Search Results

Search found 3425 results on 137 pages for 'polynomial math'.

Page 33/137 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • Derivative Calculator

    - by burki
    Hi! I'm interested in building a derivative calculator. I've racked my brains over solving the problem, but I haven't found a right solution at all. May you have a hint how to start? Thanks

    Read the article

  • Calculating negative fractions in Objective C

    - by Mark Reid
    I've been coding my way through Steve Kochan's Programming in Objective-C 2.0 book. I'm up to an exercise in chapter 7, ex 4, in case anyone has the book. The question posed by the exercise it will the Fraction class written work with negative fractions such as -1/2 + -2/3? Here's the implementation code in question - @implementation Fraction @synthesize numerator, denominator; -(void) print { NSLog(@"%i/%i", numerator, denominator); } -(void) setTo: (int) n over: (int) d { numerator = n; denominator = d; } -(double) convertToNum { if (denominator != 0) return (double) numerator / denominator; else return 1.0; } -(Fraction *) add: (Fraction *) f { // To add two fractions: // a/b + c/d = ((a * d) + (b * c)) / (b * d) // result will store the result of the addition Fraction *result = [[Fraction alloc] init]; int resultNum, resultDenom; resultNum = (numerator * f.denominator) + (denominator * f.numerator); resultDenom = denominator * f.denominator; [result setTo: resultNum over: resultDenom]; [result reduce]; return result; } -(Fraction *) subtract: (Fraction *) f { // To subtract two fractions: // a/b - c/d = ((a * d) - (b * c)) / (b * d) // result will store the result of the addition Fraction *result = [[Fraction alloc] init]; int resultNum, resultDenom; resultNum = numerator * f.denominator - denominator * f.numerator; resultDenom = denominator * f.denominator; [result setTo: resultNum over: resultDenom]; [result reduce]; return result; } -(Fraction *) multiply: (Fraction *) f { // To multiply two fractions // a/b * c/d = (a*c) / (b*d) // result will store the result of the addition Fraction *result = [[Fraction alloc] init]; int resultNum, resultDenom; resultNum = numerator * f.numerator; resultDenom = denominator * f.denominator; [result setTo: resultNum over: resultDenom]; [result reduce]; return result; } -(Fraction *) divide: (Fraction *) f { // To divide two fractions // a/b / c/d = (a*d) / (b*c) // result will store the result of the addition Fraction *result = [[Fraction alloc] init]; int resultNum, resultDenom; resultNum = numerator * f.denominator; resultDenom = denominator * f.numerator; [result setTo: resultNum over: resultDenom]; [result reduce]; return result; } -(void) reduce { int u = numerator; int v = denominator; int temp; while (v != 0) { temp = u % v; u = v; v = temp; } numerator /= u; denominator /= u; } @end My question to you is will it work with negative fractions and can you explain how you know? Part of the issue is I don't know how to calculate negative fractions myself so I'm not too sure how to know. Many thanks.

    Read the article

  • NSDecimalNumber subtraction

    - by happyCoding25
    Hello, I need to subtract 0.5 from number a and set the answer to number b. My code looks like it would work but I'm not sure what I'm doing wrong. The error I get Is on the subtraction line, the error says incompatible type for argument 1 of 'decimalNumberBySubtracting:'. Heres my header: (Note: I only showed the numbers because the header is large) NSDecimalNumber *a; NSDecimalNumber *b; Heres the rest: (Assume this is in an IBAction) b = [a decimalNumberBySubtracting:0.5]; If anyone knows how to properly subtract any help would be appreciated.

    Read the article

  • Rot13 for numbers.

    - by dreeves
    EDIT: Now a Major Motion Blog Post at http://messymatters.com/sealedbids The idea of rot13 is to obscure text, for example to prevent spoilers. It's not meant to be cryptographically secure but to simply make sure that only people who are sure they want to read it will read it. I'd like to do something similar for numbers, for an application involving sealed bids. Roughly I want to send someone my number and trust them to pick their own number, uninfluenced by mine, but then they should be able to reveal mine (purely client-side) when they're ready. They should not require further input from me or any third party. (Added: Note the assumption that the recipient is being trusted not to cheat.) It's not as simple as rot13 because certain numbers, like 1 and 2, will recur often enough that you might remember that, say, 34.2 is really 1. Here's what I'm looking for specifically: A function seal() that maps a real number to a real number (or a string). It should not be deterministic -- seal(7) should not map to the same thing every time. But the corresponding function unseal() should be deterministic -- unseal(seal(x)) should equal x for all x. I don't want seal or unseal to call any webservices or even get the system time (because I don't want to assume synchronized clocks). (Added: It's fine to assume that all bids will be less than some maximum, known to everyone, say a million.) Sanity check: > seal(7) 482.2382 # some random-seeming number or string. > seal(7) 71.9217 # a completely different random-seeming number or string. > unseal(seal(7)) 7 # we always recover the original number by unsealing.

    Read the article

  • correcting fisheye distortion programmatically

    - by Will
    I have some points that describe positions in a picture taken with a fisheye lens. I've found this description of how to generate a fisheye effect, but not how to reverse it. How do you calculate the radial distance from the centre to go from fisheye to rectilinear? My function stub looks like this: Point correct_fisheye(const Point& p,const Size& img) { // to polar const Point centre = {img.width/2,img.height/2}; const Point rel = {p.x-centre.x,p.y-centre.y}; const double theta = atan2(rel.y,rel.x); double R = sqrt((rel.x*rel.x)+(rel.y*rel.y)); // fisheye undistortion in here please //... change R ... // back to rectangular const Point ret = Point(centre.x+R*cos(theta),centre.y+R*sin(theta)); fprintf(stderr,"(%d,%d) in (%d,%d) = %f,%f = (%d,%d)\n",p.x,p.y,img.width,img.height,theta,R,ret.x,ret.y); return ret; } Alternatively, I could somehow convert the image from fisheye to rectilinear before finding the points, but I'm completely befuddled by the OpenCV documentation. Is there a straightforward way to do it in OpenCV, and does it perform well enough to do it to a live video feed?

    Read the article

  • Draw Lines Over a Circle

    - by VOX
    There's a line A-B and C at the center between A and B. It forms a circle as in the figure. If we assume A-B line as a diameter of the circle and then C is it's center. My problem is I have no idea how to draw another three lines (in blue) each 45 degree away from AC or AB. No, this is not a homework, it's part of my complex geometry in a rendering. http://www.freeimagehosting.net/image.php?befcd84d8c.png

    Read the article

  • DSA signature verification input

    - by calccrypto
    What is the data inputted into DSA when PGP signs a message? From RFC4880, i found A Signature packet describes a binding between some public key and some data. The most common signatures are a signature of a file or a block of text, and a signature that is a certification of a User ID. im not sure if it is the entire public key, just the public key packet, or some other derivative of a pgp key packet. whatever it is, i cannot get the DSA signature to verify here is a sample im testing my program on: -----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 abcd -----BEGIN PGP SIGNATURE----- Version: BCPG v1.39 iFkEARECABkFAk0z65ESHGFiYyAodGVzdCBrZXkpIDw+AAoJEC3Jkh8+bnkusO0A oKG+HPF2Qrsth2zS9pK+eSCBSypOAKDBgC2Z0vf2EgLiiNMk8Bxpq68NkQ== =gq0e -----END PGP SIGNATURE----- Dumped from pgpdump.net Old: Signature Packet(tag 2)(89 bytes) Ver 4 - new Sig type - Signature of a canonical text document(0x01). Pub alg - DSA Digital Signature Algorithm(pub 17) Hash alg - SHA1(hash 2) Hashed Sub: signature creation time(sub 2)(4 bytes) Time - Mon Jan 17 07:11:13 UTC 2011 Hashed Sub: signer's User ID(sub 28)(17 bytes) User ID - abc (test key) <> Sub: issuer key ID(sub 16)(8 bytes) Key ID - 0x2DC9921F3E6E792E Hash left 2 bytes - b0 ed DSA r(160 bits) - a1 be 1c f1 76 42 bb 2d 87 6c d2 f6 92 be 79 20 81 4b 2a 4e DSA s(160 bits) - c1 80 2d 99 d2 f7 f6 12 02 e2 88 d3 24 f0 1c 69 ab af 0d 91 -> hash(DSA q bits) and the public key for it is: -----BEGIN PGP PUBLIC KEY BLOCK----- Version: BCPG v1.39 mOIETTPqeBECALx+i9PIc4MB2DYXeqsWUav2cUtMU1N0inmFHSF/2x0d9IWEpVzE kRc30PvmEHI1faQit7NepnHkkphrXLAoZukAoNP3PB8NRQ6lRF6/6e8siUgJtmPL Af9IZOv4PI51gg6ICLKzNO9i3bcUx4yeG2vjMOUAvsLkhSTWob0RxWppo6Pn6MOg dMQHIM5sDH0xGN0dOezzt/imAf9St2B0HQXVfAAbveXBeRoO7jj/qcGx6hWmsKUr BVzdQhBk7Sku6C2KlMtkbtzd1fj8DtnrT8XOPKGp7/Y7ASzRtBFhYmMgKHRlc3Qg a2V5KSA8PohGBBMRAgAGBQJNM+p5AAoJEC3Jkh8+bnkuNEoAnj2QnqGtdlTgUXCQ Fyvwk5wiLGPfAJ4jTGTL62nWzsgrCDIMIfEG2shm8bjMBE0z6ngQAgCUlP7AlfO4 XuKGVCs4NvyBpd0KA0m0wjndOHRNSIz44x24vLfTO0GrueWjPMqRRLHO8zLJS/BX O/BHo6ypjN87Af0VPV1hcq20MEW2iujh3hBwthNwBWhtKdPXOndJGZaB7lshLJuW v9z6WyDNXj/SBEiV1gnPm0ELeg8Syhy5pCjMAgCFEc+NkCzcUOJkVpgLpk+VLwrJ /Wi9q+yCihaJ4EEFt/7vzqmrooXWz2vMugD1C+llN6HkCHTnuMH07/E/2dzciEYE GBECAAYFAk0z6nkACgkQLcmSHz5ueS7NTwCdED1P9NhgR2LqwyS+AEyqlQ0d5joA oK9xPUzjg4FlB+1QTHoOhuokxxyN =CTgL -----END PGP PUBLIC KEY BLOCK----- the public key packet of the key is mOIETTPqeBECALx+i9PIc4MB2DYXeqsWUav2cUtMU1N0inmFHSF/2x0d9IWEpVzEkRc30PvmEHI1faQi t7NepnHkkphrXLAoZukAoNP3PB8NRQ6lRF6/6e8siUgJtmPLAf9IZOv4PI51gg6ICLKzNO9i3bcUx4ye G2vjMOUAvsLkhSTWob0RxWppo6Pn6MOgdMQHIM5sDH0xGN0dOezzt/imAf9St2B0HQXVfAAbveXBeRoO 7jj/qcGx6hWmsKUrBVzdQhBk7Sku6C2KlMtkbtzd1fj8DtnrT8XOPKGp7/Y7ASzR in radix 64 i have tried many different combinations of sha1(< some data + 'abcd'),but the calculated value v never equals r, of the signature i know that the pgp implementation i used to create the key and signature is correct. i also know that my DSA implementation and PGP key data extraction program are correct. thus, the only thing left is the data to hash. what is the correct data to be hashed?

    Read the article

  • Power Law distribution for a given exponent in C# using MathNet

    - by Eric Tobias
    Hello! I am currently working on a project where I need to generate multiple values (floats or doubles preferably) that follow a power law distribution with a given exponent! I was advised to use the MathNet.Iridium library to help me. The problem I have is that the documentation is not as explicit as it should be if there is any! I see multiple distributions that fit the general idea of the power law distribution but I cannot pinpoint a good distribution to use with a certain exponent as a parameter. Does anybody have more experience in that matter and could give me some hints or advice?

    Read the article

  • Calculating bounding box a certain distance away from a lat/long coordinate in Java

    - by Bryce Thomas
    Given a coordinate (lat, long), I am trying to calculate a square bounding box that is a given distance (e.g. 50km) away from the coordinate. So as input I have lat, long and distance and as output I would like two coordinates; one being the south-west (bottom-left) corner and one being the north-east (top-right) corner. I have seen a couple of answers on here that try to address this question in Python, but I am looking for a Java implementation in particular. Just to be clear, I intend on using the algorithm on Earth only and so I don't need to accommodate a variable radius. It doesn't have to be hugely accurate (+/-20% is fine) and it'll only be used to calculate bounding boxes over small distances (no more than 150km). So I'm happy to sacrifice some accuracy for an efficient algorithm. Any help is much appreciated. Edit: I should have been clearer, I really am after a square, not a circle. I understand that the distance between the center of a square and various points along the square's perimeter is not a constant value like it is with a circle. I guess what I mean is a square where if you draw a line from the center to any one of the four points on the perimeter that results in a line perpendicular to a side of the perimeter, then those 4 lines have the same length.

    Read the article

  • How to generate a lower frequency version of a signal in Matlab?

    - by estourodepilha.com
    With a sine input, I tried to modify it's frequency cutting some lower frequencies in the spectrum, shifting the main frequency towards zero. As the signal is not fftshifted I tried to do that by eliminating some samples at the begin and at the end of the fft vector: interval = 1; samplingFrequency = 44100; signalFrequency = 440; sampleDuration = 1 / samplingFrequency; timespan = 1 : sampleDuration : (1 + interval); original = sin(2 * pi * signalFrequency * timespan); fourierTransform = fft(original); frequencyCut = 10; %% Hertz frequencyCut = floor(frequencyCut * (length(pattern) / samplingFrequency) / 4); %% Samples maxFrequency = length(fourierTransform) - (2 * frequencyCut); signal = ifft(fourierTransform(frequencyCut + 1:maxFrequency), 'symmetric'); But it didn't work as expected. I also tried to remove the center part of the spectrum, but it wielded a higher frequency sine wave too. How to make it right?

    Read the article

  • Is there a Java library with 3D spline functions?

    - by Liam
    In particular, I need a way to represent a curve/spline that passes through a set of known 3D points, and a way of finding other points on the curve/spline, by subdivision/interpolation. For example, if I have a set of points P0 to PN, I want to find 100 points between P0 and P1 that are on a spline that passes through P0 and P1. I see that Java3D's KBRotPosScaleSplinePathInterpolator performs such a calculation, but it is tied to that API's scenegraph model and I do not see how to return the values I need.

    Read the article

  • How to perform spatial partitioning in n-dimensions?

    - by kevin42
    I'm trying to design an implementation of Vector Quantization as a c++ template class that can handle different types and dimensions of vectors (e.g. 16 dimension vectors of bytes, or 4d vectors of doubles, etc). I've been reading up on the algorithms, and I understand most of it: here and here I want to implement the Linde-Buzo-Gray (LBG) Algorithm, but I'm having difficulty figuring out the general algorithm for partitioning the clusters. I think I need to define a plane (hyperplane?) that splits the vectors in a cluster so there is an equal number on each side of the plane. [edit to add more info] This is an iterative process, but I think I start by finding the centroid of all the vectors, then use that centroid to define the splitting plane, get the centroid of each of the sides of the plane, continuing until I have the number of clusters needed for the VQ algorithm (iterating to optimize for less distortion along the way). The animation in the first link above shows it nicely. My questions are: What is an algorithm to find the plane once I have the centroid? How can I test a vector to see if it is on either side of that plane?

    Read the article

  • Finding coordinates of a point between two points?

    - by Nicros
    Doing some 3D stuff in wpf- want to use a simpler test to see if everything is working (before moving to curves). The basic question is given two points x1,y1,z1 and x2,y2,z2 I have calculated the distance between the points. But how to find the coordinates of another point (x3,y3,z3) that lies on that line at some distance? I.e. if my line is 100 long between -50,0,0 and 50,0,0 what are the coordinates of the point at 100 * 0.1 along the line? I think this is a simple formula but I haven't found it yet....

    Read the article

  • Histogram matching - image processing - c/c++

    - by Raj
    Hello I have two histograms. int Hist1[10] = {1,4,3,5,2,5,4,6,3,2}; int Hist1[10] = {1,4,3,15,12,15,4,6,3,2}; Hist1's distribution is of type multi-modal; Hist2's distribution is of type uni-modal with single prominent peak. My questions are Is there any way that i could determine the type of distribution programmatically? How to quantify whether these two histograms are similar/dissimilar? Thanks

    Read the article

  • Reducing Integer Fractions Algorithm - Solution Explanation?

    - by Andrew Tomazos - Fathomling
    This is a followup to this problem: Reducing Integer Fractions Algorithm Following is a solution to the problem from a grandmaster: #include <cstdio> #include <algorithm> #include <functional> using namespace std; const int MAXN = 100100; const int MAXP = 10001000; int p[MAXP]; void init() { for (int i = 2; i < MAXP; ++i) { if (p[i] == 0) { for (int j = i; j < MAXP; j += i) { p[j] = i; } } } } void f(int n, vector<int>& a, vector<int>& x) { a.resize(n); vector<int>(MAXP, 0).swap(x); for (int i = 0; i < n; ++i) { scanf("%d", &a[i]); for (int j = a[i]; j > 1; j /= p[j]) { ++x[p[j]]; } } } void g(const vector<int>& v, vector<int> w) { for (int i: v) { for (int j = i; j > 1; j /= p[j]) { if (w[p[j]] > 0) { --w[p[j]]; i /= p[j]; } } printf("%d ", i); } puts(""); } int main() { int n, m; vector<int> a, b, x, y, z; init(); scanf("%d%d", &n, &m); f(n, a, x); f(m, b, y); printf("%d %d\n", n, m); transform(x.begin(), x.end(), y.begin(), insert_iterator<vector<int> >(z, z.end()), [](int a, int b) { return min(a, b); }); g(a, z); g(b, z); return 0; } It isn't clear to me how it works. Can anyone explain it? The equivilance is as follows: a is the numerator vector of length n b is the denominator vector of length m

    Read the article

  • What statistics can be maintained for a set of numerical data without iterating?

    - by Dan Tao
    Update Just for future reference, I'm going to list all of the statistics that I'm aware of that can be maintained in a rolling collection, recalculated as an O(1) operation on every addition/removal (this is really how I should've worded the question from the beginning): Obvious Count Sum Mean Max* Min* Median** Less Obvious Variance Standard Deviation Skewness Kurtosis Mode*** Weighted Average Weighted Moving Average**** OK, so to put it more accurately: these are not "all" of the statistics I'm aware of. They're just the ones that I can remember off the top of my head right now. *Can be recalculated in O(1) for additions only, or for additions and removals if the collection is sorted (but in this case, insertion is not O(1)). Removals potentially incur an O(n) recalculation for non-sorted collections. **Recalculated in O(1) for a sorted, indexed collection only. ***Requires a fairly complex data structure to recalculate in O(1). ****This can certainly be achieved in O(1) for additions and removals when the weights are assigned in a linearly descending fashion. In other scenarios, I'm not sure. Original Question Say I maintain a collection of numerical data -- let's say, just a bunch of numbers. For this data, there are loads of calculated values that might be of interest; one example would be the sum. To get the sum of all this data, I could... Option 1: Iterate through the collection, adding all the values: double sum = 0.0; for (int i = 0; i < values.Count; i++) sum += values[i]; Option 2: Maintain the sum, eliminating the need to ever iterate over the collection just to find the sum: void Add(double value) { values.Add(value); sum += value; } void Remove(double value) { values.Remove(value); sum -= value; } EDIT: To put this question in more relatable terms, let's compare the two options above to a (sort of) real-world situation: Suppose I start listing numbers out loud and ask you to keep them in your head. I start by saying, "11, 16, 13, 12." If you've just been remembering the numbers themselves and nothing more, and then I say, "What's the sum?", you'd have to think to yourself, "OK, what's 11 + 16 + 13 + 12?" before responding, "52." If, on the other hand, you had been keeping track of the sum yourself while I was listing the numbers (i.e., when I said, "11" you thought "11", when I said "16", you thought, "27," and so on), you could answer "52" right away. Then if I say, "OK, now forget the number 16," if you've been keeping track of the sum inside your head you can simply take 16 away from 52 and know that the new sum is 36, rather than taking 16 off the list and them summing up 11 + 13 + 12. So my question is, what other calculations, other than the obvious ones like sum and average, are like this? SECOND EDIT: As an arbitrary example of a statistic that (I'm almost certain) does require iteration -- and therefore cannot be maintained as simply as a sum or average -- consider if I asked you, "how many numbers in this collection are divisible by the min?" Let's say the numbers are 5, 15, 19, 20, 21, 25, and 30. The min of this set is 5, which divides into 5, 15, 20, 25, and 30 (but not 19 or 21), so the answer is 5. Now if I remove 5 from the collection and ask the same question, the answer is now 2, since only 15 and 30 are divisible by the new min of 15; but, as far as I can tell, you cannot know this without going through the collection again. So I think this gets to the heart of my question: if we can divide kinds of statistics into these categories, those that are maintainable (my own term, maybe there's a more official one somewhere) versus those that require iteration to compute any time a collection is changed, what are all the maintainable ones? What I am asking about is not strictly the same as an online algorithm (though I sincerely thank those of you who introduced me to that concept). An online algorithm can begin its work without having even seen all of the input data; the maintainable statistics I am seeking will certainly have seen all the data, they just don't need to reiterate through it over and over again whenever it changes.

    Read the article

  • Detecting Singularities in a Graph

    - by nasufara
    I am creating a graphing calculator in Java as a project for my programming class. There are two main components to this calculator: the graph itself, which draws the line(s), and the equation evaluator, which takes in an equation as a String and... well, evaluates it. To create the line, I create a Path2D.Double instance, and loop through the points on the line. To do this, I calculate as many points as the graph is wide (e.g. if the graph itself is 500px wide, I calculate 500 points), and then scale it to the window of the graph. Now, this works perfectly for most any line. However, it does not when dealing with singularities. If, when calculating points, the graph encounters a domain error (such as 1/0), the graph closes the shape in the Path2D.Double instance and starts a new line, so that the line looks mathematically correct. Example: However, because of the way it scales, sometimes it is rendered correctly, sometimes it isn't. When it isn't, the actual asymptotic line is shown, because within those 500 points, it skipped over x = 2.0 in the equation 1 / (x-2), and only did x = 1.98 and x = 2.04, which are perfectly valid in that equation. Example: In that case, I increased the window on the left and right one unit each. My question is: Is there a way to deal with singularities using this method of scaling so that the resulting line looks mathematically correct? I myself have thought of implementing a binary search-esque method, where, if it finds that it calculates one point, and then the next point is wildly far away from the last point, it searches in between those points for a domain error. I had trouble figuring out how to make it work in practice, however. Thank you for any help you may give!

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >