Search Results

Search found 30246 results on 1210 pages for 'object persistence'.

Page 330/1210 | < Previous Page | 326 327 328 329 330 331 332 333 334 335 336 337  | Next Page >

  • How bad is it to have two methods with the same name but different signatures in two classes?

    - by Super User
    I have a design problem related to a public interface, the names of methods, and the understanding of my API and code. I have two classes like this: class A: ... function collision(self): .... ... class B: .... function _collision(self, another_object, l, r, t, b): .... The first class has one public method named collision, and the second has one private method called _collision. The two methods differs in argument type and number. As an example let's say that _collision checks if the object is colliding with another object with certain conditions l, r, t, b (collide on the left side, right side, etc) and returns true or false. The public collision method, on the other hand, resolves all the collisions of the object with other objects. The two methods have the same name because I think it's better to avoid overloading the design with different names for methods that do almost the same thing, but in distinct contexts and classes. Is this clear enough to the reader or I should change the method's name?

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • How to avoid game objects accidentally deleting themselves in C++

    - by Tom Dalling
    Let's say my game has a monster that can kamikaze explode on the player. Let's pick a name for this monster at random: a Creeper. So, the Creeper class has a method that looks something like this: void Creeper::kamikaze() { EventSystem::postEvent(ENTITY_DEATH, this); Explosion* e = new Explosion; e->setLocation(this->location()); this->world->addEntity(e); } The events are not queued, they get dispatched immediately. This causes the Creeper object to get deleted somewhere inside the call to postEvent. Something like this: void World::handleEvent(int type, void* context) { if(type == ENTITY_DEATH){ Entity* ent = dynamic_cast<Entity*>(context); removeEntity(ent); delete ent; } } Because the Creeper object gets deleted while the kamikaze method is still running, it will crash when it tries to access this->location(). One solution is to queue the events into a buffer and dispatch them later. Is that the common solution in C++ games? It feels like a bit of a hack, but that might just be because of my experience with other languages with different memory management practices. In C++, is there a better general solution to this problem where an object accidentally deletes itself from inside one of its methods?

    Read the article

  • Is this method of writing Unit Tests correct?

    - by aspdotnetuser
    I have created a small C# project to help me learn how to write good unit tests. I know that one important rule of unit testing is to test the smallest 'unit' of code possible so that if it fails you know exactly what part of the code needs to fixed. I need help with the following before I continue to implement more unit tests for the project: If I have a Car class, for example, that creates a new Car object which has various attributes that are calculated when its' constructor method is called, would the two following tests be considered as overkill? Should there be one test that tests all calculated attributes of the Car object instead? [Test] public void CarEngineCalculatedValue() { BusinessObjects.Car car= new BusinessObjects.Car(); Assert.GreaterOrEqual(car.Engine, 1); } [Test] public void CarNameCalculatedValue() { BusinessObjects.Car car= new BusinessObjects.Car(); Assert.IsNotNull(car.Name); } Should I have the above two test methods to test these things or should I have one test method that asserts the Car object has first been created and then test these things in the same test method?

    Read the article

  • How do you keep SOA DRY?

    - by TaylorOtwell
    In our organization, we've shifted to a more "service oriented architecture". To give an example, let's assume we need to retrieve a "Quote" object. This quote has a shipper, a consignee, phone numbers, contacts, email addresses, and other location information. In other words, a Quote object is made up of many other objects. So, it seems like it would make sense to make a "Quote Retrieval Service". In our situation, we've accomplished this by creating a .NET solution and writing the service. The service API looks something like this (in pseudo-code): Function GetQuote(String ID) Returns Quote So, so far so good. Now, when this service is consumed, to keep things "de-coupled", we are creating essentially a duplicate of the Quote object and mapping from the QuoteService version of the Quote into the consumer's version of the Quote. In many cases, these classes will have the exact same properties. So, if the Quote service is consumed by 5 other applications, we would have 6 definitions of what a "Quote" is. One for each consumer, and one for the service. This feels wrong. I thought code was supposed to be DRY, but it seems like our method of SOA is forcing us to create tons of duplicated class definitions. What are we doing wrong, or is the code duplication just a "necessary evil" of SOA?

    Read the article

  • relationship between the model and the renderer

    - by acrilige
    I tried to build a simple graphics engine, and faced with this problems: i have a list of models that i need to draw, and object (renderer) that implements IRenderer interface with method DrawObject(Object* obj). Implementation of renderer depends on using graphics library (opengl/directx). 1st question: model should not know nothing about renderer implementation, but in this case where can i hold (cache) information that depends on renderer implementation? For example, if model have this definition: class Model { public: Model(); Vertex* GetVertices() const; private: Vertex* m_vertices; }; what is the best way to cache, for example, vertex buffer of this model for dx11? Hold it in renderer object? 2nd question: what is the best way for model to say renderer HOW it must be rendered (for example with texture, bump mapping, or may be just in one color). I thought it can be done with flags, like this: model-SetRenderOptions(RENDER_TEXTURE | RENDER_BUMPMAPPING | RENDER_LIGHTING); and in Renderer::DrawModel method check for each flag. But looks like it will become uncomfortable with the options count growth...

    Read the article

  • Tiled Editor: How is this Map Handling Collision?

    - by user2736286
    BrowserQuest map in question. From what I understand, with tiled, there are two main ways to specify collision: Create an object layer, and interpret the shapes in the engine as collision objects. Create a tiled layer, and make all tiles in the layer have a collision property, and interpret all tiles in the layer as collision objects. I'm using BrowserQuest as a big source of inspiration for my project, and I want to know how they handled collision on the level editing side. I've checked through all their layers, expecting an object layer to be handling cliff collision like: But there are no such object layers to be found. Furthermore, the tile layers containing the tiles for such cliffs have no properties at all, meaning that they didn't just specify "collision" for such tile layers. I especially need to know how they handled less rectangular shapes like: I could imagine that they are not using explicit collision layers, but instead determining collision in the actual engine, based off the presence of specific tile layer sprites. Only because BrowserQuest has whole-tile movement, and it wouldn't look too odd if a small apple, taking up only a fraction of the tile size, prevents movement over that entire tile. But I'm creating a game with more precise movement, so collision has to be tight to the apple, and I really want to know how BrowserQuest approached collision defining. If anyone knowledgeable with Tiled could take a quick look at the map, I'd appreciate it! I'm tearing my hair out here :). Thanks

    Read the article

  • How bad it's have two methods with the same name but differents signatures in two classes?

    - by Super User
    I have a design problem relationated with the public interface, the names of methods and the understanding of my API and my code. I have two classes like this: class A: ... function collision(self): .... ... class B: .... function _collision(self, another_object, l, r, t, b): .... The first class have one public method named collision and the second have one private method called _collision. The two methods differs in arguments type and number. In the API _m method is private. For the example let's say that the _collision method checks if the object is colliding with another_ object with certain conditions l, r, t, b (for example, collide the left side, the right side, etc) and returns true or false according to the case. The collision method, on the other hand, resolves all the collisions of the object with other objects. The two methods have the same name because I think is better avoid overload the design with different names for methods who do almost the same think, but in distinct contexts and classes. This is clear enough to the reader or I should change the method's name?

    Read the article

  • Confusion with floats converted into ints during collision detection

    - by TheBroodian
    So in designing a 2D platformer, I decided that I should be using a Vector2 to track the world location of my world objects to retain some sub-pixel precision for slow-moving objects and other such subtle nuances, yet representing their bodies with Rectangles, because as far as collision detection and resolution is concerned, I don't need sub-pixel precision. I thought that the following line of thought would work smoothly... Vector2 wrldLocation; Point WorldLocation; Rectangle collisionRectangle; public void Update(GameTime gameTime) { Vector2 moveAmount = velocity * (float)gameTime.ElapsedGameTime.TotalSeconds wrldLocation += moveAmount; WorldLocation = new Point((int)wrldLocation.X, (int)wrldLocation.Y); collisionRectangle = new Rectangle(WorldLocation.X, WorldLocation.Y, genericWidth, genericHeight); } and I guess in theory it sort of works, until I try to use it in conjunction with my collision detection, which works by using Rectangle.Offset() to project where collisionRectangle would supposedly end up after applying moveAmount to it, and if a collision is found, finding the intersection and subtracting the difference between the two intersecting sides to the given moveAmount, which would theoretically give a corrected moveAmount to apply to the object's world location that would prevent it from passing through walls and such. The issue here is that Rectangle.Offset() only accepts ints, and so I'm not really receiving an accurate adjustment to moveAmount for a Vector2. If I leave out wrldLocation from my previous example, and just use WorldLocation to keep track of my object's location, everything works smoothly, but then obviously if my object is being given velocities less than 1 pixel per update, then the velocity value may as well be 0, which I feel further down the line I may regret. Does anybody have any suggestions about how I might go about resolving this?

    Read the article

  • Big level objects collision system for 2d game

    - by Aristarhys
    I read many variants today and get some knowledge in general, so here is a steps of mine thoughts in pictures (horrible paint.net ones). We need to develop grid system, so we check only thing near, perform simple check to cut out deep check, and at - last deep check like per-pixel collision check. Step 1 - Let p1, p2 are some sprites lets first just check with circle collision - because large distance between p1, p2 this fails and of course so we don't need test more deeply. But if we have not 2, but 20 objects, why we need to even circle test something so far outside of our view. Step 2 - Add basic column system, now we don't bother with p2 if it's in a column far from p1 column, so we even don't do circle test. But p3 is in the same col, so let do circle test, which of course will fail. Step 3 - Lets improve column system to the grid system with grid cell size just like p1, p2, p3 collision boxes, so we cut out things much top or below p1. And this is all great until comes BIG OBJs which is some kind of platforms. They are much bigger then grid cell. Circle test for will be successful, but deep check for whole big obj will fail And that the part I can't get. How do I store the grid position of big object? Like 4 grid coords for big object vertexes? And if one of them close to p1 do circle check for centre of big object then a deep one if succeed? Am I do it wrong? My possible solution:

    Read the article

  • How can I ensure my Collada model fits on an iPhone screen?

    - by rakeshNS
    Hi I am new to game development. I see many examples and tried myself like displaying triangle, cube etc. Now I am looking to render a Collada object. So I created a Collada object using Google Sketch up and trying to render that now. But the thing I am not understanding is, in all examples the vertices are between -1.0 and +1.0 values. But when I looked into that Collada file, the vertices were ranging from -30.0 to 90.0. I know any vertices greater than 1.0 will not display on iPhone. So can you pleas tell my the secret behind converting Object coordinate to normalized vector coordinate? My previous triangle defined as struct Vertex{ float Position[3]; float Color[4]; }; const Vertex Vertices[] = { {{-0.5, -0.866}, {1, 1, 0.5f, 1}}, {{0.5, -0.866}, {1, 1, 0.5, 1}}, {{0, 1}, {1, 1, 0.5, 1}}, {{-0.5, -0.866}, {0.5f, 0.5f, 0.5f}}, {{0.5, -0.866}, {0.5f, 0.5f, 0.5f}}, {{0, -0.4f}, {0.5f, 0.5f, 0.5f}}, }; And now triangle from collada is const Vertex Vertices[] = { {{39.4202092, 90.1263924, 0.0000000}, {1, 1, 0.5f, 1}}, {{-20.2205588, 90.1263924, 0.0000000}, {1, 1, 0.5, 1}}, {{-20.2205588, 176.3763924, 0.0000000}, {1, 1, 0.5, 1}}, {{-20.2205588, 176.3763924, 0.0000000}, {1, 1, 0.5, 1}}, {{-20.2205588, 90.1263924, 0.0000000}, {1, 1, 0.5, 1}}, {{39.4202092, 90.1263924, 0.0000000}, {1, 1, 0.5, 1}}, };

    Read the article

  • How to shift a vector based on the rotation of another vector?

    - by bpierre
    I’m learning 2D programming, so excuse my approximations, and please, don’t hesitate to correct me. I am just trying to fire a bullet from a player. I’m using HTML canvas (top left origin). Here is a representation of my problem: The black vector represent the position of the player (the grey square). The green vector represent its direction. The red disc represents the target. The red vector represents the direction of a bullet, which will move in the direction of the target (red and dotted line). The blue cross represents the point from where I really want to fire the bullet (and the blue and dotted line represents its movement). This is how I draw the player (this is the player object. Position, direction and dimensions are 2D vectors): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.drawImage(this.image, Math.round(-this.dimensions.x/2), Math.round(-this.dimensions.y/2), this.dimensions.x, this.dimensions.y); ctx.restore(); This is how I instanciate a new bullet: var bulletPosition = playerPosition.clone(); // Copy of the player position var bulletDirection = Vector2D.substract(targetPosition, playerPosition).normalize(); // Difference between the player and the target, normalized new Bullet(bulletPosition, bulletDirection); This is how I move the bullet (this is the bullet object): var speed = 5; this.position.add(Vector2D.multiply(this.direction, speed)); And this is how I draw the bullet (this is the bullet object): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.fillRect(0, 0, 3, 3); ctx.restore(); How can I change the direction and position vectors of the bullet to ensure it is on the blue dotted line? I think I should represent the shift with a vector, but I can’t see how to use it.

    Read the article

  • Fast determination of whether objects are onscreen in 2D

    - by Ben Ezard
    So currently, I have this in each object's renderer's update method: float a = transform.position.x * Main.scale; float b = transform.position.y * Main.scale; float c = Camera.main.transform.position.x * Main.scale; float d = Camera.main.transform.position.y * Main.scale; onscreen = a + width - c > 0 && a - c < GameView.width && b + height - d > 0 && b - d < GameView.height; transform.position is a 2D vector containing the game engine's definition of where the object is - this is then multiplied by Main.scale to translate that coordinate into actual screen space Similarly, Camera.main.transform.position is the in-engine representation of where the main camera is, and this is also multiplied by Main.scale The problem is, as my game is tile-based, thousands of these updates get called every frame, just to determine whether or not each object should be drawn - how can I improve this please?

    Read the article

  • Correct way to use Farseer Physics in XNA

    - by user1640602
    I am using Farseer Physics for my 2D sidescroller game and I'm not sure how to proceed with it. I currently have a Sprite class (handles nothing but graphics), a GameObject class (contains specific object info like hit points), a World object which contains the list of Bodies, and a Level object which contains all of these objects. Originally I was trying to keep track of the Sprites, GameObjects, and Bodies separately because I felt that would provide loose coupling but it quickly became a headache. So my new idea was to add a Sprite member to the GameObject class but I'm still not sure how to maintain the Bodies because they have to communicate with GameObject. Specifically, my issue is this: The position of the Body is used to draw the Sprite inside of the Level. In order to do that I would have to maintain a link between GameObjects and Bodies. Is this correct or is there a better way to architect my game? If any of this is unclear please ask and I'll try to clarify. Thank you in advance for any help.

    Read the article

  • How do you avoid name similarities between your classes and the native ones?

    - by Oscar
    I just ran into an "interesting problem", which I would like your opinion about: I am developing a system and for many reasons (meaning: abstraction, technology independence, etc) we create our own types for exchanging information. For instance: if there is a method which is called SendEmail and is invoked by the business logic, it way have a parameter of type OurCompany.EMailMessage, which is an object which is completely technology independent and contains only "business relevant data" (for instance, no information abut head encoding). Inside the SendEmail function, we get this information from our EMailMEssage object and create a MailMessage (this one is technolgy specific) object so it can be sent over the network. As you can already notice, our class has a very similar name to the "native" language class. The problem is: this is exactly what they are, email messages, so it is hard to find another meaningful name for them. Do you have this problem often? How do you manage it? Edit: @mgkrebbs just commented about using fully qualified names. This is our current approach, but a little bit too verbose, IMHO. I would like something cleaner, if possible.

    Read the article

  • OpenGL - Rendering from part of an index and vertex array depending on an element count

    - by user1423893
    I'm currently drawing my shapes as lines by using a VAO and then assigning the dynamic vertices and indices each frame. // Bind VAO glBindVertexArray(m_vao); // Update the vertex buffer with the new data (Copy data into the vertex buffer object) glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); // Update the index buffer with the new data (Copy data into the index buffer object) glBufferData(GL_ELEMENT_ARRAY_BUFFER, numIndices * sizeof(unsigned short), indices.data(), GL_DYNAMIC_DRAW); glDrawElements(GL_LINES, numIndices, GL_UNSIGNED_SHORT, BUFFER_OFFSET(0)); // Unbind VAO glBindVertexArray(0); What I would like to do is draw the lines using only part of the data stored in the index and vertex buffer objects. The vertex buffer has its vertices set from an array of defined maximum size: std::array<VertexPosition, maxVertices> m_vertices; The index buffer has its elements set from an array of defined maximum size: std::array<unsigned short, maxIndices> indices = { 0 }; A running total is kept of the number of vertices and indices needed for each draw call numVertices numIndices Can I not specify that the buffer data contain the entire array and only read from part of it when drawing? For example using the vertex buffer object glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); m_vertices.data() = Entire array is stored numVertices * sizeof(VertexPosition) = Amount of data to read from the entire array Is this not the correct way to approach this? I do not wish to use std::vector if possible.

    Read the article

  • 3D physics engine for accurate collision handling on desktop/laptop computers (non-console)

    - by Georges Oates Larsen
    What are your suggestions for a physics engine that satisfies the following criteria? Capable of calculating collisions between multiple concave mesh-based colliders Handles many collisions going on at once (for instance one mesh being wedged between two others, which themselves may be wedged between two meshes) Does not allow for collider passthrough, even at high speeds. For instance, if I am applying force to a programmatically hinged object that makes it spin, I do not want it to pass through another rigidbody that it collides with while spinning. I have this problem using PhysX As implied before, reacts well to hinged objects, preferably has its own implementation of a hinge, but I am willing to program my own. The important part is that it has some sort of interface that guarantees accurate collision tracking even when dealing with these things Platform independent -- runs on mac as well as PC, also not tied down to specific graphics cards I think that's the best way to explain what I am looking for. Basically, I need SUPER reliable collisions. Something that can't be accomplished with a simple ray casting approach that sends a ray from the last position of the object to the current position (as this object may be potentially large and colliding with small objects via rotation) Bonus points for also including an OPEN SOURCE engine.

    Read the article

  • Memory allocation strategy for the vertex buffers (DirectX 10/11)

    - by Alex
    I have the following question. I write CAD system. So I have a 3D scene and there are many different objects (walls, doors, windows and so on). User can add or delete some objects. The question is: how can I organise the keeping of vertices for all my objects. I can create vertex buffer for every object. But I think drawing/switching from one buffer to another would have performance penalty. Another way - I can create several big buffers for every object type. But I don't understand how to update such buffers. It is too big to update whole buffer (for example buffer for all walls). What I need to do if I want to delete the object from the middle of the buffer? Actually I have the similar question: http://stackoverflow.com/questions/5515700/how-to-properly-update-vertex-buffers-in-directx-10 Most examples I've found work with very static models. Therefore, they tend to create a single vertex buffer with their list of points, and then are just manipulated by matrix transformations. I, on the other hand, will be updating the scene very often.

    Read the article

  • How can I include my derived class type name in the serialized JSON?

    - by ChrisD
    Sometimes working with the js Serializer is easy, sometimes its not.   When I attempt to serialize an object that is derived from a base, the serializer decided whether or not to include the type name. When its present, the type name is represented by a ___type attribute in the serialized json like this: {"d":{"__type":"Commerce.Integration.Surfaces.OrderCreationRequest","RepId":0}} The missing type name is a problem if I intend to ship the object back into a web method that needs to deserialize the object.   Without the Type name, serialization will fail and result in a ugly web exception. The solution, which feels more like a work-around, is to explicitly tell the serializer to ALWAYS generate the type name for each derived type.  You make this declaration by adding a [GenerateScriptType())] attribute for each derived type to the top of the web page declaration.   For example, assuming I had 3 derivations of OrderCreationRequest; PersonalOrderCreationRequest, CompanyOrderCreationRequest, InternalOrderCreationRequestion, the code-behind for my web page would be decorated as follows: [GenerateScriptType(typeof(PersonalOrderCreationRequest))] [GenerateScriptType(typeof(CompanyOrderCreationRequest))] [GenerateScriptType(typeof(InternalOrderCreationRequest))] public partial class OrderMethods : Page { ... } With the type names generated in the serialized JSON, the serializer can successfully deserialize instances of any of these types passed into a web method. Hope this helps you as much as it did me.

    Read the article

  • Good design for class with similar constructors

    - by RustyTheBoyRobot
    I was reading this question and thought that good points were made, but most of the solutions involved renaming one of the methods. I am refactoring some poorly written code and I've run into this situation: public class Entity { public Entity(String uniqueIdentifier, boolean isSerialNumber) { if (isSerialNumber) { this.serialNumber = uniqueIdentifier; //Lookup other data } else { this.primaryKey = uniqueIdentifier; // Lookup other data with different query } } } The obvious design flaw is that someone needed two different ways to create the object, but couldn't overload the constructor since both identifiers were of the same type (String). Thus they added a flag to differentiate. So, my question is this: when this situation arises, what are good designs for differentiating between these two ways of instantiating an object? My First Thoughts You could create two different static methods to create your object. The method names could be different. This is weak because static methods don't get inherited. You could create different objects to force the types to be different (i.e., make a PrimaryKey class and a SerialNumber class). I like this because it seems to be a better design, but it also is a pain to refactor if serialNumber is a String everywhere else.

    Read the article

  • how to calculate intersection time and place of multiple moving arcs

    - by user20733
    I have rocks orbiting moons, moons orbiting planets, planets orbiting suns, and suns orbiting black holes, and the current system could have many many layers of orbitage. the position of any object is a function of time and relative to the object it orbits. (so far so good). now I want to know for a given 2 objects(A,B), a start time and a speed, how can I work out the when and where to go. I can work out where A and B is given a time. so i just need. 1: direction to travel in from A to B(remember B is moving(not in a straight line)) 2: Time to get to b in a straight line. travel must be in a straight line with the shortest possible distance. as an extension to this question, how will i know if its better to wait, EG is it faster to stay on object A and wait for a hour when the objects may be closer, than to set off from A to B at the start. Cheers, it hurt my brain.

    Read the article

  • Vaadin Calendar events not shown if overnight [migrated]

    - by B_B
    In my vaadin project there is the possibility to create events that are shown by the calendar. It does works, except when the event is overnight, let's say the night from 23th to 24th, and the calendar shows as only day the 24th. In this case the part of the event that belongs to the 24th is supposed to be shown, but it is not. When I switch to weekly view, the event is shown properly. Here is the function where I get the data and use a container for the calendar: /* Fill Calendar from database */ void updateData() { final BeanItemContainer<TypeReservationEvent> container = new BeanItemContainer<TypeReservationEvent>(TypeReservationEvent.class); Map<String, Object> parameters = new HashMap<String, Object>(); parameters.put("roomParent",chosenRoom); String query = "SELECT DISTINCT res FROM EntityReservation res, EntityRoom r, EntityTable rt WHERE res.tableId = rt.id " + "AND rt.roomParent =:roomParent"; reservationList = facade.list(query, parameters); for(EntityReservation rt : reservationList) { container.addBean(new TypeReservationEvent(rt)); } container.sort(new Object[]{"start"}, new boolean[]{true}); cal.setContainerDataSource(container, "caption", "description", "start", "end", "styleName"); // Force calendar to refresh if(selectCalViewType.getValue() == chooseWeeklyView) { setViewType(calViewType.DAILY); setViewType(calViewType.WEEKLY); } else if (selectCalViewType.getValue() == chooseDailyView) { setViewType(calViewType.WEEKLY); setViewType(calViewType.DAILY); } } TIA

    Read the article

  • How do I interpolate air drag with a variable time step?

    - by Valentin Krummenacher
    So I have a little game which works with small steps, however those steps vary in time, so for example I sometimes have 10 Steps/second and then I have 20 Steps/second. This changes automatically depending on how many steps the user's computer can take. To avoid inaccurate positioning of the game's player object I use y=v0*dt+g*dt^2/2 to determine my objects y-position, where dt is the time since the last step, v0 is the velocity of my object in the beginning of my step and g is the gravity. To calculate the velocity in the end of a step I use v=v0+g*dt what also gives me correct results, independent of whether I use 2 steps with a dt of for example 20ms or one step with a dt of 40ms. Now I would like to introduce air drag. For simplicity's sake I use a=k*v^2 where a is the air drag's acceleration (I am aware that it would usually result in a force, but since I assume 1kg for my object's mass the force is the same as the resulting acceleration), k is a constant (in this case I'm using 0.001) and v is the speed. Now in an infinitely small time interval a is k multiplied by the velocity in this small time interval powered by 2. The problem is that v in the next time interval would depend on the drag of the last which again depends on the v of the last interval and so on... In other words: If I use a=k*v^2 I get different results for my position/velocity when I use 2 steps of 20ms than when I use one step of 40ms. I used to have this problem for my position too, but adding +g*dt^2/2 to the formula for my position fixed the problem since it takes into account that the position depends on the velocity which changes slightly in every infinitely small time interval. Does something like that exist for air drag too? And no, I dont mean anything like Adding air drag to a golf ball trajectory equation or similar, for that kind of method only gives correct results when all my steps are the same. (I hope you can understand my intermediate english, it's not my main language so I would like to say sorry for all the silly mistakes I might have made in my question)

    Read the article

  • Persisting high score table in flash game without a network. (Featuring: HttpListenerException)

    - by bearcdp
    Hi everyone, this question is very programming-centric, but it's for a game so I figured I might as well post it here. I'm doing polishing work on a GGJ '11 game because it will be shown at an indie arcade tomorrow afternoon, and they're expecting our final build in the morning. We'd like to have a high score table that displays during attract mode, but since it's Flash (Flixel) it would require some networking, Mochi, or something to keep a record of these scores. Only problem is the machine we'd be running on probably won't have network access. As a quick solution, I thought I'd just write up a dinky little high score server in C#/.NET that could take basic GET requests for submitting scores and getting the score list. We're talking REAL basic, like blocking while waiting for an incoming request, run & forget console app, etc. There's no guarantee that our .swf won't get reloaded, and we'd like the scores to persist, so this server would pretty much exists to keep a safe copy of the scores that the game can add to and request, and occasionally the server will write the scores to a flat text file. But, HttpListener is giving me Error Code 87 'The parameter is incorrect.' Have any idea what I'm doing wrong? Or better yet, am I barking up the wrong tree and missing an obviously simpler solution? This is all I've got so far in my Main(): HttpListener listener = new HttpListener(); listener.Prefixes.Add("http://localhost:66666/"); listener.Start(); The exception happens at listener.Start(); and the stack trace is: at System.Net.HttpListener.AddAllPrefixes() at System.Net.HttpListener.Start() at WOSEBCE_ScoreServer.Program.Main(String[] args) in C:\Users\Michael\Documents\Visual Studio 2010\VS2010 Projects\WOSEBCE_ScoreServer\WOSEBCE_ScoreServer\Program.cs:line 24 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart()

    Read the article

  • How to rotate a group of objects around a common center?

    - by user1662292
    I've made a model in 3D Studio Max 9. It consists of a variety of cubes, clyinders etc. In XNA I've imported the model okay and it shows correctly. However, when I apply rotation, each component in the model rotates around it's own centre. I want the model to rotate as a single unit. I've linked the components in 3D Max and they rotate as I want in Max. protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); model = Content.Load<Model>("Models/Alien1"); } protected override void Update(GameTime gameTime) { camera.Update(1f, new Vector3(), graphics.GraphicsDevice.Viewport.AspectRatio); rotation += 0.1f; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); Matrix[] transforms = new Matrix[model.Bones.Count]; model.CopyAbsoluteBoneTransformsTo(transforms); Matrix worldMatrix = Matrix.Identity; Matrix rotationYMatrix = Matrix.CreateRotationY(rotation); Matrix translateMatrix = Matrix.CreateTranslation(location); worldMatrix = rotationYMatrix * translateMatrix; foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.World = worldMatrix * transforms[mesh.ParentBone.Index]; effect.View = camera.viewMatrix; effect.Projection = camera.projectionMatrix; effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; } mesh.Draw(); } base.Draw(gameTime); } More Info: Rotating the object via it's properties works fine so I'm guessing there's something up with the code rather than with the object itself. Translating the object also causes the objects to get moved independently of each other rather than as a single model and each piece becomes spread around the scene. The model is in .X format.

    Read the article

< Previous Page | 326 327 328 329 330 331 332 333 334 335 336 337  | Next Page >