Search Results

Search found 17163 results on 687 pages for 'extension objects'.

Page 328/687 | < Previous Page | 324 325 326 327 328 329 330 331 332 333 334 335  | Next Page >

  • How see the converted sql from ActiveRecord method in view, etc

    - by Jak
    Hi All, I will be happy if someone clear doubt, i can see objects in view by using <%= debug @object % and lot of methods is there apart from view like .to_yml, etc Is there any method available for seeing the converted sql from ActiveRecord method in view, etc. Although I can find it in console but it will confuse when we run multiple queries.. example: User.find :all it will produce "SELECT * FROM users;" in output console But i want it in view are any other specific point like yml , etc ? Thanks, Jak

    Read the article

  • Limiting database security

    - by Torbal
    A number of texts signify that the most important aspects offered by a DBMS are availability, integrity and secrecy. As part of a homework assignment I have been tasked with mentioning attacks which would affect each aspect. This is what I have come up with - are they any good? Availability - DDOS attack Integrity Secrecy - SQL Injection attack Integrity - Use of trojans to gain access to objects with higher security roles

    Read the article

  • UITableView: Juxtaposing row, header, and footer insertions/deletions

    - by jdandrea
    Consider a very simple UITableView with one of two states. First state: One (overall) table footer One section containing two rows, a section header, and a section footer Second state: No table footer One section containing four rows and no section header/footer In both cases, each row is essentially one of four possible UITableViewCell objects, each containing its own UITextField. We don't even bother with reuse or caching, since we're only dealing with four known cells in this case. They've been created in an accompanying XIB, so we already have them all wired up and ready to go. Now consider we want to toggle between the two states. Sounds easy enough. Let's suppose our view controller's right bar button item provides the toggling support. We'll also track the current state with an ivar and enumeration. To be explicit for a sec, here's how one might go from state 1 to 2. (Presume we handle the bar button item's title as well.) In short, we want to clear out our table's footer view, then insert the third and fourth rows. We batch this inside an update block like so: // Brute forced references to the third and fourth rows in section 0 NSUInteger row02[] = {0, 2}; NSUInteger row03[] = {0, 3}; [self.tableView beginUpdates]; state = tableStateTwo; // 'internal' iVar, not a property self.tableView.tableFooterView = nil; [self.tableView insertRowsAtIndexPaths:[NSArray arrayWithObjects: [NSIndexPath indexPathWithIndexes:row02 length:2], [NSIndexPath indexPathWithIndexes:row03 length:2], nil] withRowAnimation:UITableViewRowAnimationFade]; [self.tableView endUpdates]; For the reverse, we want to reassign the table footer view (which, like the cells, is in the XIB ready and waiting), and remove the last two rows: // Use row02 and row03 from earlier snippet [self.tableView beginUpdates]; state = tableStateOne; self.tableView.tableFooterView = theTableFooterView; [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObjects: [NSIndexPath indexPathWithIndexes:row02 length:2], [NSIndexPath indexPathWithIndexes:row03 length:2], nil] withRowAnimation:UITableViewRowAnimationFade]; [self.tableView endUpdates]; Now, when the table asks for rows, it's very cut and dry. The first two cells are the same in both cases. Only the last two appear/disappear depending on the state. The state ivar is consulted when the Table View asks for things like number of rows in a section, height for header/footer in a section, or view for header/footer in a section. This last bit is also where I'm running into trouble. Using the above logic, section 0's header/footer does not disappear. Specifically, the footer stays below the inserted rows, but the header now overlays the topmost row. If we switch back to state one, the section footer is removed, but the section header remains. How about using [self.tableView reloadData] then? Sure, why not. We take care not to use it inside the update block, per Apple's advisement, and simply add it after endUpdates. This time, good news! The section 0 header/footer disappears. :) However ... Toggling back to state one results in a most exquisite mess! The section 0 header returns, only to overlay the first row once again (instead of appear above it). The section 0 footer is placed below the last row just fine, but the overall table footer - now reinstated - overlays the section footer. Waaaaaah … now what? Just to be sure, let's toggle back to state two again. Yep, that looks fine. Coming back to state one? Yecccch. I also tried sprinkling in a few other stunts like using reloadSections:withRowAnimation:, but that only serves to make things worse. NSRange range = {0, 1}; NSIndexSet *indexSet = [NSIndexSet indexSetWithIndexesInRange:range]; ... [self.tableView reloadSections:indexSet withRowAnimation:UITableViewRowAnimationFade]; Case in point: If we invoke reloadSections... just before the end of the update block, changing to state two hides the first two rows from view, even though the space they would otherwise occupy remains. Switching back to state one returns section 0's header/footer to normal, but those first two rows remain invisible. Case two: Moving reloadSections... to just after the update block but before reloadData results in all rows becoming invisible! (I refer to the row as being invisible because, during tracing, tableView:cellForRowAtIndexPath: is returning bona-fide cell objects for those rows.) Case three: Moving reloadSections... after tableView:cellForRowAtIndexPath: brings us a bit closer, but the section 0 header/footer never returns when switching back to state one. Hmm. Perhaps it's a faux pas using both reloadSections... and reloadData, based on what I'm seeing at trace-time, which brings us to: Case four: Replacing reloadData with reloadSections... outright. All cells in state two disappear. All cells in state one remain missing as well (though the space is kept). So much for that theory. :) Tracing through the code, the cell and view objects, as well as the section heights, are all where they should be at the opportune times. They just aren't rendering sanely. So, how to crack this case? Clues welcome/appreciated!

    Read the article

  • git push problem -argh!

    - by phil swenson
    Dunno what's going on, no response from github on this prob so I'm asking here. Tried a git push for the first time in a month or so and got this. Turned on export GIT_CURL_VERBOSE=1 and did a push and get this: localhost:send2mobile_rails phil$ git push Password: * Couldn't find host github.com in the .netrc file; using defaults * About to connect() to github.com port 443 (#0) * Trying 207.97.227.239... * Connected to github.com (207.97.227.239) port 443 (#0) * SSL connection using DHE-RSA-AES256-SHA * Server certificate: * subject: O=*.github.com; OU=Domain Control Validated; CN=*.github.com * start date: 2009-12-11 05:02:36 GMT * expire date: 2014-12-11 05:02:36 GMT * subjectAltName: github.com matched * issuer: C=US; ST=Arizona; L=Scottsdale; O=GoDaddy.com, Inc.; OU=http://certificates.godaddy.com/repository; CN=Go Daddy Secure Certification Authority; serialNumber=07969287 * SSL certificate verify ok. > GET /303devworks/send2mobile_rails.git/info/refs?service=git-receive-pack HTTP/1.1 User-Agent: git/1.7.1 Host: github.com Accept: */* Pragma: no-cache < HTTP/1.1 401 Authorization Required < Server: nginx/0.7.61 < Date: Tue, 01 Jun 2010 10:53:13 GMT < Content-Type: text/html; charset=iso-8859-1 < Connection: keep-alive < Content-Length: 0 < WWW-Authenticate: Basic realm="Repository" < * Connection #0 to host github.com left intact * Issue another request to this URL: 'https://[email protected]/MYUSERHERE/send2mobile_rails.git/info/refs?service=git-receive-pack' * Couldn't find host github.com in the .netrc file; using defaults * Re-using existing connection! (#0) with host github.com * Connected to github.com (207.97.227.239) port 443 (#0) * Server auth using Basic with user '303devworks' > GET /303devworks/send2mobile_rails.git/info/refs?service=git-receive-pack HTTP/1.1 Authorization: Basic MzAzZGVfd29sa3M6Y29nbmwzNzIw User-Agent: git/1.7.1 Host: github.com Accept: */* Pragma: no-cache < HTTP/1.1 200 OK < Server: nginx/0.7.61 < Date: Tue, 01 Jun 2010 10:53:13 GMT < Content-Type: application/x-git-receive-pack-advertisement < Connection: keep-alive < Status: 200 OK < Pragma: no-cache < Content-Length: 153 < Expires: Fri, 01 Jan 1980 00:00:00 GMT < Cache-Control: no-cache, max-age=0, must-revalidate < * Expire cleared * Connection #0 to host github.com left intact Counting objects: 166, done. Delta compression using up to 4 threads. Compressing objects: 100% (133/133), done. * Couldn't find host github.com in the .netrc file; using defaults * About to connect() to github.com port 443 (#0) * Trying 207.97.227.239... * connected * Connected to github.com (207.97.227.239) port 443 (#0) * SSL re-using session ID * SSL connection using DHE-RSA-AES256-SHA * old SSL session ID is stale, removing * Server certificate: * subject: O=*.github.com; OU=Domain Control Validated; CN=*.github.com * start date: 2009-12-11 05:02:36 GMT * expire date: 2014-12-11 05:02:36 GMT * subjectAltName: github.com matched * issuer: C=US; ST=Arizona; L=Scottsdale; O=GoDaddy.com, Inc.; OU=http://certificates.godaddy.com/repository; CN=Go Daddy Secure Certification Authority; serialNumber=07969287 * SSL certificate verify ok. * Server auth using Basic with user 'MYUSERHERE' > POST /303devworks/send2mobile_rails.git/git-receive-pack HTTP/1.1 Authorization: Basic JzAzZGV1d29ya3M6Y25nb29zNzIq User-Agent: git/1.7.1 Host: github.com Accept-Encoding: deflate, gzip Content-Type: application/x-git-receive-pack-request Accept: application/x-git-receive-pack-result Expect: 100-continue Transfer-Encoding: chunked * The requested URL returned error: 411 * Closing connection #0 error: RPC failed; result=22, HTTP code = 411 Writing objects: 100% (140/140), 2.28 MiB | 1.93 MiB/s, done. Total 140 (delta 24), reused 0 (delta 0) ^C localhost:send2mobile_rails phil$

    Read the article

  • C++ Mutexes and STL Lists Across Subclasses

    - by Genesis
    I am currently writing a multi-threaded C++ server using Poco and am now at the point where I need to be keeping information on which users are connected, how many connections each of them have, and given it is a proxy server, where each of those connections are proxying through to. For this purpose I have created a ServerStats class which holds an STL list of ServerUser objects. The ServerStats class includes functions which can add and remove objects from the list as well as find a user in the list an return a pointer to them so I can access member functions within any given ServerUser object in the list. The ServerUser class contains an STL list of ServerConnection objects and much like the ServerStats class it contains functions to add, remove and find elements within this list. Now all of the above is working but I am now trying to make it threadsafe. I have defined a Poco::FastMutex within the ServerStats class and can lock/unlock this in the appropriate places so that STL containers are not modified at the same time as being searched for example. I am however having an issue setting up mutexes within the ServerUser class and am getting the following compiler error: /root/poco/Foundation/include/Poco/Mutex.h: In copy constructor âServerUser::ServerUser(const ServerUser&)â: src/SocksServer.cpp:185: instantiated from âvoid __gnu_cxx::new_allocator<_Tp::construct(_Tp*, const _Tp&) [with _Tp = ServerUser]â /usr/include/c++/4.4/bits/stl_list.h:464: instantiated from âstd::_List_node<_Tp* std::list<_Tp, _Alloc::_M_create_node(const _Tp&) [with _Tp = ServerUser, _Alloc = std::allocator]â /usr/include/c++/4.4/bits/stl_list.h:1407: instantiated from âvoid std::list<_Tp, _Alloc::_M_insert(std::_List_iterator<_Tp, const _Tp&) [with _Tp = ServerUser, _Alloc = std::allocator]â /usr/include/c++/4.4/bits/stl_list.h:920: instantiated from âvoid std::list<_Tp, _Alloc::push_back(const _Tp&) [with _Tp = ServerUser, _Alloc = std::allocator]â src/SocksServer.cpp:301: instantiated from here /root/poco/Foundation/include/Poco/Mutex.h:164: error: âPoco::FastMutex::FastMutex(const Poco::FastMutex&)â is private src/SocksServer.cpp:185: error: within this context In file included from /usr/include/c++/4.4/x86_64-linux-gnu/bits/c++allocator.h:34, from /usr/include/c++/4.4/bits/allocator.h:48, from /usr/include/c++/4.4/string:43, from /root/poco/Foundation/include/Poco/Bugcheck.h:44, from /root/poco/Foundation/include/Poco/Foundation.h:147, from /root/poco/Net/include/Poco/Net/Net.h:45, from /root/poco/Net/include/Poco/Net/TCPServerParams.h:43, from src/SocksServer.cpp:1: /usr/include/c++/4.4/ext/new_allocator.h: In member function âvoid __gnu_cxx::new_allocator<_Tp::construct(_Tp*, const _Tp&) [with _Tp = ServerUser]â: /usr/include/c++/4.4/ext/new_allocator.h:105: note: synthesized method âServerUser::ServerUser(const ServerUser&)â first required here src/SocksServer.cpp: At global scope: src/SocksServer.cpp:118: warning: âstd::string getWord(std::string)â defined but not used make: * [/root/poco/SocksServer/obj/Linux/x86_64/debug_shared/SocksServer.o] Error 1 The code for the ServerStats, ServerUser and ServerConnection classes is below: class ServerConnection { public: bool continue_connection; int bytes_in; int bytes_out; string source_address; string destination_address; ServerConnection() { continue_connection = true; } ~ServerConnection() { } }; class ServerUser { public: string username; int connection_count; string client_ip; ServerUser() { } ~ServerUser() { } ServerConnection* addConnection(string source_address, string destination_address) { //FastMutex::ScopedLock lock(_connection_mutex); ServerConnection connection; connection.source_address = source_address; connection.destination_address = destination_address; client_ip = getWord(source_address, ":"); _connections.push_back(connection); connection_count++; return &_connections.back(); } void removeConnection(string source_address) { //FastMutex::ScopedLock lock(_connection_mutex); for(list<ServerConnection>::iterator it = _connections.begin(); it != _connections.end(); it++) { if(it->source_address == source_address) { it = _connections.erase(it); connection_count--; } } } void disconnect() { //FastMutex::ScopedLock lock(_connection_mutex); for(list<ServerConnection>::iterator it = _connections.begin(); it != _connections.end(); it++) { it->continue_connection = false; } } list<ServerConnection>* getConnections() { return &_connections; } private: list<ServerConnection> _connections; //UNCOMMENTING THIS LINE BREAKS IT: //mutable FastMutex _connection_mutex; }; class ServerStats { public: int current_users; ServerStats() { current_users = 0; } ~ServerStats() { } ServerUser* addUser(string username) { FastMutex::ScopedLock lock(_user_mutex); for(list<ServerUser>::iterator it = _users.begin(); it != _users.end(); it++) { if(it->username == username) { return &(*it); } } ServerUser newUser; newUser.username = username; _users.push_back(newUser); current_users++; return &_users.back(); } void removeUser(string username) { FastMutex::ScopedLock lock(_user_mutex); for(list<ServerUser>::iterator it = _users.begin(); it != _users.end(); it++) { if(it->username == username) { _users.erase(it); current_users--; break; } } } ServerUser* getUser(string username) { FastMutex::ScopedLock lock(_user_mutex); for(list<ServerUser>::iterator it = _users.begin(); it != _users.end(); it++) { if(it->username == username) { return &(*it); } } return NULL; } private: list<ServerUser> _users; mutable FastMutex _user_mutex; }; Now I have never used C++ for a project of this size or mutexes for that matter so go easy please :) Firstly, can anyone tell me why the above is causing a compiler error? Secondly, can anyone suggest a better way of storing the information I require? Bear in mind that I need to update this info whenever connections come or go and it needs to be global to the whole server.

    Read the article

  • T-SQL Dynamic SQL and Temp Tables

    - by George
    It looks like #temptables created using dynamic SQL via the EXECUTE string method have a different scope and can't be referenced by "fixed" SQLs in the same stored procedure. However, I can reference a temp table created by a dynamic SQL statement in a subsequence dynamic SQL but it seems that a stored procedure does not return a query result to a calling client unless the SQL is fixed. A simple 2 table scenario: I have 2 tables. Let's call them Orders and Items. Order has a Primary key of OrderId and Items has a Primary Key of ItemId. Items.OrderId is the foreign key to identify the parent Order. An Order can have 1 to n Items. I want to be able to provide a very flexible "query builder" type interface to the user to allow the user to select what Items he want to see. The filter criteria can be based on fields from the Items table and/or from the parent Order table. If an Item meets the filter condition including and condition on the parent Order if one exists, the Item should be return in the query as well as the parent Order. Usually, I suppose, most people would construct a join between the Item table and the parent Order tables. I would like to perform 2 separate queries instead. One to return all of the qualifying Items and the other to return all of the distinct parent Orders. The reason is two fold and you may or may not agree. The first reason is that I need to query all of the columns in the parent Order table and if I did a single query to join the Orders table to the Items table, I would be repoeating the Order information multiple times. Since there are typically a large number of items per Order, I'd like to avoid this because it would result in much more data being transfered to a fat client. Instead, as mentioned, I would like to return the two tables individually in a dataset and use the two tables within to populate a custom Order and child Items client objects. (I don't know enough about LINQ or Entity Framework yet. I build my objects by hand). The second reason I would like to return two tables instead of one is because I already have another procedure that returns all of the Items for a given OrderId along with the parent Order and I would like to use the same 2-table approach so that I could reuse the client code to populate my custom Order and Client objects from the 2 datatables returned. What I was hoping to do was this: Construct a dynamic SQL string on the Client which joins the orders table to the Items table and filters appropriate on each table as specified by the custom filter created on the Winform fat-client app. The SQL build on the client would have looked something like this: TempSQL = " INSERT INTO #ItemsToQuery OrderId, ItemsId FROM Orders, Items WHERE Orders.OrderID = Items.OrderId AND /* Some unpredictable Order filters go here */ AND /* Some unpredictable Items filters go here */ " Then, I would call a stored procedure, CREATE PROCEDURE GetItemsAndOrders(@tempSql as text) Execute (@tempSQL) --to create the #ItemsToQuery table SELECT * FROM Items WHERE Items.ItemId IN (SELECT ItemId FROM #ItemsToQuery) SELECT * FROM Orders WHERE Orders.OrderId IN (SELECT DISTINCT OrderId FROM #ItemsToQuery) The problem with this approach is that #ItemsToQuery table, since it was created by dynamic SQL, is inaccessible from the following 2 static SQLs and if I change the static SQLs to dynamic, no results are passed back to the fat client. 3 around come to mind but I'm look for a better one: 1) The first SQL could be performed by executing the dynamically constructed SQL from the client. The results could then be passed as a table to a modified version of the above stored procedure. I am familiar with passing table data as XML. If I did this, the stored proc could then insert the data into a temporary table using a static SQL that, because it was created by dynamic SQL, could then be queried without issue. (I could also investigate into passing the new Table type param instead of XML.) However, I would like to avoid passing up potentially large lists to a stored procedure. 2) I could perform all the queries from the client. The first would be something like this: SELECT Items.* FROM Orders, Items WHERE Order.OrderId = Items.OrderId AND (dynamic filter) SELECT Orders.* FROM Orders, Items WHERE Order.OrderId = Items.OrderId AND (dynamic filter) This still provides me with the ability to reuse my client sided object-population code because the Orders and Items continue to be returned in two different tables. I have a feeling to, that I might have some options using a Table data type within my stored proc, but that is also new to me and I would appreciate a little bit of spoon feeding on that one. If you even scanned this far in what I wrote, I am surprised, but if so, I woul dappreciate any of your thoughts on how to accomplish this best.

    Read the article

  • C#: Inheritance, Overriding, and Hiding

    - by Rosarch
    I'm having difficulty with an architectural decision for my C# XNA game. The basic entity in the world, such as a tree, zombie, or the player, is represented as a GameObject. Each GameObject is composed of at least a GameObjectController, GameObjectModel, and GameObjectView. These three are enough for simple entities, like inanimate trees or rocks. However, as I try to keep the functionality as factored out as possible, the inheritance begins to feel unwieldy. Syntactically, I'm not even sure how best to accomplish my goals. Here is the GameObjectController: public class GameObjectController { protected GameObjectModel model; protected GameObjectView view; public GameObjectController(GameObjectManager gameObjectManager) { this.gameObjectManager = gameObjectManager; model = new GameObjectModel(this); view = new GameObjectView(this); } public GameObjectManager GameObjectManager { get { return gameObjectManager; } } public virtual GameObjectView View { get { return view; } } public virtual GameObjectModel Model { get { return model; } } public virtual void Update(long tick) { } } I want to specify that each subclass of GameObjectController will have accessible at least a GameObjectView and GameObjectModel. If subclasses are fine using those classes, but perhaps are overriding for a more sophisticated Update() method, I don't want them to have to duplicate the code to produce those dependencies. So, the GameObjectController constructor sets those objects up. However, some objects do want to override the model and view. This is where the trouble comes in. Some objects need to fight, so they are CombatantGameObjects: public class CombatantGameObject : GameObjectController { protected new readonly CombatantGameModel model; public new virtual CombatantGameModel Model { get { return model; } } protected readonly CombatEngine combatEngine; public CombatantGameObject(GameObjectManager gameObjectManager, CombatEngine combatEngine) : base(gameObjectManager) { model = new CombatantGameModel(this); this.combatEngine = combatEngine; } public override void Update(long tick) { if (model.Health <= 0) { gameObjectManager.RemoveFromWorld(this); } base.Update(tick); } } Still pretty simple. Is my use of new to hide instance variables correct? Note that I'm assigning CombatantObjectController.model here, even though GameObjectController.Model was already set. And, combatants don't need any special view functionality, so they leave GameObjectController.View alone. Then I get down to the PlayerController, at which a bug is found. public class PlayerController : CombatantGameObject { private readonly IInputReader inputReader; private new readonly PlayerModel model; public new PlayerModel Model { get { return model; } } private float lastInventoryIndexAt; private float lastThrowAt; public PlayerController(GameObjectManager gameObjectManager, IInputReader inputReader, CombatEngine combatEngine) : base(gameObjectManager, combatEngine) { this.inputReader = inputReader; model = new PlayerModel(this); Model.Health = Constants.PLAYER_HEALTH; } public override void Update(long tick) { if (Model.Health <= 0) { gameObjectManager.RemoveFromWorld(this); for (int i = 0; i < 10; i++) { Debug.WriteLine("YOU DEAD SON!!!"); } return; } UpdateFromInput(tick); // .... } } The first time that this line is executed, I get a null reference exception: model.Body.ApplyImpulse(movementImpulse, model.Position); model.Position looks at model.Body, which is null. This is a function that initializes GameObjects before they are deployed into the world: public void Initialize(GameObjectController controller, IDictionary<string, string> data, WorldState worldState) { controller.View.read(data); controller.View.createSpriteAnimations(data, _assets); controller.Model.read(data); SetUpPhysics(controller, worldState, controller.Model.BoundingCircleRadius, Single.Parse(data["x"]), Single.Parse(data["y"]), bool.Parse(data["isBullet"])); } Every object is passed as a GameObjectController. Does that mean that if the object is really a PlayerController, controller.Model will refer to the base's GameObjectModel and not the PlayerController's overriden PlayerObjectModel? In response to rh: This means that now for a PlayerModel p, p.Model is not equivalent to ((CombatantGameObject)p).Model, and also not equivalent to ((GameObjectController)p).Model. That is exactly what I do not want. I want: PlayerController p; p.Model == ((CombatantGameObject)p).Model p.Model == ((GameObjectController)p).Model How can I do this? override?

    Read the article

  • Why is the class wrong for NSFetchRequest?

    - by Stephen Furlani
    Hello, I am working with an undocumented API (Osirix) and I have a sister-question to the one I posted here. I am having trouble loading objects from a managed object context. With loading from API, using their instance of _context and _model 2010-05-28 14:05:13.588 OsiriX[44012:a0f] Entity: Study 2010-05-28 14:05:13.589 OsiriX[44012:a0f] EntityClassName: DicomStudy 2010-05-28 14:05:13.589 OsiriX[44012:a0f] ClassName: DicomStudy With loading from Fetch Request (and my own instance of _context, and _model) 2010-05-28 14:19:09.956 rcOsirix[44431:7a03] Entity: Study 2010-05-28 14:19:09.957 rcOsirix[44431:7a03] EntityClassName: DicomStudy 2010-05-28 14:19:09.958 rcOsirix[44431:7a03] ClassName: NSManagedObject output given by: NSLog(@"Entity: %@",[[item entity] name]); NSLog(@"EntityClassName: %@", [[item entity] managedObjectClassName]); NSLog(@"ClassName: %s", class_getName(object_getClass([item class]))); So it is obvious that even though the Entity thinks it is a DicomSeries - it is not. It is just a NSManagedObject. DicomSeries has some "hard-coded" KVC stuff that I ran into a problem with in my other question. I'm pursuing a different line of reasoning in this thread - with the loading of the objects. The following is their code: - (NSManagedObjectModel *)managedObjectModel { if (managedObjectModel) return managedObjectModel; NSMutableSet *allBundles = [[NSMutableSet alloc] init]; [allBundles addObject: [NSBundle mainBundle]]; [allBundles addObjectsFromArray: [NSBundle allFrameworks]]; managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL: [NSURL fileURLWithPath: [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"/OsiriXDB_DataModel.mom"]]]; [allBundles release]; return managedObjectModel; } - (NSManagedObjectContext *) managedObjectContextLoadIfNecessary:(BOOL) loadIfNecessary { NSError *error = nil; NSString *localizedDescription; NSFileManager *fileManager; if( currentDatabasePath == nil) return nil; if (managedObjectContext) return managedObjectContext; if( loadIfNecessary == NO) return nil; fileManager = [NSFileManager defaultManager]; [persistentStoreCoordinator release]; persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel: self.managedObjectModel]; managedObjectContext = [[NSManagedObjectContext alloc] init]; [managedObjectContext setPersistentStoreCoordinator: persistentStoreCoordinator]; NSURL *url = [NSURL fileURLWithPath: currentDatabasePath]; if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType configuration:nil URL:url options:nil error:&error]) { NSLog(@"********** managedObjectContextLoadIfNecessary FAILED: %@", error); localizedDescription = [error localizedDescription]; error = [NSError errorWithDomain:@"OsiriXDomain" code:0 userInfo:[NSDictionary dictionaryWithObjectsAndKeys:error, NSUnderlyingErrorKey, [NSString stringWithFormat:@"Store Configuration Failure: %@", ((localizedDescription != nil) ? localizedDescription : @"Unknown Error")], NSLocalizedDescriptionKey, nil]]; } [[managedObjectContext undoManager] setLevelsOfUndo: 1]; [[managedObjectContext undoManager] disableUndoRegistration]; // This line is very important, if there is NO database.sql file [self saveDatabase: currentDatabasePath]; return managedObjectContext; } This is my code: NSManagedObjectModel* DataModule::managedObjectModel() { if (_managedObjectModel) return _managedObjectModel; NSMutableSet *allBundles = [[NSMutableSet alloc] init]; [allBundles addObject: [NSBundle mainBundle]]; [allBundles addObjectsFromArray: [NSBundle allFrameworks]]; _managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL: [NSURL fileURLWithPath: [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"/OsiriXDB_DataModel.mom"]]]; [allBundles release]; return [_managedObjectModel retain]; } ... NSError *error = nil; [_storeCoordinator release]; _storeCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel: managedObjectModel()]; _context = [[NSManagedObjectContext alloc] init]; [_context setPersistentStoreCoordinator: _storeCoordinator]; NSURL *url = [NSURL fileURLWithPath: [[NSString alloc] initWithCString:_DBPath.c_str()]]; if (url == nil) { [pool release]; _loadLock = false; return nil; } if (![_storeCoordinator addPersistentStoreWithType:NSSQLiteStoreType configuration:nil URL:url options:nil error:&error]) { NSLog(@"********** managedObjectContextLoadIfNecessary FAILED: %@", error); NSString *localizedDescription = [error localizedDescription]; error = [NSError errorWithDomain:@"OsiriXDomain" code:0 userInfo:[NSDictionary dictionaryWithObjectsAndKeys:error, NSUnderlyingErrorKey, [NSString stringWithFormat:@"Store Configuration Failure: %@", ((localizedDescription != nil) ? localizedDescription : @"Unknown Error")], NSLocalizedDescriptionKey, nil]]; //Exit Failure [pool release]; _loadLock = false; return nil; } [[_context undoManager] setLevelsOfUndo: 1]; [[_context undoManager] disableUndoRegistration]; ... I am including all the same frameworks.... but _allBundles isn't even used to create the managedObjectModel so I don't know what it's supposed to do except load them into memory so that the mom can look at them while loading. Totally lost. Help! Why would objects returned by my FetchRequest with the same Entity come out as NSManagedObjects and not DicomStudys? I'm including DicomStudy.h so it should see the object during creation of the model, context, and fetch request. [request setEntity: [[managedObjectModel() entitiesByName] objectForKey:@"Study"]]; Thanks in advance, -Stephen

    Read the article

  • Pass a Delphi class to a C++ function/method that expects a class with __thiscall methods.

    - by Alan G.
    I have some MSVC++ compiled DLL's for which I have created COM-like (lite) interfaces (abstract Delphi classes). Some of those classes have methods that need pointers to objects. These C++ methods are declared with the __thiscall calling convention (which I cannot change), which is just like __stdcall, except a this pointer is passed on the ECX register. I create the class instance in Delphi, then pass it on to the C++ method. I can set breakpoints in Delphi and see it hitting the exposed __stdcall methods in my Delphi class, but soon I get a STATUS_STACK_BUFFER_OVERRUN and the app has to exit. Is it possible to emulate/deal with __thiscall on the Delphi side of things? If I pass an object instantiated by the C++ system then all is good, and that object's methods are called (as would be expected), but this is useless - I need to pass Delphi objects. Edit 2010-04-19 18:12 This is what happens in more detail: The first method called (setLabel) exits with no error (though its a stub method). The second method called (init), enters then dies when it attempts to read the vol parameter. C++ Side #define SHAPES_EXPORT __declspec(dllexport) // just to show the value class SHAPES_EXPORT CBox { public: virtual ~CBox() {} virtual void init(double volume) = 0; virtual void grow(double amount) = 0; virtual void shrink(double amount) = 0; virtual void setID(int ID = 0) = 0; virtual void setLabel(const char* text) = 0; }; Delphi Side IBox = class public procedure destroyBox; virtual; stdcall; abstract; procedure init(vol: Double); virtual; stdcall; abstract; procedure grow(amount: Double); virtual; stdcall; abstract; procedure shrink(amount: Double); virtual; stdcall; abstract; procedure setID(val: Integer); virtual; stdcall; abstract; procedure setLabel(text: PChar); virtual; stdcall; abstract; end; TMyBox = class(IBox) protected FVolume: Double; FID: Integer; FLabel: String; // public constructor Create; destructor Destroy; override; // BEGIN Virtual Method implementation procedure destroyBox; override; stdcall; // empty - Dont need/want C++ to manage my Delphi objects, just call their methods procedure init(vol: Double); override; stdcall; // FVolume := vol; procedure grow(amount: Double); override; stdcall; // Inc(FVolume, amount); procedure shrink(amount: Double); override; stdcall; // Dec(FVolume, amount); procedure setID(val: Integer); override; stdcall; // FID := val; procedure setLabel(text: PChar); override; stdcall; // Stub method; empty. // END Virtual Method implementation property Volume: Double read FVolume; property ID: Integer read FID; property Label: String read FLabel; end; I would have half expected using stdcall alone to work, but something is messing up, not sure what, perhaps something to do with the ECX register being used? Help would be greatly appreciated. Edit 2010-04-19 17:42 Could it be that the ECX register needs to be preserved on entry and restored once the function exits? Is the this pointer required by C++? I'm probably just reaching at the moment based on some intense Google searches. I found something related, but it seems to be dealing with the reverse of this issue.

    Read the article

  • What's wrong with Bundler working with RubyGems to push a Git repo to Heroku?

    - by stanigator
    I've made sure that all the files are in the root of the repository as recommended in this discussion. However, as I follow the instructions in this section of the book, I can't get through the section without the problems. What do you think is happening with my system that's causing the error? I have no clue at the moment of what the problem means despite reading the following in the log. Thanks in advance for your help! stanley@ubuntu:~/rails_sample/first_app$ git push heroku master Warning: Permanently added the RSA host key for IP address '50.19.85.156' to the list of known hosts. Counting objects: 96, done. Compressing objects: 100% (79/79), done. Writing objects: 100% (96/96), 28.81 KiB, done. Total 96 (delta 22), reused 0 (delta 0) -----> Heroku receiving push -----> Ruby/Rails app detected -----> Installing dependencies using Bundler version 1.2.0.pre Running: bundle install --without development:test --path vendor/bundle --binstubs bin/ --deployment Fetching gem metadata from https://rubygems.org/....... Installing rake (0.9.2.2) Installing i18n (0.6.0) Installing multi_json (1.3.5) Installing activesupport (3.2.3) Installing builder (3.0.0) Installing activemodel (3.2.3) Installing erubis (2.7.0) Installing journey (1.0.3) Installing rack (1.4.1) Installing rack-cache (1.2) Installing rack-test (0.6.1) Installing hike (1.2.1) Installing tilt (1.3.3) Installing sprockets (2.1.3) Installing actionpack (3.2.3) Installing mime-types (1.18) Installing polyglot (0.3.3) Installing treetop (1.4.10) Installing mail (2.4.4) Installing actionmailer (3.2.3) Installing arel (3.0.2) Installing tzinfo (0.3.33) Installing activerecord (3.2.3) Installing activeresource (3.2.3) Installing coffee-script-source (1.3.3) Installing execjs (1.3.2) Installing coffee-script (2.2.0) Installing rack-ssl (1.3.2) Installing json (1.7.3) with native extensions Installing rdoc (3.12) Installing thor (0.14.6) Installing railties (3.2.3) Installing coffee-rails (3.2.2) Installing jquery-rails (2.0.2) Using bundler (1.2.0.pre) Installing rails (3.2.3) Installing sass (3.1.18) Installing sass-rails (3.2.5) Installing sqlite3 (1.3.6) with native extensions Gem::Installer::ExtensionBuildError: ERROR: Failed to build gem native extension. /usr/local/bin/ruby extconf.rb checking for sqlite3.h... no sqlite3.h is missing. Try 'port install sqlite3 +universal' or 'yum install sqlite-devel' and check your shared library search path (the location where your sqlite3 shared library is located). *** extconf.rb failed *** Could not create Makefile due to some reason, probably lack of necessary libraries and/or headers. Check the mkmf.log file for more details. You may need configuration options. Provided configuration options: --with-opt-dir --without-opt-dir --with-opt-include --without-opt-include=${opt-dir}/include --with-opt-lib --without-opt-lib=${opt-dir}/lib --with-make-prog --without-make-prog --srcdir=. --curdir --ruby=/usr/local/bin/ruby --with-sqlite3-dir --without-sqlite3-dir --with-sqlite3-include --without-sqlite3-include=${sqlite3-dir}/include --with-sqlite3-lib --without-sqlite3-lib=${sqlite3-dir}/lib --enable-local --disable-local Gem files will remain installed in /tmp/build_3tplrxvj7qa81/vendor/bundle/ruby/1.9.1/gems/sqlite3-1.3.6 for inspection. Results logged to /tmp/build_3tplrxvj7qa81/vendor/bundle/ruby/1.9.1/gems/sqlite3-1.3.6/ext/sqlite3/gem_make.out An error occurred while installing sqlite3 (1.3.6), and Bundler cannot continue. Make sure that `gem install sqlite3 -v '1.3.6'` succeeds before bundling. ! ! Failed to install gems via Bundler. ! ! Heroku push rejected, failed to compile Ruby/rails app To [email protected]:growing-mountain-2788.git ! [remote rejected] master -> master (pre-receive hook declined) error: failed to push some refs to '[email protected]:growing-mountain-2788.git' ------Gemfile------------------------ As requested, here's the auto-generated gemfile: source 'https://rubygems.org' gem 'rails', '3.2.3' # Bundle edge Rails instead: # gem 'rails', :git => 'git://github.com/rails/rails.git' gem 'sqlite3' gem 'json' # Gems used only for assets and not required # in production environments by default. group :assets do gem 'sass-rails', '~> 3.2.3' gem 'coffee-rails', '~> 3.2.1' # See https://github.com/sstephenson/execjs#readme for more supported runtimes # gem 'therubyracer', :platform => :ruby gem 'uglifier', '>= 1.0.3' end gem 'jquery-rails' # To use ActiveModel has_secure_password # gem 'bcrypt-ruby', '~> 3.0.0' # To use Jbuilder templates for JSON # gem 'jbuilder' # Use unicorn as the app server # gem 'unicorn' # Deploy with Capistrano # gem 'capistrano' # To use debugger # gem 'ruby-debug'

    Read the article

  • Condition Variable in Shared Memory - is this code POSIX-conformant?

    - by GrahamS
    We've been trying to use a mutex and condition variable to synchronise access to named shared memory on a LynuxWorks LynxOS-SE system (POSIX-conformant). One shared memory block is called "/sync" and contains the mutex and condition variable, the other is "/data" and contains the actual data we are syncing access to. We're seeing failures from pthread_cond_signal() if both processes don't perform the mmap() calls in exactly the same order, or if one process mmaps in some other piece of shared memory before it mmaps the sync memory. This example code is about as short as I can make it: #include <sys/types.h> #include <sys/stat.h> #include <sys/mman.h> #include <sys/file.h> #include <stdlib.h> #include <pthread.h> #include <errno.h> #include <iostream> #include <string> using namespace std; static const string shm_name_sync("/sync"); static const string shm_name_data("/data"); struct shared_memory_sync { pthread_mutex_t mutex; pthread_cond_t condition; }; struct shared_memory_data { int a; int b; }; //Create 2 shared memory objects // - sync contains 2 shared synchronisation objects (mutex and condition) // - data not important void create() { // Create and map 'sync' shared memory int fd_sync = shm_open(shm_name_sync.c_str(), O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); ftruncate(fd_sync, sizeof(shared_memory_sync)); void* addr_sync = mmap(0, sizeof(shared_memory_sync), PROT_READ|PROT_WRITE, MAP_SHARED, fd_sync, 0); shared_memory_sync* p_sync = static_cast<shared_memory_sync*> (addr_sync); // init the cond and mutex pthread_condattr_t cond_attr; pthread_condattr_init(&cond_attr); pthread_condattr_setpshared(&cond_attr, PTHREAD_PROCESS_SHARED); pthread_cond_init(&(p_sync->condition), &cond_attr); pthread_condattr_destroy(&cond_attr); pthread_mutexattr_t m_attr; pthread_mutexattr_init(&m_attr); pthread_mutexattr_setpshared(&m_attr, PTHREAD_PROCESS_SHARED); pthread_mutex_init(&(p_sync->mutex), &m_attr); pthread_mutexattr_destroy(&m_attr); // Create the 'data' shared memory int fd_data = shm_open(shm_name_data.c_str(), O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); ftruncate(fd_data, sizeof(shared_memory_data)); void* addr_data = mmap(0, sizeof(shared_memory_data), PROT_READ|PROT_WRITE, MAP_SHARED, fd_data, 0); shared_memory_data* p_data = static_cast<shared_memory_data*> (addr_data); // Run the second process while it sleeps here. sleep(10); int res = pthread_cond_signal(&(p_sync->condition)); assert(res==0); // <--- !!!THIS ASSERT WILL FAIL ON LYNXOS!!! munmap(addr_sync, sizeof(shared_memory_sync)); shm_unlink(shm_name_sync.c_str()); munmap(addr_data, sizeof(shared_memory_data)); shm_unlink(shm_name_data.c_str()); } //Open the same 2 shared memory objects but in reverse order // - data // - sync void open() { sleep(2); int fd_data = shm_open(shm_name_data.c_str(), O_RDWR, S_IRUSR|S_IWUSR); void* addr_data = mmap(0, sizeof(shared_memory_data), PROT_READ|PROT_WRITE, MAP_SHARED, fd_data, 0); shared_memory_data* p_data = static_cast<shared_memory_data*> (addr_data); int fd_sync = shm_open(shm_name_sync.c_str(), O_RDWR, S_IRUSR|S_IWUSR); void* addr_sync = mmap(0, sizeof(shared_memory_sync), PROT_READ|PROT_WRITE, MAP_SHARED, fd_sync, 0); shared_memory_sync* p_sync = static_cast<shared_memory_sync*> (addr_sync); // Wait on the condvar pthread_mutex_lock(&(p_sync->mutex)); pthread_cond_wait(&(p_sync->condition), &(p_sync->mutex)); pthread_mutex_unlock(&(p_sync->mutex)); munmap(addr_sync, sizeof(shared_memory_sync)); munmap(addr_data, sizeof(shared_memory_data)); } int main(int argc, char** argv) { if(argc>1) { open(); } else { create(); } return (0); } Run this program with no args, then another copy with args, and the first one will fail at the assert checking the pthread_cond_signal(). But change the open() function to mmap() the "/sync" memory first and it will all work fine. This seems like a major bug in LynxOS but LynuxWorks claim that using mutex and condition variable in this way is not covered by the POSIX standard, so they are not interested. Can anyone determine if this code does violate POSIX? Or does anyone have any convincing documentation that it is POSIX compliant?

    Read the article

  • Why SELECT N + 1 with no foreign keys and LINQ?

    - by Daniel Flöijer
    I have a database that unfortunately have no real foreign keys (I plan to add this later, but prefer not to do it right now to make migration easier). I have manually written domain objects that map to the database to set up relationships (following this tutorial http://www.codeproject.com/Articles/43025/A-LINQ-Tutorial-Mapping-Tables-to-Objects), and I've finally gotten the code to run properly. However, I've noticed I now have the SELECT N + 1 problem. Instead of selecting all Product's they're selected one by one with this SQL: SELECT [t0].[id] AS [ProductID], [t0].[Name], [t0].[info] AS [Description] FROM [products] AS [t0] WHERE [t0].[id] = @p0 -- @p0: Input Int (Size = -1; Prec = 0; Scale = 0) [65] Controller: public ViewResult List(string category, int page = 1) { var cat = categoriesRepository.Categories.SelectMany(c => c.LocalizedCategories).Where(lc => lc.CountryID == 1).First(lc => lc.Name == category).Category; var productsToShow = cat.Products; var viewModel = new ProductsListViewModel { Products = productsToShow.Skip((page - 1) * PageSize).Take(PageSize).ToList(), PagingInfo = new PagingInfo { CurrentPage = page, ItemsPerPage = PageSize, TotalItems = productsToShow.Count() }, CurrentCategory = cat }; return View("List", viewModel); } Since I wasn't sure if my LINQ expression was correct I tried to just use this but I still got N+1: var cat = categoriesRepository.Categories.First(); Domain objects: [Table(Name = "products")] public class Product { [Column(Name = "id", IsPrimaryKey = true, IsDbGenerated = true, AutoSync = AutoSync.OnInsert)] public int ProductID { get; set; } [Column] public string Name { get; set; } [Column(Name = "info")] public string Description { get; set; } private EntitySet<ProductCategory> _productCategories = new EntitySet<ProductCategory>(); [System.Data.Linq.Mapping.Association(Storage = "_productCategories", OtherKey = "productId", ThisKey = "ProductID")] private ICollection<ProductCategory> ProductCategories { get { return _productCategories; } set { _productCategories.Assign(value); } } public ICollection<Category> Categories { get { return (from pc in ProductCategories select pc.Category).ToList(); } } } [Table(Name = "products_menu")] class ProductCategory { [Column(IsPrimaryKey = true, Name = "products_id")] private int productId; private EntityRef<Product> _product = new EntityRef<Product>(); [System.Data.Linq.Mapping.Association(Storage = "_product", ThisKey = "productId")] public Product Product { get { return _product.Entity; } set { _product.Entity = value; } } [Column(IsPrimaryKey = true, Name = "products_types_id")] private int categoryId; private EntityRef<Category> _category = new EntityRef<Category>(); [System.Data.Linq.Mapping.Association(Storage = "_category", ThisKey = "categoryId")] public Category Category { get { return _category.Entity; } set { _category.Entity = value; } } } [Table(Name = "products_types")] public class Category { [Column(Name = "id", IsPrimaryKey = true, IsDbGenerated = true, AutoSync = AutoSync.OnInsert)] public int CategoryID { get; set; } private EntitySet<ProductCategory> _productCategories = new EntitySet<ProductCategory>(); [System.Data.Linq.Mapping.Association(Storage = "_productCategories", OtherKey = "categoryId", ThisKey = "CategoryID")] private ICollection<ProductCategory> ProductCategories { get { return _productCategories; } set { _productCategories.Assign(value); } } public ICollection<Product> Products { get { return (from pc in ProductCategories select pc.Product).ToList(); } } private EntitySet<LocalizedCategory> _LocalizedCategories = new EntitySet<LocalizedCategory>(); [System.Data.Linq.Mapping.Association(Storage = "_LocalizedCategories", OtherKey = "CategoryID")] public ICollection<LocalizedCategory> LocalizedCategories { get { return _LocalizedCategories; } set { _LocalizedCategories.Assign(value); } } } [Table(Name = "products_types_localized")] public class LocalizedCategory { [Column(Name = "id", IsPrimaryKey = true, IsDbGenerated = true, AutoSync = AutoSync.OnInsert)] public int LocalizedCategoryID { get; set; } [Column(Name = "products_types_id")] private int CategoryID; private EntityRef<Category> _Category = new EntityRef<Category>(); [System.Data.Linq.Mapping.Association(Storage = "_Category", ThisKey = "CategoryID")] public Category Category { get { return _Category.Entity; } set { _Category.Entity = value; } } [Column(Name = "country_id")] public int CountryID { get; set; } [Column] public string Name { get; set; } } I've tried to comment out everything from my View, so nothing there seems to influence this. The ViewModel is as simple as it looks, so shouldn't be anything there. When reading this ( http://www.hookedonlinq.com/LinqToSQL5MinuteOVerview.ashx) I started suspecting it might be because I have no real foreign keys in the database and that I might need to use manual joins in my code. Is that correct? How would I go about it? Should I remove my mapping code from my domain model or is it something that I need to add/change to it? Note: I've stripped parts of the code out that I don't think is relevant to make it cleaner for this question. Please let me know if something is missing.

    Read the article

  • How should I implement simple caches with concurrency on Redis?

    - by solublefish
    Background I have a 2-tier web service - just my app server and an RDBMS. I want to move to a pool of identical app servers behind a load balancer. I currently cache a bunch of objects in-process. I hope to move them to a shared Redis. I have a dozen or so caches of simple, small-sized business objects. For example, I have a set of Foos. Each Foo has a unique FooId and an OwnerId. One "owner" may own multiple Foos. In a traditional RDBMS this is just a table with an index on the PK FooId and one on OwnerId. I'm caching this in one process simply: Dictionary<int,Foo> _cacheFooById; Dictionary<int,HashSet<int>> _indexFooIdsByOwnerId; Reads come straight from here, and writes go here and to the RDBMS. I usually have this invariant: "For a given group [say by OwnerId], the whole group is in cache or none of it is." So when I cache miss on a Foo, I pull that Foo and all the owner's other Foos from the RDBMS. Updates make sure to keep the index up to date and respect the invariant. When an owner calls GetMyFoos I never have to worry that some are cached and some aren't. What I did already The first/simplest answer seems to be to use plain ol' SET and GET with a composite key and json value: SET( "ServiceCache:Foo:" + theFoo.Id, JsonSerialize(theFoo)); I later decided I liked: HSET( "ServiceCache:Foo", theFoo.FooId, JsonSerialize(theFoo)); That lets me get all the values in one cache as HVALS. It also felt right - I'm literally moving hashtables to Redis, so perhaps my top-level items should be hashes. This works to first order. If my high-level code is like: UpdateCache(myFoo); AddToIndex(myFoo); That translates into: HSET ("ServiceCache:Foo", theFoo.FooId, JsonSerialize(theFoo)); var myFoos = JsonDeserialize( HGET ("ServiceCache:FooIndex", theFoo.OwnerId) ); myFoos.Add(theFoo.OwnerId); HSET ("ServiceCache:FooIndex", theFoo.OwnerId, JsonSerialize(myFoos)); However, this is broken in two ways. Two concurrent operations can read/modify/write at the same time. The latter "wins" the final HSET and the former's index update is lost. Another operation could read the index in between the first and second lines. It would miss a Foo that it should find. So how do I index properly? I think I could use a Redis set instead of a json-encoded value for the index. That would solve part of the problem since the "add-to-index-if-not-already-present" would be atomic. I also read about using MULTI as a "transaction" but it doesn't seem like it does what I want. Am I right that I can't really MULTI; HGET; {update}; HSET; EXEC since it doesn't even do the HGET before I issue the EXEC? I also read about using WATCH and MULTI for optimistic concurrency, then retrying on failure. But WATCH only works on top-level keys. So it's back to SET/GET instead of HSET/HGET. And now I need a new index-like-thing to support getting all the values in a given cache. If I understand it right, I can combine all these things to do the job. Something like: while(!succeeded) { WATCH( "ServiceCache:Foo:" + theFoo.FooId ); WATCH( "ServiceCache:FooIndexByOwner:" + theFoo.OwnerId ); WATCH( "ServiceCache:FooIndexAll" ); MULTI(); SET ("ServiceCache:Foo:" + theFoo.FooId, JsonSerialize(theFoo)); SADD ("ServiceCache:FooIndexByOwner:" + theFoo.OwnerId, theFoo.FooId); SADD ("ServiceCache:FooIndexAll", theFoo.FooId); EXEC(); //TODO somehow set succeeded properly } Finally I'd have to translate this pseudocode into real code depending how my client library uses WATCH/MULTI/EXEC; it looks like they need some sort of context to hook them together. All in all this seems like a lot of complexity for what has to be a very common case; I can't help but think there's a better, smarter, Redis-ish way to do things that I'm just not seeing. How do I lock properly? Even if I had no indexes, there's still a (probably rare) race condition. A: HGET - cache miss B: HGET - cache miss A: SELECT B: SELECT A: HSET C: HGET - cache hit C: UPDATE C: HSET B: HSET ** this is stale data that's clobbering C's update. Note that C could just be a really-fast A. Again I think WATCH, MULTI, retry would work, but... ick. I know in some places people use special Redis keys as locks for other objects. Is that a reasonable approach here? Should those be top-level keys like ServiceCache:FooLocks:{Id} or ServiceCache:Locks:Foo:{Id}? Or make a separate hash for them - ServiceCache:Locks with subkeys Foo:{Id}, or ServiceCache:Locks:Foo with subkeys {Id} ? How would I work around abandoned locks, say if a transaction (or a whole server) crashes while "holding" the lock?

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • VS 2010 SP1 and SQL CE

    - by ScottGu
    Last month we released the Beta of VS 2010 Service Pack 1 (SP1).  You can learn more about the VS 2010 SP1 Beta from Jason Zander’s two blog posts about it, and from Scott Hanselman’s blog post that covers some of the new capabilities enabled with it.   You can download and install the VS 2010 SP1 Beta here. Last week I blogged about the new Visual Studio support for IIS Express that we are adding with VS 2010 SP1. In today’s post I’m going to talk about the new VS 2010 SP1 tooling support for SQL CE, and walkthrough some of the cool scenarios it enables.  SQL CE – What is it and why should you care? SQL CE is a free, embedded, database engine that enables easy database storage. No Database Installation Required SQL CE does not require you to run a setup or install a database server in order to use it.  You can simply copy the SQL CE binaries into the \bin directory of your ASP.NET application, and then your web application can use it as a database engine.  No setup or extra security permissions are required for it to run. You do not need to have an administrator account on the machine. Just copy your web application onto any server and it will work. This is true even of medium-trust applications running in a web hosting environment. SQL CE runs in-memory within your ASP.NET application and will start-up when you first access a SQL CE database, and will automatically shutdown when your application is unloaded.  SQL CE databases are stored as files that live within the \App_Data folder of your ASP.NET Applications. Works with Existing Data APIs SQL CE 4 works with existing .NET-based data APIs, and supports a SQL Server compatible query syntax.  This means you can use existing data APIs like ADO.NET, as well as use higher-level ORMs like Entity Framework and NHibernate with SQL CE.  This enables you to use the same data programming skills and data APIs you know today. Supports Development, Testing and Production Scenarios SQL CE can be used for development scenarios, testing scenarios, and light production usage scenarios.  With the SQL CE 4 release we’ve done the engineering work to ensure that SQL CE won’t crash or deadlock when used in a multi-threaded server scenario (like ASP.NET).  This is a big change from previous releases of SQL CE – which were designed for client-only scenarios and which explicitly blocked running in web-server environments.  Starting with SQL CE 4 you can use it in a web-server as well. There are no license restrictions with SQL CE.  It is also totally free. Easy Migration to SQL Server SQL CE is an embedded database – which makes it ideal for development, testing, and light-usage scenarios.  For high-volume sites and applications you’ll probably want to migrate your database to use SQL Server Express (which is free), SQL Server or SQL Azure.  These servers enable much better scalability, more development features (including features like Stored Procedures – which aren’t supported with SQL CE), as well as more advanced data management capabilities. We’ll ship migration tools that enable you to optionally take SQL CE databases and easily upgrade them to use SQL Server Express, SQL Server, or SQL Azure.  You will not need to change your code when upgrading a SQL CE database to SQL Server or SQL Azure.  Our goal is to enable you to be able to simply change the database connection string in your web.config file and have your application just work. New Tooling Support for SQL CE in VS 2010 SP1 VS 2010 SP1 includes much improved tooling support for SQL CE, and adds support for using SQL CE within ASP.NET projects for the first time.  With VS 2010 SP1 you can now: Create new SQL CE Databases Edit and Modify SQL CE Database Schema and Indexes Populate SQL CE Databases within Data Use the Entity Framework (EF) designer to create model layers against SQL CE databases Use EF Code First to define model layers in code, then create a SQL CE database from them, and optionally edit the DB with VS Deploy SQL CE databases to remote servers using Web Deploy and optionally convert them to full SQL Server databases You can take advantage of all of the above features from within both ASP.NET Web Forms and ASP.NET MVC based projects. Download You can enable SQL CE tooling support within VS 2010 by first installing VS 2010 SP1 (beta). Once SP1 is installed, you’ll also then need to install the SQL CE Tools for Visual Studio download.  This is a separate download that enables the SQL CE tooling support for VS 2010 SP1. Walkthrough of Two Scenarios In this blog post I’m going to walkthrough how you can take advantage of SQL CE and VS 2010 SP1 using both an ASP.NET Web Forms and an ASP.NET MVC based application. Specifically, we’ll walkthrough: How to create a SQL CE database using VS 2010 SP1, then use the EF4 visual designers in Visual Studio to construct a model layer from it, and then display and edit the data using an ASP.NET GridView control. How to use an EF Code First approach to define a model layer using POCO classes and then have EF Code-First “auto-create” a SQL CE database for us based on our model classes.  We’ll then look at how we can use the new VS 2010 SP1 support for SQL CE to inspect the database that was created, populate it with data, and later make schema changes to it.  We’ll do all this within the context of an ASP.NET MVC based application. You can follow the two walkthroughs below on your own machine by installing VS 2010 SP1 (beta) and then installing the SQL CE Tools for Visual Studio download (which is a separate download that enables SQL CE tooling support for VS 2010 SP1). Walkthrough 1: Create a SQL CE Database, Create EF Model Classes, Edit the Data with a GridView This first walkthrough will demonstrate how to create and define a SQL CE database within an ASP.NET Web Form application.  We’ll then build an EF model layer for it and use that model layer to enable data editing scenarios with an <asp:GridView> control. Step 1: Create a new ASP.NET Web Forms Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET Web Forms project.  We’ll use the “ASP.NET Web Application” project template option so that it has a default UI skin implemented: Step 2: Create a SQL CE Database Right click on the “App_Data” folder within the created project and choose the “Add->New Item” menu command: This will bring up the “Add Item” dialog box.  Select the “SQL Server Compact 4.0 Local Database” item (new in VS 2010 SP1) and name the database file to create “Store.sdf”: Note that SQL CE database files have a .sdf filename extension. Place them within the /App_Data folder of your ASP.NET application to enable easy deployment. When we clicked the “Add” button above a Store.sdf file was added to our project: Step 3: Adding a “Products” Table Double-clicking the “Store.sdf” database file will open it up within the Server Explorer tab.  Since it is a new database there are no tables within it: Right click on the “Tables” icon and choose the “Create Table” menu command to create a new database table.  We’ll name the new table “Products” and add 4 columns to it.  We’ll mark the first column as a primary key (and make it an identify column so that its value will automatically increment with each new row): When we click “ok” our new Products table will be created in the SQL CE database. Step 4: Populate with Data Once our Products table is created it will show up within the Server Explorer.  We can right-click it and choose the “Show Table Data” menu command to edit its data: Let’s add a few sample rows of data to it: Step 5: Create an EF Model Layer We have a SQL CE database with some data in it – let’s now create an EF Model Layer that will provide a way for us to easily query and update data within it. Let’s right-click on our project and choose the “Add->New Item” menu command.  This will bring up the “Add New Item” dialog – select the “ADO.NET Entity Data Model” item within it and name it “Store.edmx” This will add a new Store.edmx item to our solution explorer and launch a wizard that allows us to quickly create an EF model: Select the “Generate From Database” option above and click next.  Choose to use the Store.sdf SQL CE database we just created and then click next again.  The wizard will then ask you what database objects you want to import into your model.  Let’s choose to import the “Products” table we created earlier: When we click the “Finish” button Visual Studio will open up the EF designer.  It will have a Product entity already on it that maps to the “Products” table within our SQL CE database: The VS 2010 SP1 EF designer works exactly the same with SQL CE as it does already with SQL Server and SQL Express.  The Product entity above will be persisted as a class (called “Product”) that we can programmatically work against within our ASP.NET application. Step 6: Compile the Project Before using your model layer you’ll need to build your project.  Do a Ctrl+Shift+B to compile the project, or use the Build->Build Solution menu command. Step 7: Create a Page that Uses our EF Model Layer Let’s now create a simple ASP.NET Web Form that contains a GridView control that we can use to display and edit the our Products data (via the EF Model Layer we just created). Right-click on the project and choose the Add->New Item command.  Select the “Web Form from Master Page” item template, and name the page you create “Products.aspx”.  Base the master page on the “Site.Master” template that is in the root of the project. Add an <h2>Products</h2> heading the new Page, and add an <asp:gridview> control within it: Then click the “Design” tab to switch into design-view. Select the GridView control, and then click the top-right corner to display the GridView’s “Smart Tasks” UI: Choose the “New data source…” drop down option above.  This will bring up the below dialog which allows you to pick your Data Source type: Select the “Entity” data source option – which will allow us to easily connect our GridView to the EF model layer we created earlier.  This will bring up another dialog that allows us to pick our model layer: Select the “StoreEntities” option in the dropdown – which is the EF model layer we created earlier.  Then click next – which will allow us to pick which entity within it we want to bind to: Select the “Products” entity in the above dialog – which indicates that we want to bind against the “Product” entity class we defined earlier.  Then click the “Enable automatic updates” checkbox to ensure that we can both query and update Products.  When you click “Finish” VS will wire-up an <asp:EntityDataSource> to your <asp:GridView> control: The last two steps we’ll do will be to click the “Enable Editing” checkbox on the Grid (which will cause the Grid to display an “Edit” link on each row) and (optionally) use the Auto Format dialog to pick a UI template for the Grid. Step 8: Run the Application Let’s now run our application and browse to the /Products.aspx page that contains our GridView.  When we do so we’ll see a Grid UI of the Products within our SQL CE database. Clicking the “Edit” link for any of the rows will allow us to edit their values: When we click “Update” the GridView will post back the values, persist them through our EF Model Layer, and ultimately save them within our SQL CE database. Learn More about using EF with ASP.NET Web Forms Read this tutorial series on the http://asp.net site to learn more about how to use EF with ASP.NET Web Forms.  The tutorial series uses SQL Express as the database – but the nice thing is that all of the same steps/concepts can also now also be done with SQL CE.   Walkthrough 2: Using EF Code-First with SQL CE and ASP.NET MVC 3 We used a database-first approach with the sample above – where we first created the database, and then used the EF designer to create model classes from the database.  In addition to supporting a designer-based development workflow, EF also enables a more code-centric option which we call “code first development”.  Code-First Development enables a pretty sweet development workflow.  It enables you to: Define your model objects by simply writing “plain old classes” with no base classes or visual designer required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping Optionally auto-create a database based on the model classes you define – allowing you to start from code first I’ve done several blog posts about EF Code First in the past – I really think it is great.  The good news is that it also works very well with SQL CE. The combination of SQL CE, EF Code First, and the new VS tooling support for SQL CE, enables a pretty nice workflow.  Below is a simple example of how you can use them to build a simple ASP.NET MVC 3 application. Step 1: Create a new ASP.NET MVC 3 Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET MVC 3 project.  We’ll use the “Internet Project” template so that it has a default UI skin implemented: Step 2: Use NuGet to Install EFCodeFirst Next we’ll use the NuGet package manager (automatically installed by ASP.NET MVC 3) to add the EFCodeFirst library to our project.  We’ll use the Package Manager command shell to do this.  Bring up the package manager console within Visual Studio by selecting the View->Other Windows->Package Manager Console menu command.  Then type: install-package EFCodeFirst within the package manager console to download the EFCodeFirst library and have it be added to our project: When we enter the above command, the EFCodeFirst library will be downloaded and added to our application: Step 3: Build Some Model Classes Using a “code first” based development workflow, we will create our model classes first (even before we have a database).  We create these model classes by writing code. For this sample, we will right click on the “Models” folder of our project and add the below three classes to our project: The “Dinner” and “RSVP” model classes above are “plain old CLR objects” (aka POCO).  They do not need to derive from any base classes or implement any interfaces, and the properties they expose are standard .NET data-types.  No data persistence attributes or data code has been added to them.   The “NerdDinners” class derives from the DbContext class (which is supplied by EFCodeFirst) and handles the retrieval/persistence of our Dinner and RSVP instances from a database. Step 4: Listing Dinners We’ve written all of the code necessary to implement our model layer for this simple project.  Let’s now expose and implement the URL: /Dinners/Upcoming within our project.  We’ll use it to list upcoming dinners that happen in the future. We’ll do this by right-clicking on our “Controllers” folder and select the “Add->Controller” menu command.  We’ll name the Controller we want to create “DinnersController”.  We’ll then implement an “Upcoming” action method within it that lists upcoming dinners using our model layer above.  We will use a LINQ query to retrieve the data and pass it to a View to render with the code below: We’ll then right-click within our Upcoming method and choose the “Add-View” menu command to create an “Upcoming” view template that displays our dinners.  We’ll use the “empty” template option within the “Add View” dialog and write the below view template using Razor: Step 4: Configure our Project to use a SQL CE Database We have finished writing all of our code – our last step will be to configure a database connection-string to use. We will point our NerdDinners model class to a SQL CE database by adding the below <connectionString> to the web.config file at the top of our project: EF Code First uses a default convention where context classes will look for a connection-string that matches the DbContext class name.  Because we created a “NerdDinners” class earlier, we’ve also named our connectionstring “NerdDinners”.  Above we are configuring our connection-string to use SQL CE as the database, and telling it that our SQL CE database file will live within the \App_Data directory of our ASP.NET project. Step 5: Running our Application Now that we’ve built our application, let’s run it! We’ll browse to the /Dinners/Upcoming URL – doing so will display an empty list of upcoming dinners: You might ask – but where did it query to get the dinners from? We didn’t explicitly create a database?!? One of the cool features that EF Code-First supports is the ability to automatically create a database (based on the schema of our model classes) when the database we point it at doesn’t exist.  Above we configured  EF Code-First to point at a SQL CE database in the \App_Data\ directory of our project.  When we ran our application, EF Code-First saw that the SQL CE database didn’t exist and automatically created it for us. Step 6: Using VS 2010 SP1 to Explore our newly created SQL CE Database Click the “Show all Files” icon within the Solution Explorer and you’ll see the “NerdDinners.sdf” SQL CE database file that was automatically created for us by EF code-first within the \App_Data\ folder: We can optionally right-click on the file and “Include in Project" to add it to our solution: We can also double-click the file (regardless of whether it is added to the project) and VS 2010 SP1 will open it as a database we can edit within the “Server Explorer” tab of the IDE. Below is the view we get when we double-click our NerdDinners.sdf SQL CE file.  We can drill in to see the schema of the Dinners and RSVPs tables in the tree explorer.  Notice how two tables - Dinners and RSVPs – were automatically created for us within our SQL CE database.  This was done by EF Code First when we accessed the NerdDinners class by running our application above: We can right-click on a Table and use the “Show Table Data” command to enter some upcoming dinners in our database: We’ll use the built-in editor that VS 2010 SP1 supports to populate our table data below: And now when we hit “refresh” on the /Dinners/Upcoming URL within our browser we’ll see some upcoming dinners show up: Step 7: Changing our Model and Database Schema Let’s now modify the schema of our model layer and database, and walkthrough one way that the new VS 2010 SP1 Tooling support for SQL CE can make this easier.  With EF Code-First you typically start making database changes by modifying the model classes.  For example, let’s add an additional string property called “UrlLink” to our “Dinner” class.  We’ll use this to point to a link for more information about the event: Now when we re-run our project, and visit the /Dinners/Upcoming URL we’ll see an error thrown: We are seeing this error because EF Code-First automatically created our database, and by default when it does this it adds a table that helps tracks whether the schema of our database is in sync with our model classes.  EF Code-First helpfully throws an error when they become out of sync – making it easier to track down issues at development time that you might otherwise only find (via obscure errors) at runtime.  Note that if you do not want this feature you can turn it off by changing the default conventions of your DbContext class (in this case our NerdDinners class) to not track the schema version. Our model classes and database schema are out of sync in the above example – so how do we fix this?  There are two approaches you can use today: Delete the database and have EF Code First automatically re-create the database based on the new model class schema (losing the data within the existing DB) Modify the schema of the existing database to make it in sync with the model classes (keeping/migrating the data within the existing DB) There are a couple of ways you can do the second approach above.  Below I’m going to show how you can take advantage of the new VS 2010 SP1 Tooling support for SQL CE to use a database schema tool to modify our database structure.  We are also going to be supporting a “migrations” feature with EF in the future that will allow you to automate/script database schema migrations programmatically. Step 8: Modify our SQL CE Database Schema using VS 2010 SP1 The new SQL CE Tooling support within VS 2010 SP1 makes it easy to modify the schema of our existing SQL CE database.  To do this we’ll right-click on our “Dinners” table and choose the “Edit Table Schema” command: This will bring up the below “Edit Table” dialog.  We can rename, change or delete any of the existing columns in our table, or click at the bottom of the column listing and type to add a new column.  Below I’ve added a new “UrlLink” column of type “nvarchar” (since our property is a string): When we click ok our database will be updated to have the new column and our schema will now match our model classes. Because we are manually modifying our database schema, there is one additional step we need to take to let EF Code-First know that the database schema is in sync with our model classes.  As i mentioned earlier, when a database is automatically created by EF Code-First it adds a “EdmMetadata” table to the database to track schema versions (and hash our model classes against them to detect mismatches between our model classes and the database schema): Since we are manually updating and maintaining our database schema, we don’t need this table – and can just delete it: This will leave us with just the two tables that correspond to our model classes: And now when we re-run our /Dinners/Upcoming URL it will display the dinners correctly: One last touch we could do would be to update our view to check for the new UrlLink property and render a <a> link to it if an event has one: And now when we refresh our /Dinners/Upcoming we will see hyperlinks for the events that have a UrlLink stored in the database: Summary SQL CE provides a free, embedded, database engine that you can use to easily enable database storage.  With SQL CE 4 you can now take advantage of it within ASP.NET projects and applications (both Web Forms and MVC). VS 2010 SP1 provides tooling support that enables you to easily create, edit and modify SQL CE databases – as well as use the standard EF designer against them.  This allows you to re-use your existing skills and data knowledge while taking advantage of an embedded database option.  This is useful both for small applications (where you don’t need the scalability of a full SQL Server), as well as for development and testing scenarios – where you want to be able to rapidly develop/test your application without having a full database instance.  SQL CE makes it easy to later migrate your data to a full SQL Server or SQL Azure instance if you want to – without having to change any code in your application.  All we would need to change in the above two scenarios is the <connectionString> value within the web.config file in order to have our code run against a full SQL Server.  This provides the flexibility to scale up your application starting from a small embedded database solution as needed. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Database Vault 11gR2 11.2.0.1 Certified with Oracle E-Business Suite

    - by Steven Chan
    Oracle Database Vault allows security administrators to protect a database from privileged account access to application data.  Database objects can be placed in protected realms, which can be accessed only if a specific set of conditions are met.  Oracle Database Vault 11gR2 11.2.0.1 is now certified with Oracle E-Business Suite Release 11i and 12.You can now enable Database Vault 11gR2 on your existing E-Business Suite 11.2.0.1 Database instance.  If you already have DB Vault 10gR2 or 11gR1 enabled in your E-Business Suite environment, you can now upgrade to the 11gR2 Database.  We also support EBS patching with Database Vault 11.2.0.1 enabled. Our DB Vault realm creation and grants-related scripts have been updated to reduce patching downtimes.

    Read the article

  • This Week in Geek History: Morse Code, Mars Rovers, J.R.R. Tolkien’s Birthday

    - by Jason Fitzpatrick
    Every week we bring you interesting facts from the history of Geekdom. This week in Geek History witnessed the first successful demonstration of the electric telegraph, the safe landing of the Spirit rover on the surface of Mars, and the birth of famed fantasy author J.R.R. Tolkien. Latest Features How-To Geek ETC How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 The 50 Best How-To Geek Windows Articles of 2010 The 20 Best How-To Geek Explainer Topics for 2010 How to Disable Caps Lock Key in Windows 7 or Vista How to Use the Avira Rescue CD to Clean Your Infected PC The Deep – Awesome Use of Metal Objects as Deep Sea Creatures [Video] Convert or View Documents Online Easily with Zoho, No Account Required Build a Floor Scrubbing Robot out of Computer Fans and a Frisbee Serene Blue Windows Wallpaper for Your Desktop 2011 International Space Station Calendar Available for Download (Free) Ultimate Elimination – Lego Black Ops [Video]

    Read the article

  • Ignoring file 'eugenesan-java-quantal.list.save'

    - by Lupus
    I have a problem with my newly installed 12.10 86_64 Desktop. This error pops up on console when I try to update apt-get or try to install packages and nodejs just don't work and there is no error on console. Ignoring file 'eugenesan-java-quantal.list.save' in directory '/etc/apt/sources.list.d/' as it has an invalid filename extension this error started after my update on apt-get sudo apt-get update I'm a newbie on ubuntu. this is the log file : (in Turkish 'Yoksay' = Ignored, 'Baglandi' = Connected, 'getirilmesi basarisiz oldu' = failed to get ) attila@Lupuseum:~$ sudo apt-get update Yoksay http://security.ubuntu.com quantal-security InRelease Yoksay http://extras.ubuntu.com quantal InRelease Yoksay http://ppa.launchpad.net quantal InRelease Baglandi http://security.ubuntu.com quantal-security Release.gpg Baglandi http://extras.ubuntu.com quantal Release.gpg Yoksay http://cy.archive.ubuntu.com quantal InRelease Yoksay http://ppa.launchpad.net quantal InRelease Baglandi http://security.ubuntu.com quantal-security Release Baglandi http://extras.ubuntu.com quantal Release Yoksay http://cy.archive.ubuntu.com quantal-updates InRelease Baglandi http://ppa.launchpad.net quantal Release.gpg Baglandi http://security.ubuntu.com quantal-security/main Sources Yoksay http://cy.archive.ubuntu.com quantal-backports InRelease Baglandi http://extras.ubuntu.com quantal/main Sources Yoksay http://ppa.launchpad.net quantal Release.gpg Baglandi http://security.ubuntu.com quantal-security/restricted Sources Baglandi http://cy.archive.ubuntu.com quantal Release.gpg Baglandi http://extras.ubuntu.com quantal/main amd64 Packages Baglandi http://ppa.launchpad.net quantal Release Baglandi http://security.ubuntu.com quantal-security/universe Sources Baglandi http://cy.archive.ubuntu.com quantal-updates Release.gpg Baglandi http://extras.ubuntu.com quantal/main i386 Packages Yoksay http://ppa.launchpad.net quantal Release Baglandi http://cy.archive.ubuntu.com quantal-backports Release.gpg Baglandi http://ppa.launchpad.net quantal/main Sources Baglandi http://security.ubuntu.com quantal-security/multiverse Sources Baglandi http://cy.archive.ubuntu.com quantal Release Baglandi http://ppa.launchpad.net quantal/main amd64 Packages Baglandi http://security.ubuntu.com quantal-security/main amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates Release Baglandi http://ppa.launchpad.net quantal/main i386 Packages Baglandi http://security.ubuntu.com quantal-security/restricted amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports Release Baglandi http://security.ubuntu.com quantal-security/universe amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal/main Sources Baglandi http://security.ubuntu.com quantal-security/multiverse amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal/restricted Sources Baglandi http://security.ubuntu.com quantal-security/main i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/universe Sources Baglandi http://security.ubuntu.com quantal-security/restricted i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/multiverse Sources Baglandi http://security.ubuntu.com quantal-security/universe i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/main amd64 Packages Baglandi http://security.ubuntu.com quantal-security/multiverse i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/restricted amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal/universe amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal/multiverse amd64 Packages Baglandi http://security.ubuntu.com quantal-security/main Translation-en Yoksay http://extras.ubuntu.com quantal/main Translation-tr_CY Baglandi http://cy.archive.ubuntu.com quantal/main i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/restricted i386 Packages Yoksay http://extras.ubuntu.com quantal/main Translation-tr Baglandi http://security.ubuntu.com quantal-security/multiverse Translation-en Baglandi http://cy.archive.ubuntu.com quantal/universe i386 Packages Yoksay http://extras.ubuntu.com quantal/main Translation-en Baglandi http://cy.archive.ubuntu.com quantal/multiverse i386 Packages Baglandi http://cy.archive.ubuntu.com quantal/main Translation-tr Baglandi http://cy.archive.ubuntu.com quantal/main Translation-en Baglandi http://security.ubuntu.com quantal-security/restricted Translation-en Baglandi http://cy.archive.ubuntu.com quantal/multiverse Translation-tr Baglandi http://cy.archive.ubuntu.com quantal/multiverse Translation-en Baglandi http://security.ubuntu.com quantal-security/universe Translation-en Baglandi http://cy.archive.ubuntu.com quantal/restricted Translation-tr Baglandi http://cy.archive.ubuntu.com quantal/restricted Translation-en Baglandi http://cy.archive.ubuntu.com quantal/universe Translation-tr Baglandi http://cy.archive.ubuntu.com quantal/universe Translation-en Baglandi http://cy.archive.ubuntu.com quantal-updates/main Sources Baglandi http://cy.archive.ubuntu.com quantal-updates/restricted Sources Baglandi http://cy.archive.ubuntu.com quantal-updates/universe Sources Baglandi http://cy.archive.ubuntu.com quantal-updates/multiverse Sources Baglandi http://cy.archive.ubuntu.com quantal-updates/main amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/restricted amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/universe amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/multiverse amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/main i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/restricted i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/universe i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-updates/multiverse i386 Packages Yoksay http://ppa.launchpad.net quantal/main Translation-tr_CY Yoksay http://ppa.launchpad.net quantal/main Translation-tr Yoksay http://ppa.launchpad.net quantal/main Translation-en Baglandi http://cy.archive.ubuntu.com quantal-updates/main Translation-en Hata http://ppa.launchpad.net quantal/main Sources 404 Not Found Hata http://ppa.launchpad.net quantal/main amd64 Packages 404 Not Found Hata http://ppa.launchpad.net quantal/main i386 Packages 404 Not Found Baglandi http://cy.archive.ubuntu.com quantal-updates/multiverse Translation-en Yoksay http://ppa.launchpad.net quantal/main Translation-tr_CY Yoksay http://security.ubuntu.com quantal-security/main Translation-tr_CY Yoksay http://ppa.launchpad.net quantal/main Translation-tr Yoksay http://security.ubuntu.com quantal-security/main Translation-tr Yoksay http://ppa.launchpad.net quantal/main Translation-en Yoksay http://security.ubuntu.com quantal-security/multiverse Translation-tr_CY Baglandi http://cy.archive.ubuntu.com quantal-updates/restricted Translation-en Yoksay http://security.ubuntu.com quantal-security/multiverse Translation-tr Yoksay http://security.ubuntu.com quantal-security/restricted Translation-tr_CY Yoksay http://security.ubuntu.com quantal-security/restricted Translation-tr Baglandi http://cy.archive.ubuntu.com quantal-updates/universe Translation-en Yoksay http://security.ubuntu.com quantal-security/universe Translation-tr_CY Baglandi http://cy.archive.ubuntu.com quantal-backports/main Sources Yoksay http://security.ubuntu.com quantal-security/universe Translation-tr Baglandi http://cy.archive.ubuntu.com quantal-backports/restricted Sources Baglandi http://cy.archive.ubuntu.com quantal-backports/universe Sources Baglandi http://cy.archive.ubuntu.com quantal-backports/multiverse Sources Baglandi http://cy.archive.ubuntu.com quantal-backports/main amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/restricted amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/universe amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/multiverse amd64 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/main i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/restricted i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/universe i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/multiverse i386 Packages Baglandi http://cy.archive.ubuntu.com quantal-backports/main Translation-en Baglandi http://cy.archive.ubuntu.com quantal-backports/multiverse Translation-en Baglandi http://cy.archive.ubuntu.com quantal-backports/restricted Translation-en Baglandi http://cy.archive.ubuntu.com quantal-backports/universe Translation-en Yoksay http://cy.archive.ubuntu.com quantal/main Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal/multiverse Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal/restricted Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal/universe Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-updates/main Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-updates/main Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-updates/multiverse Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-updates/multiverse Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-updates/restricted Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-updates/restricted Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-updates/universe Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-updates/universe Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-backports/main Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-backports/main Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-backports/multiverse Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-backports/multiverse Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-backports/restricted Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-backports/restricted Translation-tr Yoksay http://cy.archive.ubuntu.com quantal-backports/universe Translation-tr_CY Yoksay http://cy.archive.ubuntu.com quantal-backports/universe Translation-tr N: Ignoring file 'eugenesan-java-quantal.list.save' in directory '/etc/apt/sources.list.d/' as it has an invalid filename extension W: http://ppa.launchpad.net/richarvey/nodejs/ubuntu/dists/quantal/main/source/Sources 404 Not Found getirilmesi basarisiz oldu W: http://ppa.launchpad.net/richarvey/nodejs/ubuntu/dists/quantal/main/binary-amd64/Packages 404 Not Found getirilmesi basarisiz oldu W: http://ppa.launchpad.net/richarvey/nodejs/ubuntu/dists/quantal/main/binary-i386/Packages 404 Not Found getirilmesi basarisiz oldu E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • 100,000 complex structures that are accessed frequently by 100,000 users

    - by Saad
    If you are required to store 100,000 complex structures that are accessed frequently by 100,000 users, which of the following solutions would you use and why? Memcached, In-code python objects, Redis, or a relational database (MySQL). With the little knowledge that I have I think that memcached and In-code python object will not store permanent persistent data. so they don't qualify as the right answer for such a problem. And for complex data structures its best to use Redis. Please correct me if I am wrong.

    Read the article

  • SQL SERVER – Disabled Index and Update Statistics

    - by pinaldave
    When we try to update the statistics, it throws an error as if the clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. Have you ever come across the situation where a conversation never gets over and it continues even though original point of discussion has passed. I am facing the same situation in the case of Disabled Index. Here is the link to original conversations. SQL SERVER – Disable Clustered Index and Data Insert – Reader had a issue here with Disabled Index SQL SERVER – Understanding ALTER INDEX ALL REBUILD with Disabled Clustered Index – Reader asked the effect of Rebuilding Indexes The same reader asked me today – “I understood what the disabled indexes do; what is their effect on statistics. Is it true that even though indexes are disabled, they continue updating the statistics?“ The answer is very interesting: If you have disabled clustered index, you will be not able to update the statistics at all for any index. If you have enabled clustered index and disabled non clustered index when you update the statistics of the table, it automatically updates the statistics of the ALL (disabled and enabled – both) the indexes on the table. If you are not satisfied with the answer, let us go over a simple example. I have written necessary comments in the code itself to have a clear idea. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now let us update the statistics of the table and check the statistics update date. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO Now let us disable the indexes and check if they are disabled using sys.indexes. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Let us try to update the statistics of the table. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ When we try to update the statistics it throws an error as it clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO We can clearly see that even though the nonclustered index is disabled it is also updated. If you do not need a nonclustered index, I suggest you to drop it as keeping them disabled is an overhead on your system. This is because every time the statistics are updated for system all the statistics for disabled indexesare also updated. -- Clean up DROP TABLE [TableName] GO The complete script is given below for easy reference. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Clean up DROP TABLE [TableName] GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • Creating ground in a 2D runner game

    - by user739711
    It may be a repetitive uestion but I could not find any specific answer to my query How to create A slanted/curved ground in a 2d runner game. The user will see side view like the old game "Mario" If I use tiled based map I can have only rectangular objects. What is the best way to create tilted ground? Should I use tiled based map, or should I define corner points in the map and create the ground programatically? And what are the difficulties in creating curved ground.

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • 6 Interesting Facts About NASA’s Mars Rover ‘Curiosity’

    - by Gopinath
    Humans quest for exploring the surrounding planets to see whether we can live there or not is taking new shape today. NASA’s Mars probing robot, Curiosity, blasted off today on its 9 months journey to reach Mars and explore it for the possibilities of life there. Scientist says that Curiosity is one most advanced rover ever launched to probe life on other planets. Here is the launch video and some analysis by a news reporter Lets look at the 6 interesting facts about the mission 1. It’s as big as a car Curiosity is the biggest ever rover ever launched by NASA to probe life on outer planets. It’s as big as a car and almost double the size of its predecessor rover Spirit. The length of Curiosity is around 9 feet 10 inches(3 meters), width is 9 feet 1 inch (2.8 meters) and height is 7 feet (2.1 meters). 2. Powered by Plutonium – Lasts 24×7 for 23 months The earlier missions of NASA to explore Mars are powered by Solar power and that hindered capabilities of the rovers to move around when the Sun is hiding. Due to dependency of Sun the earlier rovers were not able to traverse the places where there is no Sun light. Curiosity on the other hand is equipped with a radioisotope power system that generates electricity from the heat emitted by plutonium’s radioactive decay. The plutonium weighs around 10 pounds and can generate power required for operating the rover close to 23 weeks. The best part of the new power system is, Curiosity can roam around in darkness, light and all year around. 3. Rocket powered backpack for a science fiction style landing The Curiosity is so heavy that NASA could not use parachute and balloons to air-drop the rover on the surface of Mars like it’s previous missions. They are trying out a new science fiction style air-dropping mechanism that is similar to sky crane heavy-lift helicopter. The landing of the rover begins first with entry into the Mars atmosphere protected by a heat shield. At about 6 miles to the surface, the heat shield is jettisoned and a parachute is deployed to glide the rover smoothly. When the rover touches 3 miles above the surface, the parachute is jettisoned and the eight motors rocket backpack is used for a smooth and impact free landing as shown in the image. Here is an animation created by NASA on the landing sequence. If you are interested in getting more detailed information about the landing process check this landing sequence picture available on NASA website 4. Equipped with Star Wars style laser gun Hollywood movie directors and novelist always imagined aliens coming to earth with spaceships full of laser guns and blasting the objects which comes on their way. With Curiosity the equations are going to change. It has a powerful laser gun equipped in one of it’s arms to beam laser on rocks to vaporize them. This is not part of any assault mission Curiosity is expected to carry out, the laser gun is will be used to carry out experiments to detect life and understand nature. 5. Most sophisticated laboratory powered by 10 instruments Around 10 state of art instruments are part of Curiosity rover and the these 10 instruments form a most advanced rover based lab ever built by NASA. There are instruments to cut through rocks to examine them and other instruments will search for organic compounds. Mounted cameras can study targets from a distance, arm mounted instruments can study the targets they touch. Microscopic lens attached to the arm can see and magnify tiny objects as tiny as 12.5 micro meters. 6. Rover Carrying 1.24 million names etched on silicon Early June 2009 NASA launched a campaign called “Send Your Name to Mars” and around 1.24 million people registered their names through NASA’s website. All those 1.24 million names are etched on Silicon chips mounted onto Curiosity’s deck. If you had registered your name in the campaign may be your name is going to reach Mars soon. Curiosity On Web If you wish to follow the mission here are few links to help you NASA’s Curiosity Web Page Follow Curiosity on Facebook Follow @MarsCuriosity on Twitter Artistic Gallery Image of Mars Rover Curiosity A printable sheet of Curiosity Mission [pdf] Images credit: NASA This article titled,6 Interesting Facts About NASA’s Mars Rover ‘Curiosity’, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

< Previous Page | 324 325 326 327 328 329 330 331 332 333 334 335  | Next Page >