux box. Now we have third user [email protected] who will be always outstation and can use external server only. So I can not create account on local linux box for [email protected] because his mail will get delivered locally only. I don't want to create alias and send his mails to gmail or yahoo's account. I want to send emails to his external account from any internal user. How this can be done? Thanks in advance.

    Read the article

  • For enabling SSL for a single domain on a server with muliple vhosts, will this configuration work?

    - by user1322092
    I just purchased an SSL certificate to secure/enable only ONE domain on a server with multiple vhosts. I plan on configuring as shown below (non SNI). In addition, I still want to access phpMyAdmin, securely, via my server's IP address. Will the below configuration work? I have only one shot to get this working in production. Are there any redundant settings? ---apache ssl.conf file--- Listen 443 SSLCertificateFile /home/web/certs/domain1.public.crt SSLCertificateKeyFile /home/web/certs/domain1.private.key SSLCertificateChainFile /home/web/certs/domain1.intermediate.crt ---apache httpd.conf file---- ... DocumentRoot "/var/www/html" #currently exists ... NameVirtualHost *:443 #new - is this really needed if "Listen 443" is in ssl.conf??? ... #below vhost currently exists, the domain I wish t enable SSL) <VirtualHost *:80> ServerAdmin [email protected] ServerName domain1.com ServerAlias 173.XXX.XXX.XXX DocumentRoot /home/web/public_html/domain1.com/public </VirtualHost> #below vhost currently exists. <VirtualHost *:80> ServerName domain2.com ServerAlias www.domain2.com DocumentRoot /home/web/public_html/domain2.com/public </VirtualHost> #new -I plan on adding this vhost block to enable ssl for domain1.com! <VirtualHost *:443> ServerAdmin [email protected] ServerName www.domain1.com ServerAlias 173.203.127.20 SSLEngine on SSLProtocol all SSLCertificateFile /home/web/certs/domain1.public.crt SSLCertificateKeyFile /home/web/certs/domain1.private.key SSLCACertificateFile /home/web/certs/domain1.intermediate.crt DocumentRoot /home/web/public_html/domain1.com/public </VirtualHost> As previously mentioned, I want to be able to access phpmyadmin via "https://173.XXX.XXX.XXX/hiddenfolder/phpmyadmin" which is stored under "var/www/html/hiddenfolder"

    Read the article

  • How to enable hotlink protection without hardcoding my domain in the Apache config file?

    - by Jeff
    Been surfing around for a solution for a couple days now. How do I enable Apache hotlink protection without hardcoding my domain in the config file so I can port the code to my other domains without having to update the config file every time? This is what I have so far: RewriteCond %{HTTP_REFERER} !^$ RewriteCond %{HTTP_REFERER} !^http://www\.example\.com [NC] RewriteRule \.(gif|ico|jpe|jpeg|jpg|png)$ - [NC,F,L] ... And this is what Apache suggests: SetEnvIf Referer example\.com localreferer <FilesMatch \.(jpg|png|gif)$> Order deny,allow Deny from all Allow from env=localreferer </FilesMatch> ... both of which hardcode the domain in their rules. The closest I came to finding any info that covers this is right here on ServerFault, but the conclusion was that it cannot be done. Based on my research, that appears to be true, but I didn't find any questions or commentary dedicated soley to this question. If anyone's curious, here is the link to the Apache 2 docs that cover this topic. Note that Apache variables (e.g. %{HTTP_REFERER}) can only be used in the RewriteCond text-string and the RewriteRule substitution arguments.

    Read the article

  • Does migrating 2 domain controllers between 2 datacentre requires both virtual machines to be shut down at the same time?

    - by Imagineer
    I was attempting to migrate 2 virtual machines that are domain controllers between 2 datacentres running ESX 3.5 and ESX 4.1. I was advised to shut down both domain controller at the same time during the migration process. This is to avoid USN Rollback and other replication issues. The following are the steps that I was planning to perform: 1. Shutdown both DC. 2. Copy both VMs files across to new datacentre using Veeam FastSCP (connection to both vCentre through IP address instead of hostname) 3. Power them up at new datacentre. 4. Configure Network interface/DNS/DHCP for both DCs in new datacentre I have tried to use Veeam FastSCP rather than VMware Standalone Converter is because its copying rather than converting. Someone also suggested that I use backup and restore app like Veeam backup and replication software. Sounds like a simple job, but after shutting down both DCs, the transfer rate using FastSCP is so slow registering only 1KB/s as oppose to the normal 1MB/s (or more). When that attempt to transfer failed, I tried to cold clone both DCs resulted in the both ESX hosts get disconnected. I have tried troubleshooting by referring to this - VMware KB - Diagnosing an ESX Server that is Disconnected or Not Responding in VirtualCenter It seems that the DNS being down is the caused of all unusual occurrence. The moment I powered up the DCs via VMware console command, the ESX host were able to connect to the vCentre again. How can I avoid such a pitfall again? Am I doing it correctly? Any help would be greatly appreciated! Thank you.

    Read the article

  • Changing the current URL but serving content from another (same domain) - ProxyPass?

    - by zigojacko
    I've been banging my head against the wall with this for months now so I hope someone on here will be able to finally advise what is needed for this. I have some URL's like this:- domain.com/category/subcat/filter/brand And I wish to rewrite the URL's to:- domain.com/category/brand-subcat Content loads fine at the first URL, I just want to show it at a different URL - is URL masking the correct term for this? I have a RewriteRule in .htaccess that should do this job as far as I believe:- RewriteRule ^([a-zA-Z]+)/([a-zA-Z]+)/filter/([a-zA-Z]+)$ $1/$3-$2 This isn't actually modifying the URL at all though on a Magento website (mod_rewrite is enabled and plenty of other rewrites are working from the same .htaccess). So firstly, I want to know is what I am trying to achieve definitely possible? If so, what is this process even called? Secondly, does this need to be handled using ProxyPass and then use a [P] flag with the rewrite rule? I assume the Apache server doesn't have mod_proxy enabled currently because when I add a [P] flag, the URL returns a 403 forbidden error with the full server path for the current URL. Please could anyone kindly advise what on earth I need to do to achieve this?

    Read the article

  • How to safely send newsletters on VPS (SMTP) w/ non-hosted domain as "From" email?

    - by Andy M
    Greetings, I'm trying to understand the safest way to use SMTP. I'm considering purchasing a second virtual server mainly for email sending, on which I will set up PHPlist (a free open-source mailing program), so we have the freedom to send unlimited newsletters (...well, 10,000 per day at least, which requires a VPS rather than shared hosting). Here's my current setup with a paid mass-mailing software: I have a website - let's call it MyHostedDomain.org. I send newsletters with the From / Reply To address as [email protected], which isn't being hosting by me but I have access to the email account. Can I more or less safely set this up with an SMTP server on a VPS? i.e. send messages using [email protected] as the visible address, but having it all go through my VPS SMTP? I cannot authenticate it, right? Is this too risky a practice? Is my only hope to use an address with a domain on the VPS, i.e. [email protected]? I already have a Reverse DNS record for the domain hosted on my current VPS. I also see other suggestions, like SenderID and DKIM. But with all these things combined, will this still work? I don't want to get blacklisted, but the good thing is this is a somewhat private list, and users opt-in to subscribe. So it's a self-made audience. (If it makes you feel better, this is related to a non-profit activity, not some marketing scam...it's for a good cause, I assure you!)

    Read the article

  • Removed Old Domain Trust. Now Progress (9.1D) can't open DB File

    - by RLH
    My company has an old server, running Progress 9.1D on a Windows 2000 VM, which was used by our company OS (Vantage 6 by Epicor.) Vantage was our primary OS for a very long time. About 2 years ago, we migrated to a larger, corporate OS and we cancelled our service contract with Epicor. Yesterday, we removed an AD trust between the corporate domain and our old AD domain we used in the days of Vantage. After restarting the virtual server, I have been able to start the ProService for 9.1D Windows service, however, I can not get Vantage to start back up. When I run the application, I get the error in the message listed below. Transcript: ** Could not connect to server for database [progress db file], errno 0. (1432) How can I fix this? FYI, I haven't had to work with Progress in years and even then I wouldn't have considered myself a "novice"-- I'm even less knowledgeable than that title would suggest. Vantage had a lot of internal tools and I recall that Epicor support managed to prevent .pf scripts from being executed. If there was a Progress specific patch that needed to be applied, you had to do it within the Vantage software OR they had to remote into the machine to fix this. I may not be able to run a .pf script but I do know that I can log into the console-based server application. (Yes, I can't even recall which utility that was called. It is sad.) It's been a long time and I never had to digg into Progress that much. Please help and feel free to ask questions. If you need more info, I'll update this post.

    Read the article

  • Strategy to isolate multiple nginx ssl apps with single domain via suburi's?

    - by icpu
    Warning: so far I have only learnt how to use nginx to serve apps with their own domain and server block. But I think its time to dive a little deeper. To mitigate the need for multiple SSL certificates or expensive wildcard certificates I would like to serve multiple apps (e.g. rails apps, php apps, node.js apps) from one nginx server_name. e.g. rooturl/railsapp rooturl/nodejsapp rooturl/phpshop rooturl/phpblog I am unsure on ideal strategy. Some examples I have seen and or thought about: Multiple location rules, this seems to cause conflicts between the individual app config requirements, e.g. differing rewrite and access requirements Isolated apps by backend internal port, is this possible? Each port routing to its own config? So config is isolated and can be bespoke to app requirements. Reverse proxy, I am little ignorant of how this works, is this what I need to research? is this actually 2 above? Help online seems to always proxy to another server e.g apache What is an effective way to isolate config requirements for apps served from a single domain via sub uris?

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Setup Remote Access in Windows Home Server

    - by Mysticgeek
    One of the many awesome features of Windows Home Server, is the ability to access your server and other computers on your network remotely. Today we show you the steps to enable Remote Access to your home server from anywhere you have an Internet connection. Remote Access in Windows Home Server has a lot of great features like uploading and downloading files from shared folders, accessing files from machines on your network, and controling machines remotely (on supported OS versions). Here we take a look at the basics of setting it up, choosing a domain name, and verifying you can connect remotely. Setup Remote Access in Windows Home Server Open the Windows Home Server Console and click on Settings. Next select Remote Access, it is off by default, just click the button to turn it on. Wait while your router is configured for remote access, when it’s complete click Next. Notice that it will enable UPnP, if you don’t wish to have that enabled, you can manually forward the correct ports. If you have any problems with the router being automatically configured, we’ll be taking a look at a more detailed troubleshooting guide in the future. The router is successfully configured, and we can continue to the next process of configuring our domain name. The Domain Name Setup Wizard will start. Notice you will need a Windows Live ID to set it up –which is typically your hotmail address. If you don’t already have one, you can get one here. Type in your Live ID email address and password and click Next… Agree to the Home Server Privacy Statement and the Live Custom Domains Addendum. If you’re concerned about privacy and want to learn more about the domain addendum, make sure to read about it before agreeing. There is nothing abnormal to point out about either statement, but if this is your first time setting it up, it’s good to review the information.   Now choose a name for the domain. You should select something that is easy to remember and identifies your home server. The name can contain up to 63 characters, numbers, letters, and hyphens…and must begin and end with a letter or number. When you have the name figured out click the Confirm button. Note: You can only register one domain name per Live ID. If the name isn’t already taken, you’ll get a confirmation message indicating it’s god to go. The wizard is complete and you can now access the home server from the URL provided. A few other things to point out after you’ve set it up…under Domain Name click on the Details button… Which pulls up the domain detail information and you can refresh the data to verify everything is working correctly. Or you can click the Configure button and then change or release your current domain name. Under Web site settings, you can change you site page headline to whatever you want it to be. Accessing Home Server Remotely After you’ve gotten everything setup for your home server domain, you can begin to access it when you’re away from home. Simply type in the domain address you created in the previous steps. The start page is rather boring…and to start accessing your data, click the Log On button in the upper right hand corner. Then enter in your home server credentials to gain access to your files, folders, and network computers. You won’t be able to log in with your administrator user account however, to protect security of your network. Once you’re logged in, you’ll be able to access different parts of your home server shares and network computers. Conclusion Now that you have Remote Access setup, you should be able to access and manage your files easily. Being able to access data from your home server remotely is great when you need to get certain files while on the road. The web UI is pretty self explanatory, works best in IE as ActiveX is required, and is smooth and easy to work with. In future articles we’ll be covering a lot more regarding remote access, including more of the available features, troubleshooting connection issues, and enabling access for other users. Similar Articles Productive Geek Tips GMedia Blog: Setting Up a Windows Home ServerHow to Remote Desktop to the Actual Server Console on Windows 2003Use Windows Vista Aero through Remote Desktop ConnectionAccess Your MySQL Server Remotely Over SSHShare Ubuntu Home Directories using Samba TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Penolo Lets You Share Sketches On Twitter Visit Woolyss.com for Old School Games, Music and Videos Add a Custom Title in IE using Spybot or Spyware Blaster When You Need to Hail a Taxi in NYC Live Map of Marine Traffic NoSquint Remembers Site Specific Zoom Levels (Firefox)

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • What are the Search engine affects of registering the same domain on multiple top level domains (ie. .com, .ie, .nl etc.)?

    - by user1020317
    I'm looking to register a few more domains for my company, I have my-company.com at the moment, but now require my-company.com.au and my-company.nl and some others.. I'm running through my options and wondering what is the best.. Duplicate all the content on the .com package and make a replica at the other domains Buy the other domains but do a 301 redirect back to the .com domain. Create a full new website with different content for the new domains, thus having no text duplication We currently sell over the world so would like to raise our Search rankings in various countries, can this be done by buying the domain in the country, and if so, how will the above methods affect our search rankings. Any other suggestions are welcome!

    Read the article

  • How to avoid loading a LINQ to SQL object twice when editting it on a website.

    - by emzero
    Hi guys I know you are all tired of this Linq-to-Sql questions, but I'm barely starting to use it (never used an ORM before) and I've already find some "ugly" things. I'm pretty used to ASP.NET Webforms old school developing, but I want to leave that behind and learn the new stuff (I've just started to read a ASP.NET MVC book and a .NET 3.5/4.0 one). So here's is one thing I didn't like and I couldn't find a good alternative to it. In most examples of editing a LINQ object I've seen the object is loaded (hitting the db) at first to fill the current values on the form page. Then, the user modify some fields and when the "Save" button is clicked, the object is loaded for second time and then updated. Here's a simplified example of ScottGu NerdDinner site. // // GET: /Dinners/Edit/5 [Authorize] public ActionResult Edit(int id) { Dinner dinner = dinnerRepository.GetDinner(id); return View(new DinnerFormViewModel(dinner)); } // // POST: /Dinners/Edit/5 [AcceptVerbs(HttpVerbs.Post), Authorize] public ActionResult Edit(int id, FormCollection collection) { Dinner dinner = dinnerRepository.GetDinner(id); UpdateModel(dinner); dinnerRepository.Save(); return RedirectToAction("Details", new { id=dinner.DinnerID }); } As you can see the dinner object is loaded two times for every modification. Unless I'm missing something about LINQ to SQL caching the last queried objects or something like that I don't like getting it twice when it should be retrieved only one time, modified and then comitted back to the database. So again, am I really missing something? Or is it really hitting the database twice (in the example above it won't harm, but there could be cases that getting an object or set of objects could be heavy stuff). If so, what alternative do you think is the best to avoid double-loading the object? Thank you so much, Greetings!

    Read the article

  • Is there a tool I can use to generate interfaces and wrappers for object mocking in c#

    - by fostandy
    Given a class like System.Timers.Timer, or ANY managed class (whether user defined, from the .net framework, or some 3rd party library) is there some program I can use to (a) generate an interface based on this class and (b) generate a wrapper for the given class? for example if I have a public class Foo { public object MyProperty { get { ... } set { ... } } public int SomeMethod(object a) { ... } } it will create an interface interface IFoo { object MyProperty { get; set; } int SomeMethod(object a) { ... } } and maybe even a wrapper class FooWrap { // something for relay constructor here ... Foo _me; public object MyProperty { get { return _me.MyProperty; } set { _me.MyProperty = value; } } public int SomeMethod(object a) { return _me.SomeMethod(); } } Obviously there's stuff I haven't thought about like events, generics etc. I want a DWIMNWIS-PSICHTO(-Plus-Stuff-I-Clearly-Haven't-Thought-Of). I'm aware resharper can be used to extract an interface but I've only been able to use this on my own classes. Aside: Wow, it is amazing how simply becoming accustomed to a previously 'unacceptable' idea eventually gives it legitimacy. A year ago the idea of having to create interfaces for all objects I want to mock and adopting an injection framework would have seemed like the height of madness. It turns out that while it's not quite death and taxes, it is sparta. I am aware of and have used typemock. It certainly is the work of elvish wizards. One day when $800 does not seem like quite so much money I intend to buy it.

    Read the article

< Previous Page | 310 311 312 313 314 315 316 317 318 319 320 321  | Next Page >