Search Results

Search found 21199 results on 848 pages for 'game controller'.

Page 329/848 | < Previous Page | 325 326 327 328 329 330 331 332 333 334 335 336  | Next Page >

  • What's a good way to organize samplers for HLSL?

    - by Rei Miyasaka
    According to MSDN, I can have 4096 samplers per context. That's a lot, considering there's only a handful of common sampler states. That tempts me to initialize an array containing a whole bunch of common sampler states, assign them to every device context I use, and then in the pixel shaders refer to them by index using : register(s[n]) where n is the index in the array. If I want more samplers for whatever reason, I can just add them on after the last slot. Does this work? If not, when should I set the samplers? Should it be done when by the mesh renderer? The texture renderer? Or alongside PSSetShader? Edit: That trick I wrote above doesn't work (at least not yet), as the compiler gives me this error message when I try to use the same register twice: error X4500: overlapping register semantics not yet implemented 's0' So how do people usually organize samplers, then?

    Read the article

  • Continuous Physics Engine's Collision Detection Techniques

    - by Griffin
    I'm working on a purely continuous physics engine, and I need to choose algorithms for broad and narrow phase collision detection. "Purely continuous" means I never do intersection tests, but instead want to find ways to catch every collision before it happens, and put each into "planned collisions" stack that is ordered by TOI. Broad Phase The only continuous broad-phase method I can think of is encasing each body in a circle and testing if each circle will ever overlap another. This seems horribly inefficient however, and lacks any culling. I have no idea what continuous analogs might exist for today's discrete collision culling methods such as quad-trees either. How might I go about preventing inappropriate and pointless broad test's such as a discrete engine does? Narrow Phase I've managed to adapt the narrow SAT to a continuous check rather than discrete, but I'm sure there's other better algorithms out there in papers or sites you guys might have come across. What various fast or accurate algorithm's do you suggest I use and what are the advantages / disatvantages of each? Final Note: I say techniques and not algorithms because I have not yet decided on how I will store different polygons which might be concave, convex, round, or even have holes. I plan to make a decision on this based on what the algorithm requires (for instance if I choose an algorithm that breaks down a polygon into triangles or convex shapes I will simply store the polygon data in this form).

    Read the article

  • Help on TileMapRenderer

    - by Crypted
    In my project, I'm trying to render a map using TileMapRenderer. But it doesn't show anything when I render it. But when I use some other files from a tutorial they are rendered correctly. When debugging my TileAtlas instance shows the size as 0. I have used Texture Packer UI for packing the images. Comparing with the tutorial's files, I can see that the index starts from 1 in my file and 0 in the tutorial. But changing it to 0 wouldn't work also. map.png format: RGBA8888 filter: Nearest,Nearest repeat: none Map rotate: false xy: 0, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 1 Map rotate: false xy: 32, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 2 Map rotate: false xy: 64, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 3 Map rotate: false xy: 96, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 4 Map rotate: false xy: 128, 0 size: 32, 32 orig: 32, 32 offset: 0, 0 index: 5 Here is the begining of the tmx file. <?xml version="1.0" encoding="UTF-8"?> <map version="1.0" orientation="orthogonal" width="20" height="20" tilewidth="32" tileheight="32"> <tileset firstgid="1" name="a" tilewidth="32" tileheight="32"> <image source="map.png" width="256" height="32"/> </tileset> <layer name="Tile Layer 1" width="20" height="20"> <data> <tile gid="2"/> <tile gid="2"/> Apart from that the tutorial files and my files seems to be similar. Can anyone help me here.

    Read the article

  • Unresolved external symbol __imp____glewGenerateMipmap

    - by Tsvetan
    This error is given by Visual Studio 2010, when I want to compile my C++ code. I have added 'glew32.lib' and 'freeglut.lib' in Additional Dependencies, both release and debug. Also included the header files. I have searched the Internet and found only one forum post, but it isn't the solution I am searching for... My library is dynamic, so GLEW_STATIC is not an option. So, can you give me a solution for this problem?

    Read the article

  • OpenGL ES 2.0: Vertex and Fragment Shader for 2D with Transparency

    - by Bunkai.Satori
    Could I knindly ask for correct examples of OpenGL ES 2.0 Vertex and Fragment shader for displaying 2D textured sprites with transparency? I have fairly simple shaders that display textured polygon pairs but transparency is not applied despite: texture map contains transparency information Blending is enabled: glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); My Vertex Shader: uniform mat4 uOrthoProjection; uniform vec3 Translation; attribute vec4 Position; attribute vec2 TextureCoord; varying vec2 TextureCoordOut; void main() { gl_Position = uOrthoProjection * (Position + vec4(Translation, 0)); TextureCoordOut = TextureCoord; } My Fragment Shader: varying mediump vec2 TextureCoordOut; uniform sampler2D Sampler; void main() { gl_FragColor = texture2D(Sampler, TextureCoordOut); }

    Read the article

  • Rotate Body From Corner

    - by Siddharth
    I want to ask that how to rotate body from corner? movableBeam.getBeamBody().setTransform(movableBeam.getBeamBody().getPosition(), angle); The above line of code rotate the beam from center that I want rotate from one of the conner. Any member please help me. EDIT : float beamCenterX = movableBeam.getX() + movableBeam.getWidth() / 2f; float beamCenterY = movableBeam.getY() + movableBeam.getHeight() / 2f; float cornerOffsetX = movableBeam.getX() - beamCenterX; float cornerOffsetY = movableBeam.getY() - beamCenterY; float bodyAngle = (float) Math.atan2(cornerOffsetY, cornerOffsetX); float newAngle = imageAngle + bodyAngle; float newCornerOffsetX = (float) Math.cos(Math .toDegrees(newAngle)); float newCornerOffsetY = (float) Math.sin(Math .toDegrees(newAngle)); cornerOffsetX = movableBeam.getX() - movableBeam.getWidth() / 2f; cornerOffsetY = movableBeam.getY() - movableBeam.getHeight() / 2f; Vector2 postion = new Vector2( (newCornerOffsetX - cornerOffsetX + movableBeam.getX()) / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT, (newCornerOffsetY - cornerOffsetY + movableBeam.getY()) / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT); movableBeam.getBeamBody().setTransform(postion, newAngle);

    Read the article

  • Finetuning movement based on gradual rotation towards a target

    - by A.B.
    I have an object which moves towards a target destination by gradually adjusting its facing while moving forwards. If the target destination is in a "blind spot", then the object is incapable of reaching it. This problem is ilustrated in the picture below. When the arrow is ordered to move to point A, it will only end up circling around it (following the red circle) because it is not able to adjust its rotation quickly enough. I'm interested in a solution where the movement speed is multiplied by a number from 0.1 to 1 in proportion to necessity. The problem is, how do I calculate whether it is necessary in the first place? How do I calculate an appropriate multiplier that is neither too small nor too large? void moveToPoint(sf::Vector2f destination) { if (destination == position) return; auto movement_distance = distanceBetweenPoints(position, destination); desired_rotation = angleBetweenPoints(position, destination); /// Check whether rotation should be adjusted if (rotation != desired_rotation) { /// Check whether the object can achieve the desired rotation within the next adjustment of its rotation if (Radian::isWithinDistance(rotation, desired_rotation, rotation_speed)) { rotation = desired_rotation; } else { /// Determine whether to increment or decrement rotation in order to achieve desired rotation if (Radian::convert(desired_rotation - rotation) > 0) { /// Increment rotation rotation += rotation_speed; } else { /// Decrement rotation rotation -= rotation_speed; } } } if (movement_distance < movement_speed) { position = destination; } else { position.x = position.x + movement_speed*cos(rotation); position.y = position.y + movement_speed*sin(rotation); } updateGraphics(); }

    Read the article

  • OpenGL: Where shoud I place shaders?

    - by mivic
    I'm trying to learn OpenGL ES 2.0 and I'm wondering what is the most common practice to "manage" shaders. I'm asking this question because in the examples I've found (like the one included in the API Demo provided with the android sdk), I usually see everything inside the GLRenderer class and I'd rather separate things so I can have, for example, a GLImage object that I can reuse whenever I want to draw a textured quad (I'm focusing on 2D only at the moment), just like I had in my OpenGL ES 1.0 code. In almost every example I've found, shaders are just defined as class attributes. For example: public class Square { public final String vertexShader = "uniform mat4 uMVPMatrix;\n" + "attribute vec4 aPosition;\n" + "attribute vec4 aColor;\n" + "varying vec4 vColor;\n" + "void main() {\n" + " gl_Position = uMVPMatrix * aPosition;\n" + " vColor = aColor;\n" + "}\n"; public final String fragmentShader = "precision mediump float;\n" + "varying vec4 vColor;\n" + "void main() {\n" + " gl_FragColor = vColor;\n" + "}\n"; // ... } I apologize in advance if some of these questions are dumb, but I've never worked with shaders before. 1) Is the above code the common way to define shaders (public final class properties)? 2) Should I have a separate Shader class? 3) If shaders are defined outside the class that uses them, how would I know the names of their attributes (e.g. "aColor" in the following piece of code) so I can bind them? colorHandle = GLES20.glGetAttribLocation(program, "aColor");

    Read the article

  • OpenGL ES Shader help (Blending)

    - by Chris
    Earlier I required assistance getting to grips with how to retain the alpha channel of a transparent texture in my colourised texture shader program. Whilst playing with that first version of my program (before obtaining the solution to my first requirement), I managed to enable transparency for the whole texture (effectively blending via GLSL), and I quite liked this, and I would now like to know if and how it is possible to retain this blending effect, on top of the existing output without affecting the original alpha channel - as I don't know how to input this transparency via the parameter that is already being provided with the textures alpha channel. A basic example of the blending program I am referring to (minus any other functionality) is as follows... varying vec2 texCoord; uniform sampler2D texSampler; void main() { gl_FragColor = vec4(texture2D(texSampler,texCoord).xyz,0.5); } Where 0.5 is the transparency (blending effect) of the whole texture. This is the current version of my program, which provides the ability to colour a texture according the colour parameter passed to the program, and retains the alpha channel of the original texture. varying vec2 texCoord; uniform sampler2D texSampler; uniform vec3 colour; void main() { gl_FragColor = vec4(colour,1) * vec4(texture2D(texSampler,texCoord).xyz,texture2D(texSampler,texCoord).w); } I need to know if it is possible to apply transparency on top this program, without affecting the original alpha channel which I have already preserved. I hope this makes enough sense, I am sure it is possible, and if so I should imagine it is rather simple, but this has me stumped. Any help much appreachiated. Cheers, Chris

    Read the article

  • Hooking DirectX EndScene from an injected DLL

    - by Etan
    I want to detour EndScene from an arbitrary DirectX 9 application to create a small overlay. As an example, you could take the frame counter overlay of FRAPS, which is shown in games when activated. I know the following methods to do this: Creating a new d3d9.dll, which is then copied to the games path. Since the current folder is searched first, before going to system32 etc., my modified DLL gets loaded, executing my additional code. Downside: You have to put it there before you start the game. Same as the first method, but replacing the DLL in system32 directly. Downside: You cannot add game specific code. You cannot exclude applications where you don't want your DLL to be loaded. Getting the EndScene offset directly from the DLL using tools like IDA Pro 4.9 Free. Since the DLL gets loaded as is, you can just add this offset to the DLL starting address, when it is mapped to the game, to get the actual offset, and then hook it. Downside: The offset is not the same on every system. Hooking Direct3DCreate9 to get the D3D9, then hooking D3D9-CreateDevice to get the device pointer, and then hooking Device-EndScene through the virtual table. Downside: The DLL cannot be injected, when the process is already running. You have to start the process with the CREATE_SUSPENDED flag to hook the initial Direct3DCreate9. Creating a new Device in a new window, as soon as the DLL gets injected. Then, getting the EndScene offset from this device and hooking it, resulting in a hook for the device which is used by the game. Downside: as of some information I have read, creating a second device may interfere with the existing device, and it may bug with windowed vs. fullscreen mode etc. Same as the third method. However, you'll do a pattern scan to get EndScene. Downside: doesn't look that reliable. How can I hook EndScene from an injected DLL, which may be loaded when the game is already running, without having to deal with different d3d9.dll's on other systems, and with a method which is reliable? How does FRAPS for example perform it's DirectX hooks? The DLL should not apply to all games, just to specific processes where I inject it via CreateRemoteThread.

    Read the article

  • 2D Mask antialiasing in xna hlsl

    - by mohsen
    I have two texture2d , one of these is a mask texture and have 2kind color and i use that for mask (filter) second texture2D something like float4 tex = tex2D(sprite, texCoord); float4 bitMask = tex2D(mask, texCoord); if (bitMask.a >0) { return float4(0,0,0,0); } else { return float4(tex.b,tex.g,tex.r,1); } but because mask texture is just two color the result is too jagged i want know how i can do some antialiasing for edges that smooth these ty for reading and sry for my bad english

    Read the article

  • Isometric - precise screen coordinates to isometric

    - by Rawrz
    I'm trying to translate mouse coords to precise isometric coords (I can already find the tile the mouse is over, but I want it to be more precise). I've tried several different methods but I seem to keep falling short. For drawing I use: batch.draw( texture, (y * tileWidth / 2) + (x * tileWidth / 2), (x * tileHeight / 2) - (y * tileHeight / 2)) This is what I currently use for figuring out a tile position: float xt = x + camPosition.x - (ScreenWidth/2) ; float yt = (ScreenHeight) - y + camPosition.y - (ScreenHeight/2); int tileY = Math.round((((xt) / tileWidth) - ((yt) / tileHeight))); int tileX = Math.round((((xt) / tileWidth) + ((yt) / tileHeight))- 1); I'm just wondering how I could update these to allow for more precise coordinates, instead of tile only. EDIT: Following what ccxvii said below, and removing the -1 from tileX, the object follows my mouse just like I had wanted. Just going to re-examine the math and figure out if that change will result in other messes =o

    Read the article

  • NullReferenceException when accessing variables in a 2D array in Unity

    - by Syed
    I have made a class including variables in Monodevelop which is: public class GridInfo : MonoBehaviour { public float initPosX; public float initPosY; public bool inUse; public int f; public int g; public int h; public GridInfo parent; public int y,x; } Now I am using its class variable in another class, Map.cs which is: public class Map : MonoBehaviour { public static GridInfo[,] Tile = new GridInfo[17, 23]; void Start() { Tile[0,0].initPosX = initPosX; //Line 49 } } I am not getting any error on runtime, but when I play in unity it is giving me error NullReferenceException: Object reference not set to an instance of an object Map.Start () (at Assets/Scripts/Map.cs:49) I am not inserting this script in any gameobject, as Map.cs will make a GridInfo type array, I have also tried using variables using GetComponent, where is the problem ?

    Read the article

  • Why can I not map a dynamic texture in D3D?

    - by sebf
    I am trying to map a Texture2D resource in DirectX11 via SharpDX. The resource is declared as a ShaderResource, with Dynamic usage and the 'Write' CPU flag specified. My call however fails with a generic exception from SharpDX: _Parent.Context.MapSubresource( _Resource, 0, SharpDX.Direct3D11.MapMode.Write, SharpDX.Direct3D11.MapFlags.None, out stream ); I see from this question that it is supported. The MSDN docs and this other question hint that instead of using Context.MapSubresource() I should be using Texture2D.Map(), however, the DirectX11 Texture2D class does not define Map() (though it does for the D3D 10 equivalent). If I call the above with MapMode.WriteDiscard, the call succeeds but in this case the previous content of the texture is lost, which is no good when I only want to update a section of it. Has the Map() method been removed in Direct3D 11 or am I looking in the wrong place? Is the MapSubresource() method unsuitable or am I using it wrong? EDIT: I declared my resource as Dynamic with CPU Write Flags - not Default as I originaly wrote - sorry for the fairly huge 'typo' that changes the entire question!

    Read the article

  • Using SurfaceFormat.Single and HLSL for GPGPU with XNA

    - by giancarlo todone
    I'm trying to implement a so-called ping-pong technique in XNA; you basically have two RenderTarget2D A and B and at each iteration you use one as texture and the other as target - and vice versa - for a quad rendered through an HLSL pixel shader. step1: A--PS--B step2: B--PS--A step3: A--PS--B ... In my setup, both RenderTargets are SurfaceFormat.Single. In my .fx file, I have a tachnique to do the update, and another to render the "current buffer" to the screen. Before starting the "ping-pong", buffer A is filled with test data with SetData<float>(float[]) function: this seems to work properly, because if I render a quad on the screen through the "Draw" pixel shader, i do see the test data being correctly rendered. However, if i do update buffer B, something does not function proerly and the next rendering to screen will be all black. For debug purposes, i replaced the "Update" HLSL pixel shader with one that should simply copy buffer A into B (or B into A depending on which among "ping" and "pong" phases we are...). From some examples i found on the net, i see that in order to correctly fetch a float value from a texture sampler from HLSL code, i should only need to care for the red channel. So, basically the debug "Update" HLSL function is: float4 ComputePS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,0,0,1); } which still doesn't work and results in a all-zeroes ouput. Here's the "Draw" function that seems to properly display initial data: float4 DrawPS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,v1,v1,1); } Now: playing around with HLSL doesn't change anything, so maybe I'm missing something on the c# side of this, so here's the infamous Update() function: _effect.Parameters["bufTexture"].SetValue(buf[_currentBuf]); _graphicsDevice.SetRenderTarget(buf[1 - _currentBuf]); _graphicsDevice.Clear(Color.Black); // probably not needed since RenderTargetUsage is DiscardContents _effect.CurrentTechnique = _computeTechnique; _computeTechnique.Passes[0].Apply(); _quadRender.Render(); _graphicsDevice.SetRenderTarget(null); _currentBuf = 1 - _currentBuf; Any clue?

    Read the article

  • Should we always prefer OpenGL ES version 2 over version 1.x

    - by Shivan Dragon
    OpengGL ES version 2 goes a long way into changing the development paradigm that was established with OpenGL ES 1.x. You have shaders which you can chain together to apply varios effects/transforms to your elements, the projection and transformation matrices work completly different etc. I've seen a lot of online tutorials and blogs that simply say "ditch version 1.x, use version 2, that's the way to go". Even on Android's documentation it sais to "use version 2 as it may prove faster than 1.x". Now, I've also read a book on OpenGL ES (which was rather good, but I'm not gonna mention here because I don't want to give the impression that I'm trying to make hidden publicity). The guy there treated only OpenGL ES 1.x for 80% of the book, and then at the end only listed the differences in version 2 and said something like "if OpenGL ES 1 does what you need, there's no need to switch to version 2, as it's only gonna over complicate your code. Version 2 was changed a lot to facillitate newer, fancier stuff, but if you don't need it, version 1.x is fine". My question is then, is the last statement right? Should I always use Open GL ES version 1.x if I don't need version 2 only stuff? I'd sure like to do that, because I find coding in version 1.x A LOT simpler than version 2 but I'm afraid that my apps might get obsolete faster for using an older version.

    Read the article

  • How to move a sprite automatically using a physicsHandler in Andengine?

    - by shailenTJ
    I use a DigitalOnScreenControl (knob with a four-directional arrow control) to move the entity and the entity which is bound to a physicsHandler. physicsHandler.setEntity(sprite); sprite.registerUpdateHandler(physicsHandler); From the DigitalOnScreenControl, I know which direction I want my sprite to move. Inside its overridden onControlChange function, I call a function animateSprite that checks which direction I chose. Based on the direction, I animate my sprite differently. PROBLEM: I want to automatically move the sprite to a specific location on the scene, say at coordinates (207, 305). My sprite is at (100, 305, which means it has to move down by 107 pixels. How do I tell the physicsHandler to move the sprite down by 107 pixels? My animateSprite method will take care of animating the sprite's downward motion. Thank you for your input!

    Read the article

  • DirectX9 / HLSL Shader Model 3 - Passing Doubles between Shaders

    - by P. Avery
    I need higher precision on a few values within my vertex and pixel shaders...I'm currently using floats, so I would like to use doubles...I've read that HLSL Model 4 has two functions to convert a double into two unsigned integers and back again( asuint() and asdouble() ). These functions are only supported on HLSL 4 and I am using DirectX 9 which will only compile HLSL Model 3 and below... How can I pass a double between shaders? here is implementation for HLSL 4: struct VS_INPUT { float2 v; }; struct PS_INPUT { uint a; uint b; uint c; uint d; }; PS_INPUT VertexShader( VS_INPUT Input ) { PS_INPUT Output = ( PS_INPUT )0; double2 vPos = mul( Input.v, mWorld ).xy; asuint( vPos.x, Output.a, Output.b ); asuint( vPos.y, Output.c, Output.d ); return Output; } float4 PixelShader( PS_INPUT Input ) { double2 vPos; vPos.x = asdouble( Input.a, Input.b ); vPos.y = asdouble( Input.c, Input.d ); ... return 1; }

    Read the article

  • Missing features from WebGL and OpenGL ES

    - by Chris Smith
    I've started using WebGL and am pleased with how easy it is to leverage my OpenGL (and by extension OpenGL ES) experience. However, my understanding is as follows: OpenGL ES is a subset of OpenGL WebGL is a subset of OpenGL ES Is this correct for both cases? If so, are there resources for detailing which features are missing? For example, one notable missing feature is glPushMatrix and glPopMatrix. I don't see those in WebGL, but in my searches I cannot find them referenced in OpenGL ES material either.

    Read the article

  • Coordinates on the top left corner or center of the tile

    - by soimon
    I'm setting up a tile system where every tile has x and y coordinates. Right now I assume that the top left corner of the tile is positioned on it's coordinate on the screen, x = tileX * tileWidth and y = tileY x tileWidth. However, it seems strange that the tile with coordinate (0, 0) is completely drawn in the 'positive' side of the coordinate system as opposed to in the center of the origin. Is it common practice to assume that a coordinate lays in the center of a tile or at the top left corner of a tile? So basically x = tileX x tileWidth or x = tileX x tilewidth - ( tileWidth / 2 )?

    Read the article

  • Choice of open source license for some components, closed source for others

    - by Peter Serwylo
    G'day, I am working on a set of multiplayer games, where different games play against each other (e.g. you play a Tetris clone, I play an Asteroids clone, but we are both competing against each other). All the games would be based on the same underlying framework written specifically for this project. I am struggling to comprehend how I would license this so that: The underlying framework is open source, so other people can create new games based on it. Some games built on the framework are open source Other games are closed source The goal is to have two bundles on something like the Android market: One free and open source package which has a collection of games Another "premium" (although I dislike that word) paid package which has a different collection of games. Usually I am fond of permissive licenses such as MIT/BSD, however I would prefer something more in the vein of the GPL for this. This is because for software such as the snes-9x SNES emulator, which is a great piece of software, there is a ton of poor quality versions being sold, whereas it would be preferable if there was just one authoritative version which was always kept up to date, and distributed for free. If the underlying framework was GPL'd, would I be able to build closed source games on top of it? Thanks for your input.

    Read the article

  • How do I repeat a texture with GLKit?

    - by Synopfab
    I am using GLKit in order to show textures on my project. The code is like this: -(void)setTextureImage:(UIImage *)image { NSError *error; texture = [GLKTextureLoader textureWithCGImage:image.CGImage options:nil error:&error]; if (error) { NSLog(@"Error loading texture from image: %@",error); } } effect.texture2d0.envMode = GLKTextureEnvModeReplace; effect.texture2d0.target = GLKTextureTarget2D; effect.texture2d0.name = texture.name; glEnableVertexAttribArray(GLKVertexAttribTexCoord0); glVertexAttribPointer(GLKVertexAttribTexCoord0, 2, GL_FLOAT, GL_FALSE, 0, self.textureCoordinates); Now I want to repeat this texture on a rectangle. Is there any way use GLKit for this behavior? I've tried to use opengl function in addition to the glkit ones, but it raises errors: glEnable(GL_TEXTURE_2D); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glBindTexture( GL_TEXTURE_2D, texture.name ); 2011-11-09 20:10:28.614 **[16309:207] GL ERROR: 0x0500 2011-11-09 20:10:30.840 **[16309:207] Error loading texture from image: Error Domain=GLKTextureLoaderErrorDomain Code=8 "The operation couldn’t be completed. (GLKTextureLoaderErrorDomain error 8.)" UserInfo=0x68545c0 {GLKTextureLoaderGLErrorKey=1280, GLKTextureLoaderErrorKey=OpenGL error}

    Read the article

  • E_FAIL: An undetermined error occurred (-2147467259) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = new ImageLoadInformation() { BindFlags = BindFlags.ShaderResource, CpuAccessFlags = CpuAccessFlags.None, Depth = 32, FilterFlags = FilterFlags.None, FirstMipLevel = 0, Format = SlimDX.DXGI.Format.B8G8R8A8_UNorm, Height = 512, MipFilterFlags = FilterFlags.Linear, MipLevels = 1, OptionFlags = ResourceOptionFlags.TextureCube, Usage = ResourceUsage.Default, Width = 512 }; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); } Each of the faces of my cube texture are 512x512.

    Read the article

  • Ray picking - get direction from pitch and yaw

    - by Isaac Waller
    I am attempting to cast a ray from the center of the screen and check for collisions with objects. When rendering, I use these calls to set up the camera: GL11.glRotated(mPitch, 1, 0, 0); GL11.glRotated(mYaw, 0, 1, 0); GL11.glTranslated(mPositionX, mPositionY, mPositionZ); I am having trouble creating the ray, however. This is the code I have so far: ray.origin = new Vector(mPositionX, mPositionY, mPositionZ); ray.direction = new Vector(?, ?, ?); My question is: what should I put in the question mark spots? I.e. how can I create the ray direction from the pitch and roll? Any help would be much appreciated!

    Read the article

  • How to implement a 2d collision detection for Android

    - by Michael Seun Araromi
    I am making a 2d space shooter using opengl ES. Can someone please show me how to implement a collision detection between the enemy ship and player ship. The code for the two classes are below: Player Ship Class: package com.proandroidgames; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.opengles.GL10; public class SSGoodGuy { public boolean isDestroyed = false; private int damage = 0; private FloatBuffer vertexBuffer; private FloatBuffer textureBuffer; private ByteBuffer indexBuffer; private float vertices[] = { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, }; private float texture[] = { 0.0f, 0.0f, 0.25f, 0.0f, 0.25f, 0.25f, 0.0f, 0.25f, }; private byte indices[] = { 0, 1, 2, 0, 2, 3, }; public void applyDamage(){ damage++; if (damage == SSEngine.PLAYER_SHIELDS){ isDestroyed = true; } } public SSGoodGuy() { ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuf.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(texture.length * 4); byteBuf.order(ByteOrder.nativeOrder()); textureBuffer = byteBuf.asFloatBuffer(); textureBuffer.put(texture); textureBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void draw(GL10 gl, int[] spriteSheet) { gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]); gl.glFrontFace(GL10.GL_CCW); gl.glEnable(GL10.GL_CULL_FACE); gl.glCullFace(GL10.GL_BACK); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glDisable(GL10.GL_CULL_FACE); } } Enemy Ship Class: package com.proandroidgames; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import java.util.Random; import javax.microedition.khronos.opengles.GL10; public class SSEnemy { public float posY = 0f; public float posX = 0f; public float posT = 0f; public float incrementXToTarget = 0f; public float incrementYToTarget = 0f; public int attackDirection = 0; public boolean isDestroyed = false; private int damage = 0; public int enemyType = 0; public boolean isLockedOn = false; public float lockOnPosX = 0f; public float lockOnPosY = 0f; private Random randomPos = new Random(); private FloatBuffer vertexBuffer; private FloatBuffer textureBuffer; private ByteBuffer indexBuffer; private float vertices[] = { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, }; private float texture[] = { 0.0f, 0.0f, 0.25f, 0.0f, 0.25f, 0.25f, 0.0f, 0.25f, }; private byte indices[] = { 0, 1, 2, 0, 2, 3, }; public void applyDamage() { damage++; switch (enemyType) { case SSEngine.TYPE_INTERCEPTOR: if (damage == SSEngine.INTERCEPTOR_SHIELDS) { isDestroyed = true; } break; case SSEngine.TYPE_SCOUT: if (damage == SSEngine.SCOUT_SHIELDS) { isDestroyed = true; } break; case SSEngine.TYPE_WARSHIP: if (damage == SSEngine.WARSHIP_SHIELDS) { isDestroyed = true; } break; } } public SSEnemy(int type, int direction) { enemyType = type; attackDirection = direction; posY = (randomPos.nextFloat() * 4) + 4; switch (attackDirection) { case SSEngine.ATTACK_LEFT: posX = 0; break; case SSEngine.ATTACK_RANDOM: posX = randomPos.nextFloat() * 3; break; case SSEngine.ATTACK_RIGHT: posX = 3; break; } posT = SSEngine.SCOUT_SPEED; ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuf.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(texture.length * 4); byteBuf.order(ByteOrder.nativeOrder()); textureBuffer = byteBuf.asFloatBuffer(); textureBuffer.put(texture); textureBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public float getNextScoutX() { if (attackDirection == SSEngine.ATTACK_LEFT) { return (float) ((SSEngine.BEZIER_X_4 * (posT * posT * posT)) + (SSEngine.BEZIER_X_3 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_X_2 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_X_1 * ((1 - posT) * (1 - posT) * (1 - posT)))); } else { return (float) ((SSEngine.BEZIER_X_1 * (posT * posT * posT)) + (SSEngine.BEZIER_X_2 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_X_3 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_X_4 * ((1 - posT) * (1 - posT) * (1 - posT)))); } } public float getNextScoutY() { return (float) ((SSEngine.BEZIER_Y_1 * (posT * posT * posT)) + (SSEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_Y_3 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_Y_4 * ((1 - posT) * (1 - posT) * (1 - posT)))); } public void draw(GL10 gl, int[] spriteSheet) { gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]); gl.glFrontFace(GL10.GL_CCW); gl.glEnable(GL10.GL_CULL_FACE); gl.glCullFace(GL10.GL_BACK); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glDisable(GL10.GL_CULL_FACE); } }

    Read the article

< Previous Page | 325 326 327 328 329 330 331 332 333 334 335 336  | Next Page >