Search Results

Search found 12611 results on 505 pages for 'matlab figure'.

Page 33/505 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • How to figure out if two CGRect intersect?

    - by mystify
    In -drawRect: I want to check if the provided rect intersects with anotherRect. I'm not good at this geometry math stuff and especially at english so what I want to say is: If you have two sheets of paper on the desk, and one of them covers the other either completely or just a small portion, it is rectsIntersect = YES. How to check that out for rect and anotherRect?

    Read the article

  • How to rotate a figure without moving around the stage(actionscript)

    - by Mister PHP
    package { import flash.display.MovieClip; import flash.events.Event; public class Bullet extends MovieClip { private var mc:MovieClip; public function Bullet() { mc = new MovieClip(); mc.graphics.beginFill(0); mc.graphics.drawRect(120, 120, 40, 40); mc.graphics.endFill(); addChild(mc); addEventListener(Event.ENTER_FRAME, onEnterFrame); } private function onEnterFrame(e:Event):void{ mc.rotation += 10; } } } how can i make the rotation of the circle without moving him around the stage, just staying in the place he was before and just rotate, not moving anywhere is that posible?? if you try this code you'll see that the circle is rotating and moving around the stage, so that i don't want, how can i change this?

    Read the article

  • cant figure out pointer assignment in c

    - by vadiklk
    int add(char *var1, char *var2, char **var3) { int num1, num2, length1 = strlen(var1), length2 = strlen(var2), length = max(length1, length2) + 1; char *result = (char*) calloc(length, sizeof(char)); ... free(*var3); *var3 = result; return 0; } out side of the function i get its still nothing(var3); more detail: int addSubCommand(char **vars, int isAdd) { ... return add(vars[index1], var2, &(vars[index3])); } that's where i call add. the char** vars goes from every function to the other.

    Read the article

  • How Visual Studio 2010 and Team Foundation Server enable Compliance

    - by Martin Hinshelwood
    One of the things that makes Team Foundation Server (TFS) the most powerful Application Lifecycle Management (ALM) platform is the traceability it provides to those that use it. This traceability is crucial to enable many companies to adhere to many of the Compliance regulations to which they are bound (e.g. CFR 21 Part 11 or Sarbanes–Oxley.)   From something as simple as relating Tasks to Check-in’s or being able to see the top 10 files in your codebase that are causing the most Bugs, to identifying which Bugs and Requirements are in which Release. All that information is available and more in TFS. Although all of this tradability is available within TFS you do need to understand that it is not for free. Well… I say that, but if you are using TFS properly you will have this information with no additional work except for firing up the reporting. Using Visual Studio ALM and Team Foundation Server you can relate every line of code changes all the way up to requirements and back down through Test Cases to the Test Results. Figure: The only thing missing is Build In order to build the relationship model below we need to examine how each of the relationships get there. Each member of your team from programmer to tester and Business Analyst to Business have their roll to play to knit this together. Figure: The relationships required to make this work can get a little confusing If Build is added to this to relate Work Items to Builds and with knowledge of which builds are in which environments you can easily identify what is contained within a Release. Figure: How are things progressing Along with the ability to produce the progress and trend reports the tractability that is built into TFS can be used to fulfil most audit requirements out of the box, and augmented to fulfil the rest. In order to understand the relationships, lets look at each of the important Artifacts and how they are associated with each other… Requirements – The root of all knowledge Requirements are the thing that the business cares about delivering. These could be derived as User Stories or Business Requirements Documents (BRD’s) but they should be what the Business asks for. Requirements can be related to many of the Artifacts in TFS, so lets look at the model: Figure: If the centre of the world was a requirement We can track which releases Requirements were scheduled in, but this can change over time as more details come to light. Figure: Who edited the Requirement and when There is also the ability to query Work Items based on the History of changed that were made to it. This is particularly important with Requirements. It might not be enough to say what Requirements were completed in a given but also to know which Requirements were ever assigned to a particular release. Figure: Some magic required, but result still achieved As an augmentation to this it is also possible to run a query that shows results from the past, just as if we had a time machine. You can take any Query in the system and add a “Asof” clause at the end to query historical data in the operational store for TFS. select <fields> from WorkItems [where <condition>] [order by <fields>] [asof <date>] Figure: Work Item Query Language (WIQL) format In order to achieve this you do need to save the query as a *.wiql file to your local computer and edit it in notepad, but one imported into TFS you run it any time you want. Figure: Saving Queries locally can be useful All of these Audit features are available throughout the Work Item Tracking (WIT) system within TFS. Tasks – Where the real work gets done Tasks are the work horse of the development team, but they only as useful as Excel if you do not relate them properly to other Artifacts. Figure: The Task Work Item Type has its own relationships Requirements should be broken down into Tasks that the development team work from to build what is required by the business. This may be done by a small dedicated group or by everyone that will be working on the software team but however it happens all of the Tasks create should be a Child of a Requirement Work Item Type. Figure: Tasks are related to the Requirement Tasks should be used to track the day-to-day activities of the team working to complete the software and as such they should be kept simple and short lest developers think they are more trouble than they are worth. Figure: Task Work Item Type has a narrower purpose Although the Task Work Item Type describes the work that will be done the actual development work involves making changes to files that are under Source Control. These changes are bundled together in a single atomic unit called a Changeset which is committed to TFS in a single operation. During this operation developers can associate Work Item with the Changeset. Figure: Tasks are associated with Changesets   Changesets – Who wrote this crap Changesets themselves are just an inventory of the changes that were made to a number of files to complete a Task. Figure: Changesets are linked by Tasks and Builds   Figure: Changesets tell us what happened to the files in Version Control Although comments can be changed after the fact, the inventory and Work Item associations are permanent which allows us to Audit all the way down to the individual change level. Figure: On Check-in you can resolve a Task which automatically associates it Because of this we can view the history on any file within the system and see how many changes have been made and what Changesets they belong to. Figure: Changes are tracked at the File level What would be even more powerful would be if we could view these changes super imposed over the top of the lines of code. Some people call this a blame tool because it is commonly used to find out which of the developers introduced a bug, but it can also be used as another method of Auditing changes to the system. Figure: Annotate shows the lines the Annotate functionality allows us to visualise the relationship between the individual lines of code and the Changesets. In addition to this you can create a Label and apply it to a version of your version control. The problem with Label’s is that they can be changed after they have been created with no tractability. This makes them practically useless for any sort of compliance audit. So what do you use? Branches – And why we need them Branches are a really powerful tool for development and release management, but they are most important for audits. Figure: One way to Audit releases The R1.0 branch can be created from the Label that the Build creates on the R1 line when a Release build was created. It can be created as soon as the Build has been signed of for release. However it is still possible that someone changed the Label between this time and its creation. Another better method can be to explicitly link the Build output to the Build. Builds – Lets tie some more of this together Builds are the glue that helps us enable the next level of tractability by tying everything together. Figure: The dashed pieces are not out of the box but can be enabled When the Build is called and starts it looks at what it has been asked to build and determines what code it is going to get and build. Figure: The folder identifies what changes are included in the build The Build sets a Label on the Source with the same name as the Build, but the Build itself also includes the latest Changeset ID that it will be building. At the end of the Build the Build Agent identifies the new Changesets it is building by looking at the Check-ins that have occurred since the last Build. Figure: What changes have been made since the last successful Build It will then use that information to identify the Work Items that are associated with all of the Changesets Changesets are associated with Build and change the “Integrated In” field of those Work Items . Figure: Find all of the Work Items to associate with The “Integrated In” field of all of the Work Items identified by the Build Agent as being integrated into the completed Build are updated to reflect the Build number that successfully integrated that change. Figure: Now we know which Work Items were completed in a build Now that we can link a single line of code changed all the way back through the Task that initiated the action to the Requirement that started the whole thing and back down to the Build that contains the finished Requirement. But how do we know wither that Requirement has been fully tested or even meets the original Requirements? Test Cases – How we know we are done The only way we can know wither a Requirement has been completed to the required specification is to Test that Requirement. In TFS there is a Work Item type called a Test Case Test Cases enable two scenarios. The first scenario is the ability to track and validate Acceptance Criteria in the form of a Test Case. If you agree with the Business a set of goals that must be met for a Requirement to be accepted by them it makes it both difficult for them to reject a Requirement when it passes all of the tests, but also provides a level of tractability and validation for audit that a feature has been built and tested to order. Figure: You can have many Acceptance Criteria for a single Requirement It is crucial for this to work that someone from the Business has to sign-off on the Test Case moving from the  “Design” to “Ready” states. The Second is the ability to associate an MS Test test with the Test Case thereby tracking the automated test. This is useful in the circumstance when you want to Track a test and the test results of a Unit Test designed to test the existence of and then re-existence of a a Bug. Figure: Associating a Test Case with an automated Test Although it is possible it may not make sense to track the execution of every Unit Test in your system, there are many Integration and Regression tests that may be automated that it would make sense to track in this way. Bug – Lets not have regressions In order to know wither a Bug in the application has been fixed and to make sure that it does not reoccur it needs to be tracked. Figure: Bugs are the centre of their own world If the fix to a Bug is big enough to require that it is broken down into Tasks then it is probably a Requirement. You can associate a check-in with a Bug and have it tracked against a Build. You would also have one or more Test Cases to prove the fix for the Bug. Figure: Bugs have many associations This allows you to track Bugs / Defects in your system effectively and report on them. Change Request – I am not a feature In the CMMI Process template Change Requests can also be easily tracked through the system. In some cases it can be very important to track Change Requests separately as an Auditor may want to know what was changed and who authorised it. Again and similar to Bugs, if the Change Request is big enough that it would require to be broken down into Tasks it is in reality a new feature and should be tracked as a Requirement. Figure: Make sure your Change Requests only Affect Requirements and not rewrite them Conclusion Visual Studio 2010 and Team Foundation Server together provide an exceptional Application Lifecycle Management platform that can help your team comply with even the harshest of Compliance requirements while still enabling them to be Agile. Most Audits are heavy on required documentation but most of that information is captured for you as long a you do it right. You don’t even need every team member to understand it all as each of the Artifacts are relevant to a different type of team member. Business Analysts manage Requirements and Change Requests Programmers manage Tasks and check-in against Change Requests and Bugs Testers manage Bugs and Test Cases Build Masters manage Builds Although there is some crossover there are still rolls or “hats” that are worn. Do you thing this is all achievable? Have I missed anything that you think should be there?

    Read the article

  • Use a vector to index a matrix without linear index

    - by David_G
    G'day, I'm trying to find a way to use a vector of [x,y] points to index from a large matrix in MATLAB. Usually, I would convert the subscript points to the linear index of the matrix.(for eg. Use a vector as an index to a matrix in MATLab) However, the matrix is 4-dimensional, and I want to take all of the elements of the 3rd and 4th dimensions that have the same 1st and 2nd dimension. Let me hopefully demonstrate with an example: Matrix = nan(4,4,2,2); % where the dimensions are (x,y,depth,time) Matrix(1,2,:,:) = 999; % note that this value could change in depth (3rd dim) and time (4th time) Matrix(3,4,:,:) = 888; % note that this value could change in depth (3rd dim) and time (4th time) Matrix(4,4,:,:) = 124; Now, I want to be able to index with the subscripts (1,2) and (3,4), etc and return not only the 999 and 888 which exist in Matrix(:,:,1,1) but the contents which exist at Matrix(:,:,1,2),Matrix(:,:,2,1) and Matrix(:,:,2,2), and so on (IRL, the dimensions of Matrix might be more like size(Matrix) = (300 250 30 200) I don't want to use linear indices because I would like the results to be in a similar vector fashion. For example, I would like a result which is something like: ans(time=1) 999 888 124 999 888 124 ans(time=2) etc etc etc etc etc etc I'd also like to add that due to the size of the matrix I'm dealing with, speed is an issue here - thus why I'd like to use subscript indices to index to the data. I should also mention that (unlike this question: Accessing values using subscripts without using sub2ind) since I want all the information stored in the extra dimensions, 3 and 4, of the i and jth indices, I don't think that a slightly faster version of sub2ind still would not cut it..

    Read the article

  • Classification: Dealing with Abstain/Rejected Class

    - by abner.ayala
    I am asking for your input and/help on a classification problem. If anyone have any references that I can read to help me solve my problem even better. I have a classification problem of four discrete and very well separated classes. However my input is continuous and has a high frequency (50Hz), since its a real-time problem. The circles represent the clusters of the classes, the blue line the decision boundary and Class 5 equals the (neutral/resting do nothing class). This class is the rejected class. However the problem is that when I move from one class to the other I activate a lot of false positives in the transition movements, since the movement is clearly non-linear. For example, every time I move from class 5 (neutral class) to 1 I first see a lot of 3's before getting to the 1 class. Ideally, I will want my decision boundary to look like the one in the picture below where the rejected class is Class =5. Has a higher decision boundary than the others classes to avoid misclassification during transition. I am currently implementing my algorithm in Matlab using naive bayes, kNN, and SVMs optimized algorithms using Matlab. Question: What is the best/common way to handle abstain/rejected classes classes? Should I use (fuzzy logic, loss function, should I include resting cluster in the training)?

    Read the article

  • Calculating confidence intervals for a non-normal distribution

    - by Josiah
    Hi all, First, I should specify that my knowledge of statistics is fairly limited, so please forgive me if my question seems trivial or perhaps doesn't even make sense. I have data that doesn't appear to be normally distributed. Typically, when I plot confidence intervals, I would use the mean +- 2 standard deviations, but I don't think that is acceptible for a non-uniform distribution. My sample size is currently set to 1000 samples, which would seem like enough to determine if it was a normal distribution or not. I use Matlab for all my processing, so are there any functions in Matlab that would make it easy to calculate the confidence intervals (say 95%)? I know there are the 'quantile' and 'prctile' functions, but I'm not sure if that's what I need to use. The function 'mle' also returns confidence intervals for normally distributed data, although you can also supply your own pdf. Could I use ksdensity to create a pdf for my data, then feed that pdf into the mle function to give me confidence intervals? Also, how would I go about determining if my data is normally distributed. I mean I can currently tell just by looking at the histogram or pdf from ksdensity, but is there a way to quantitatively measure it? Thanks!

    Read the article

  • The use of getters and setters for different programming languages [closed]

    - by leonhart88
    So I know there are a lot of questions on getters and setters in general, but I couldn't find something exactly like my question. I was wondering if people change the use of get/set depending on different languages. I started learning with C++ and was taught to use getters and setters. This is what I understand: In C++ (and Java?), a variable can either be public or private, but we cannot have a mix. For example, I can't have a read-only variable that can still be changed inside the class. It's either all public (can read and change it), or all private (can't read and can only change inside the class). Because of this (and possibly other reasons), we use getters and setters. In MATLAB, I can control the "setaccess" and "getaccess" properties of variables, so that I can make things read-only (can directly access the property, but can't overwrite it). In this case, I don't feel like I need a getter because I can just do class.property. Also, in Python it is considered "Pythonic" to not use getters/setters and to only put things into properties if needed. I don't really understand why its OK to have all public variables in Python, because that's opposite of what I learned when I started with C++. I'm just curious what other people's thoughts are on this. Would you use getters and setters for all languages? Would you only use it for C++/Java and do direct access in MATLAB and Python (which is what I am currently doing)? Is the second option considered bad? For my purposes, I am only referring to simple getters and setters (just return/set the value and do not do anything else). Thanks!

    Read the article

  • Get last row of many matrices (ASCII text files) and create a new matrix from these rows

    - by nofunsally
    I have over a thousand matrices (6 x 2000, ASCII files, comma delimited) that I generated from MATLAB. I want to get the last row of each matrix / text file and save them in a new matrix / text file. The text files have crazy names so when I load them I can name them whatever. Right now I would do this to achieve my goal: % A = load('crazyname.txt'); % B = load('crazynameagain.txt'); % C = load('crazynameyetagain.txt'); A = [5 5 5; 5 5 5; 1 1 1]; B = [5 5 5; 5 5 5; 2 2 2]; C = [5 5 5; 5 5 5; 3 3 3]; D(1,:)=A(end,:); D(2,:)=B(end,:); D(3,:)=C(end,:); I will create each command (e.g. load, building D step by step) in Excel by combining text cells to create a command. Is there a better way to do this? Could I load / assign the matrices with a name that would better suit them to be used in a for loop? Or is some other MATLAB command that would facilitate this? Thanks.

    Read the article

  • Local Histogram Equalization with Matlab

    - by Mertie Pertie
    hi all Histogram equalization is simple with histeq function but when it comes local hist. eq., im supposed to use a neighbourhood and move it along the image matrix and do it locally at each iteration. I wonder how I can implement it with Matlab, is it possible if i use histeq for each neighbourhood or is there any other predefined m-function for this operation.

    Read the article

  • Neural Net Optimize w/ Genetic Algorithm

    - by ServAce85
    Is a genetic algorithm the most efficient way to optimize the number of hidden nodes and the amount of training done on an artificial neural network? I am coding neural networks using the NNToolbox in Matlab. I am open to any other suggestions of optimization techniques, but I'm most familiar with GA's.

    Read the article

  • Basic image processing question

    - by indoman
    Can you enlarge a feature so that rather than take up a certain number of pixels it actually takes up one or two times that many to make it easier to analyze? Would there be a way to generalize that in MATLAB?

    Read the article

  • Stata - Multiple rotated plots on graph (including distributions on sides of axes)

    - by meerak
    I would like to produce a single graph containing both: (1) a scatter plot (2) either histograms or kernel density functions of the Y and X variables to the left of the Y axis and below the X axis. I found a graph that does this in MATLAB -- I would just like to produce something similar in Stata: That graph was produced using the following MATLAB code: n = 1000; rho = .7; Z = mvnrnd([0 0], [1 rho; rho 1], n); U = normcdf(Z); X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)]; [n1,ctr1] = hist(X(:,1),20); [n2,ctr2] = hist(X(:,2),20); subplot(2,2,2); plot(X(:,1),X(:,2),'.'); axis([0 12 -8 8]); h1 = gca; title('1000 Simulated Dependent t and Gamma Values'); xlabel('X1 ~ Gamma(2,1)'); ylabel('X2 ~ t(5)'); subplot(2,2,4); bar(ctr1,-n1,1); axis([0 12 -max(n1)*1.1 0]); axis('off'); h2 = gca; subplot(2,2,1); barh(ctr2,-n2,1); axis([-max(n2)*1.1 0 -8 8]); axis('off'); h3 = gca; set(h1,'Position',[0.35 0.35 0.55 0.55]); set(h2,'Position',[.35 .1 .55 .15]); set(h3,'Position',[.1 .35 .15 .55]); colormap([.8 .8 1]); UPDATE: The Stata13 manual entry for "graph combine" has precisely this example (http://www.stata.com/manuals13/g-2graphcombine.pdf). Here is the code: use http://www.stata-press.com/data/r13/lifeexp, clear generate loggnp = log10(gnppc) label var loggnp "Log base 10 of GNP per capita" scatter lexp loggnp, ysca(alt) xsca(alt) xlabel(, grid gmax) fysize(25) saving(yx) twoway histogram lexp, fraction xsca(alt reverse) horiz fxsize(25) saving(hy) twoway histogram loggnp, fraction ysca(alt reverse) ylabel(,nogrid) xlabel(,grid gmax) saving(hx) graph combine hy.gph yx.gph hx.gph, hole(3) imargin(0 0 0 0) graphregion(margin(l=22 r=22)) title("Life expectancy at birth vs. GNP per capita") note("Source: 1998 data from The World Bank Group")

    Read the article

  • How to acquire still webcam image

    - by Silv3rSurf
    I need some help deciding what to use to acquire an image from a webcam. I want to acquire a single image. I know you can typically acquire a still image at a higher resolution than a single video frame. Currently, I am using MATLAB's image acquisition toolbox.. which apparently only supports obtaining frames in video mode(so lower resolution). Which other libraries do you recommend? Has anyone else encountered this problem?

    Read the article

  • General method for making sub arrays around a particular element

    - by JJ
    What is a quick, elegant way of using MatLab to form a subarray around a particular element? Element are selected randomly from the data, so you can't take a subarray in the normal way (it has to be generalized for the elements that are selected). What I mean is, forming an array for example 5x5 or 7x7 or something, where the middle element is the one you want.

    Read the article

  • Efficient process SQL Server and numerical methods library

    - by darkcminor
    Is there a way to comunicate a numeric method library, that can exploit all .net's (numerical methods called by .net that does SQL Server things) habilities?, What library do you recomend, maybe using MATLAB, R? How to comunicate SQL Server and .net with such library or libraries? Do you have an example? What steps must be followed to make the link between numerical libraries, .net and SQL Server

    Read the article

  • Machine learning - training step

    - by palau1
    When you're using Haar-like features for your training data for an Adaboost algorithm, how do you build your data sets? Do you literally have to find thousands of positive and negative samples? There must be a more efficient way of doing this... I'm trying to analyze images in matlab (not faces) and am relatively new to image processing.

    Read the article

  • How to still webcam image

    - by Silv3rSurf
    I need some help deciding what to use to acquire an image from a webcam. I want to acquire a single image. I know you can typically acquire a still image at a higher resolution than a single video frame. Currently, I am using MATLAB's image acquisition toolbox.. which apparently only supports obtaining frames in video mode(so lower resolution). Which other libraries do you recommend? Has anyone else encountered this problem?

    Read the article

  • Does Python/Scipy have a firls( ) replacement (i.e. a weighted, least squares, FIR filter design)?

    - by delicasso
    I am porting code from Matlab to Python and am having trouble finding a replacement for the firls( ) routine. It is used for, least-squares linear-phase Finite Impulse Response (FIR) filter design. I looked at scipy.signal and nothing there looked like it would do the trick. Of course I was able to replace my remez and freqz algorithsm, so that's good. On one blog I found an algorithm that implemented this filter without weighting, but I need one with weights. Thanks, David

    Read the article

  • Runge-Kutta Method with adaptive step

    - by infoholic_anonymous
    I am implementing Runge-Kutta method with adaptive step in matlab. I get different results as compared to matlab's own ode45 and my own implementation of Runge-Kutta method with fixed step. What am I doing wrong in my code? Is it possible? function [ result ] = rk4_modh( f, int, init, h, h_min ) % % f - function handle % int - interval - pair (x_min, x_max) % init - initial conditions - pair (y1(0),y2(0)) % h_min - lower limit for h (step length) % h - initial step length % x - independent variable ( for example time ) % y - dependent variable - vertical vector - in our case ( y1, y2 ) function [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ) % core functionality performed within loop k1 = h * f(x,y); k2 = h * f(x+h/2, y+k1/2); k3 = h * f(x+h/2, y+k2/2); k4 = h * f(x+h, y+k3); ka = (k1 + 2*k2 + 2*k3 + k4)/6; y = y + ka; end % constants % relative error eW = 1e-10; % absolute error eB = 1e-10; s = 0.9; b = 5; % initialization i = 1; x = int(1); y = init; while true hy = y; hx = x; %algorithm [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ); % error estimation for j=1:2 [ hk1, hk2, hk3, hk4, hka, hy ] = iteration( f, h/2, hx, hy ); hx = hx + h/2; end err(:,i) = abs(hy - y); % step adjustment e = abs( hy ) * eW + eB; a = min( e ./ err(:,i) )^(0.2); mul = a * s; if mul >= 1 % step length admitted keepH(i) = h; k(:,:,i) = [ k1, k2, k3, k4, ka ]; previous(i,:) = [ x+h, y' ]; %' i = i + 1; if floor( x + h + eB ) == int(2) break; else h = min( [mul*h, b*h, int(2)-x] ); x = x + keepH(i-1); end else % step length requires further adjustments h = mul * h; if ( h < h_min ) error('Computation with given precision impossible'); end end end result = struct( 'val', previous, 'k', k, 'err', err, 'h', keepH ); end The function in question is: function [ res ] = fun( x, y ) % res(1) = y(2) + y(1) * ( 0.9 - y(1)^2 - y(2)^2 ); res(2) = -y(1) + y(2) * ( 0.9 - y(1)^2 - y(2)^2 ); res = res'; %' end The call is: res = rk4( @fun, [0,20], [0.001; 0.001], 0.008 ); The resulting plot for x1 : The result of ode45( @fun, [0, 20], [0.001, 0.001] ) is:

    Read the article

  • values from different fields in matalb

    - by ariel
    Hi does anybody familiar with a way that I could implement a matrix with values from a field (not the real or complex number, but lets say Z mod p). so I could perform all the operation of matlab on the matrix (with the values of the chosen field) Ariel

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >