Search Results

Search found 33374 results on 1335 pages for 'non programming related'.

Page 332/1335 | < Previous Page | 328 329 330 331 332 333 334 335 336 337 338 339  | Next Page >

  • Mail Hosting That Will Allow Outbound Bulk Mail?

    - by user249493
    No, I'm not a spammer! I do volunteer work for a non-profit social services agency. They send out daily email with several hundred recipients on each message. Their web hosting company has been flagging the email as spam due to the volume. So I'm looking for an email hosting provider that won't do that. (I can separate out the web hosting function; we just need mail hosting right now.) They can't use something like MailChimp, Constant Contact, or Vertical Response because some of the mail is just inbound emails they aggregate and send out, and they don't want the overhead of "rebuilding" it in a "newsletter" service. I think that Google Apps for Business might be a good solution, but the pricing is just too high for this under-funded non-profit. I've applied for the non-profit discount but haven't heard back yet. Is there mail hosting service that might fit their needs? Thanks in advance.

    Read the article

  • What is it going here in my solution?

    - by bbb
    I am a asp.net mvc programmer and if I want to start a project I do this: I make a class library named Model for my models. I make a class library named Infrastructure.Repository for database processes I make a class library named Application for business logic layer And finally I make a MVC project for the UI. But now some things are confusing me. Am I using 3-tier programming? If yes so what is n-tier programming and which one is better? If no so what is 3-tier programming? Some where I see that the tiers namings are DAL and BIZ. Which one is correct according to the naming convention?

    Read the article

  • Cost of maintenance depending on paradigms

    - by Anto
    Is there any data on which paradigms allow for code which is easier/cheaper to maintain? Certainly, independantly of the chosen paradigm, good design is cheaper to maintain than bad, but there should probably be major differences coming only from the paradigm choice. Unstructured programming, for instance, generates very messy code (spaghetti code) which is expensive to maintain. In object oriented programming, implementation details are hidden and thus it should be pretty cheap to change those. In functional programming, there are no side effects, thus there is lesser risk of introducing bugs during maintainance, which should be cheaper. Is there any data on which paradigms are the most cost-efficient when coming down to maintenance? If no such data exists, what is your take on the question?

    Read the article

  • How to improve quality of software

    - by hariharan
    Last week in our organization, we triggered a topic related to different ways of improving the quality of software (both technical as well as functional related topics). Since i am a technical person, i suggested following ideas, Use case based detailed design document – Both technical as well as functional specification should be well organized according to use case requirement. Design patterns – Will help developers to adopt common approach irrespective of technologies. Analyze and implement new technologies – Helps to improve the performance as well as the security of the application. As I am not a well experienced technical candidate , i am unable to provide other solutions. If any suggestions or topics related to this (including testing, functional requirement), please post your valuable comments.

    Read the article

  • What are the pro/cons of Unity3D as a choice to make games?

    - by jokoon
    We are doing our school project with Unity3d, since they were using Shiva the previous year (which seems horrible to me), and I wanted to know your point of view for this tool. Pros: multi platform, I even heard Google is going to implement it in Chrome everything you need is here scripting languages makes it a good choice for people who are not programming gurus Cons: multiplayer ? proprietary, you are totally dependent of unity and its limit and can't extend it it's less "making a game from scratch" C++ would have been a cool thing I really think this kind of tool is interesting, but is it worth it to use at school for a project that involves more than 3 programming persons ? What do we really learn in term of programming from using this kind of tool (I'm ok with python and js, but I hate C#) ? We could have use Ogre instead, even if we were learning direct x starting january...

    Read the article

  • why would you use textures that are not a power of 2?

    - by Will
    In the early days of OpenGL and DirectX, it was required that textures were powers of two. This meant that interpolation of float values could be done very quickly using shifting and such. Since OpenGL 2.0, and preceding that via an extension, non-power-of-two texture dimensions has been supported. Are there performance advantages to sticking to power-of-two textures on modern integrated and discrete GPUs? What advantages do non-power-of-two textures have, if any? Are there large populations of desktop users who don't have cards that support non-power-of-two textures?

    Read the article

  • What is the worst programmer habit?

    - by 0x4a6f4672
    Many people get into programming because programming is fun. At least in the beginning. After some time doing it professionally, programming is no longer fun, often just hard work. Sometimes we develop bad habits along the way to make it fun again. Some bad habits of programmers are well known, for example the "I fix that in a second" habit, the "reinvent the wheel" practice or the "all code except mine is crap" attitude (which often leads to "I will re-write the entire program from scratch" syndrome). There are things which a programmer should never do. What is the worst programmer habit?

    Read the article

  • Career Shifters: How to compete with IT/ComSci graduates

    - by CareerShifter
    I am wondering what are the chances of a career shifter (mid 20's), who have maybe 3-6 months programming experience vs. younger fresh IT/Com Sci graduates. You see, even though I really love programming (Java/J2EE), but nobody gives me a feedback when I apply online. maybe because they preferred IT/ComSci graduates vs a career shifter like me.. So can you advice on how to improve my chance on being hired. How can i get a real-job programming experince if nobody is hiring me. I can make my own projects (working e-commerce site blah blah) but it is still different from the real job. And my codes are working but it still needs a lot of improvement and no one can tell me how to improve it because no one sees it (because I'm doing it alone?). Do you know any open source websites (java/j2ee/jee) / online home-based jobs who accepts java/j2ee/jee trainees.. Thank you very much

    Read the article

  • I'm a beginner Java programmer but I want to be useful

    - by user105418
    Programming has always interested me, but after learning some of the basics of Java(I'm talking high school level), I don't really know what to do from there. I want to be able to apply what I learned in some way, whether it be a volunteer project or something, but I probably don't know enough programming. Is it possible for a novice Java programmer to be useful in some way whatsoever. I want to do this because I feel like I could learn more about programming by helping people in theirs, but I'm not sure if I'm even able to this though. Does anyone have any suggestions on how I can contribute to other people's project in some way or how to apply it in some way?

    Read the article

  • Climbing the hacker ladder

    - by cobie
    This is not a question in which I am asking for opinions rather I am asking for first hand experience. I have been programming in python for quite a while and I feel solid enough in python programming. I can come up with algorithms for problems and implement them but I somehow feel I am stuck with remaining an apprentice. What are some first hand experiences on how to climb up the ladder and become better at programming as in learning about browsers security, compilers etc. Personal experiences would be valued in responses.

    Read the article

  • job offer in dead technology

    - by bold
    I have a job offer in a dead technology (specific programming language) that I don't want to work with nor do I believe it will offer many jobs in the future. It requires twice a year travels abroad, which not a plus in my eyes. On the other hand the money on the table is high. What would you do? edit: as its not clear I got a job in a programming language that is different from the academic programming language I worked with. Now I see it as a mistake to head to that direction.

    Read the article

  • Becoming an expert vs boredom [closed]

    - by QAH
    I am a college student, and I love to program, period. I code all kinds of things in different kinds of languages. Although I enjoy programming, I have an extremely hard time sticking to one project for a long time. I attribute this shortcoming to my high level of curiosity, exploring different technologies, languages, libraries, etc. What would be best? Should I settle down more and spend time on becoming an expert in one or two programming fields, or should I be more of a jack of all trades, trying out all kinds of new technologies, languages, programming methods, etc.? I'm guessing that somewhere in the middle would be best. I'm always amazed at how many developers are able to create one or two projects, and develop on them for years. What techniques do you guys employ to help you stay focused on a project?

    Read the article

  • Should interface only be used for behavior and not to show logical data grouped together?

    - by jags
    Should an interface only be used to specify certain behavior? Would it be wrong to use interface to group logically related data? To me it looks like we should not use interface to group logically related data as structure seems a better fit. A class may be used but class name should indicate something like DTO so that user gets the impression that class does not have any behavior. Please let me know if my assumption is correct. Also, are there any exceptions where interface can be used to group logically related data?

    Read the article

  • Why do we need private variables?

    - by rak
    Why do we need private variables in classes in the context of programming? Every book on programming I've read says this is a private variable, this is how you define it but stops there. The wording of these explanations always seemed to me like we really have a crisis of trust in our profession. The explanations always sounded like other programmers are out to mess up our code. Yet, there are many programming languages that do not have private variables. What do private variables help prevent? How do you decide if a particular of properties should be private or not? If by default every field SHOULD be private then why are there public data members in a class? Under what circumstances should a variable be made public?

    Read the article

  • Usefull skills from a computer science degree

    - by Tom Squires
    I did my degree in physics and moved later into programming. I have two and a half years experience under my belt and like to think I write good code. I am, however, concerned that not doing a compsci degree has left holes in my knowledge. I would like to fill those up now since I know I want to be doing programming for the rest of my career. What skills/techniques did you learn in your compsci degree that one wouldn't pick up from on-the-job programming?

    Read the article

  • how can I start developing games? [closed]

    - by miguelacho
    as you may know very well, every individual related with software development is somehow related to the science or the activity that the program was made for, I am currently working as a programmer for a company that is dedicated to build enterprise software for ensurance business, before this job, I was working with a travel agency developing extra modules for the CRM they use (VTiger), so I can say I am related to ERP/CRM, the fact is, I would like to change this to another activity, like developing video games. I'd like to start developing games, by getting a job or making my own project, but: 1) I have no experience developing video games, is that an obstacle if I want to get a job? if is that so, how can I solve it? 2) if I want to make my own project I will need more people, like a graphic disigner or some others, isn't there a way to make the whole game by my own?

    Read the article

  • 27 vidéos techniques des Qt DevDays 2005, 2006 et 2008 sont désormais rendues publiques par Qt eLear

    L'équipe eLearning de Qt a depuis quelques temps cherché à récupérer des vidéos techniques issues des conférences des anciens QtDevDays dans l'optique de les faire partager à tout le monde. C'est aujourd'hui chose faite avec la publication en ligne de 27 présentations techniques ce qui correspond à 22h30min de vidéos. Les sujets traités sont toujours valides aujourd'hui, même si le framework a évolué au fil des années. 2005 :All About Qt Widgets Effective Graphics Programming Practical Model/View Programming Threaded Programming with Qt - Good Practise Writing Custom Styles with QStyle Writing plugin applications with Qt 2006 :Advanced Item Views...

    Read the article

  • Windows Phone App with 4SQ

    - by Nuttanon Pornpipak
    I'm want to create a my own Coffee shop app for semester's project. It's Windows Phone App. The App can i.e. view who is check-in here now , view menu , view photo by using 4SQ Endpoint APIs. And my problem is I don't know how to start it...which book i should read about C# and I don't know which knowledge (keyword) should i google it i.e. GET POST METHOD , JSON I ever used 4SQ Endpoint APIs once with javascript (jquery) $.ajax{(.....)} to get data from 4SQ Endpoint APIs So I googled and found JSON.NET Class but I don't know how to use it because i never programming in C# I'm just begin programming. I can programming in C only. Thank you Sorry for my bad grammar

    Read the article

  • La Fondation Mozilla contrainte de payer des impôts alors que l'optimisation fiscale des acteurs commerciaux fait de plus en plus débat

    La Fondation Mozilla contrainte de payer des impôts Alors que l'optimisation fiscale de ses concurrents commerciaux fait de plus en plus débat La morale de l'histoire est assez douteuse. Mais le Business n'est pas histoire de morale, c'est bien connu. D'un côté, la Fondation Mozilla. Organisme à but non lucratif de type associatif, elle a pour but de promouvoir l'ouverture et l'universalité des technologies Web (et mobiles) ainsi que le respect de la vie privée et du choix des utilisateurs. Mozilla vient de se faire « redresser » par le FISC américain et devra payer des taxes sur ses revenus, alors qu'elle les jugeait pour sa part non-imposables, car non commerciaux....

    Read the article

  • For asp.net mvc is this a three tiered solution?

    - by bbb
    I am a asp.net mvc programmer and if I want to start a project I do this: I make a class library named Model for my models. I make a class library named Infrastructure.Repository for database processes I make a class library named Application for business logic layer And finally I make a MVC project for the UI. But now some things are confusing me. Am I using 3-tier programming? If yes so what is n-tier programming and which one is better? If no so what is 3-tier programming? Some where I see that the tiers namings are DAL and BIZ. Which one is correct according to the naming convention?

    Read the article

  • Which C# Book to take?

    - by Fischkopf
    I was searching for a book to learn C#, but now i'm kinda stuck. I found many people asking the same question, and many people gave answers, but there are so many books about C# that it is really hard to decide which one to take. Now i reduced my choice on two books, but I just can't decide between them. Namely, there are: Programming C# 4.0 and C# 4.0 In A Nutshell The first thing I want to know, are these good choices? I'm not completely new to programming, but I just didn't find the right language until know, but i think C# is the one I was searching for. I know all the bassic stuff from Delphi/Java/Python so I think i'm not a complete beginner in programming. Is there anyone out there that read both books and can cleary explain whats the difference between them? I haven't found many reviews and sort of, so I just don't know which one to chose. Or is there any book that is better suiting me?

    Read the article

  • Release notes for 12/05/2012

    Over the last week the CodePlex team fixed several bugs throughout the site. Several notable changes were: Fixed several UI issues related to the recent action bar changes Fixed the issue related to double posting when responding to a discussion. Thanks to Crutkas. Fixed the favicons in Chrome Fixed the refresh page issue related to unsubscribing from a project Fixed the inactive donate checkbox when ad configurations are changed Removed the redundant “subscribe to project” button above the tabs Have ideas on how to improve CodePlex? Please visit our suggestions page! Vote for existing ideas or submit a new one. As always you can reach out to the CodePlex team on Twitter @codeplex or reach me directly @mgroves84

    Read the article

  • How do I make my page respect h1 css addition? [migrated]

    - by Adobe
    I add h1 { margin-top:100px; } to the end of the css, but the page doesn't change. But if I add to the html of some h1: <h1 style="margin-top:100px;"><a class="toc-backref" href="#id4">KHotKeys</a><a class="headerlink" href="#khotkeys" title="Permalink to this headline">¶</a></h1> Then it does. I'm not css pro, and I guess the problem is somewhere in the css file. Here it is: div.clearer { clear: both; } /* -- relbar ---------------------------------------------------------------- */ div.related { width: 100%; font-size: 90%; } div.related h3 { display: none; } div.related ul { margin: 0; padding: 0 0 0 10px; list-style: none; } div.related li { display: inline; } div.related li.right { float: right; margin-right: 5px; } /* -- sidebar --------------------------------------------------------------- */ div.sphinxsidebarwrapper { padding: 10px 5px 0 10px; } div.sphinxsidebar { float: left; width: 230px; margin-left: -100%; font-size: 90%; } div.sphinxsidebar ul { list-style: none; } div.sphinxsidebar ul ul, div.sphinxsidebar ul.want-points { margin-left: 20px; list-style: square; } div.sphinxsidebar ul ul { margin-top: 0; margin-bottom: 0; } div.sphinxsidebar form { margin-top: 10px; } div.sphinxsidebar input { border: 1px solid #98dbcc; font-family: sans-serif; font-size: 1em; } div.sphinxsidebar input[type="text"] { width: 160px; } div.sphinxsidebar input[type="submit"] { width: 30px; } img { border: 0; } /* -- search page ----------------------------------------------------------- */ ul.search { margin: 10px 0 0 20px; padding: 0; } ul.search li { padding: 5px 0 5px 20px; background-image: url(file.png); background-repeat: no-repeat; background-position: 0 7px; } ul.search li a { font-weight: bold; } ul.search li div.context { color: #888; margin: 2px 0 0 30px; text-align: left; } ul.keywordmatches li.goodmatch a { font-weight: bold; } /* -- index page ------------------------------------------------------------ */ table.contentstable { width: 90%; } table.contentstable p.biglink { line-height: 150%; } a.biglink { font-size: 1.3em; } span.linkdescr { font-style: italic; padding-top: 5px; font-size: 90%; } /* -- general index --------------------------------------------------------- */ table.indextable { width: 100%; } table.indextable td { text-align: left; vertical-align: top; } table.indextable dl, table.indextable dd { margin-top: 0; margin-bottom: 0; } table.indextable tr.pcap { height: 10px; } table.indextable tr.cap { margin-top: 10px; background-color: #f2f2f2; } img.toggler { margin-right: 3px; margin-top: 3px; cursor: pointer; } div.modindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } div.genindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } /* -- general body styles --------------------------------------------------- */ a.headerlink { visibility: hidden; } h1:hover > a.headerlink, h2:hover > a.headerlink, h3:hover > a.headerlink, h4:hover > a.headerlink, h5:hover > a.headerlink, h6:hover > a.headerlink, dt:hover > a.headerlink { visibility: visible; } div.body p.caption { text-align: inherit; } div.body td { text-align: left; } .field-list ul { padding-left: 1em; } .first { margin-top: 0 !important; } p.rubric { margin-top: 30px; font-weight: bold; } img.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } img.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } img.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; } .align-left { text-align: left; } .align-center { text-align: center; } .align-right { text-align: right; } /* -- sidebars -------------------------------------------------------------- */ div.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; padding: 7px 7px 0 7px; background-color: #ffe; width: 40%; float: right; } p.sidebar-title { font-weight: bold; } /* -- topics ---------------------------------------------------------------- */ div.topic { border: 1px solid #ccc; padding: 7px 7px 0 7px; margin: 10px 0 10px 0; } p.topic-title { font-size: 1.1em; font-weight: bold; margin-top: 10px; } /* -- admonitions ----------------------------------------------------------- */ div.admonition { margin-top: 10px; margin-bottom: 10px; padding: 7px; } div.admonition dt { font-weight: bold; } div.admonition dl { margin-bottom: 0; } p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; } div.body p.centered { text-align: center; margin-top: 25px; } /* -- tables ---------------------------------------------------------------- */ table.docutils { border: 0; border-collapse: collapse; } table.docutils td, table.docutils th { padding: 1px 8px 1px 5px; border-top: 0; border-left: 0; border-right: 0; border-bottom: 1px solid #aaa; } table.field-list td, table.field-list th { border: 0 !important; } table.footnote td, table.footnote th { border: 0 !important; } th { text-align: left; padding-right: 5px; } table.citation { border-left: solid 1px gray; margin-left: 1px; } table.citation td { border-bottom: none; } /* -- other body styles ----------------------------------------------------- */ ol.arabic { list-style: decimal; } ol.loweralpha { list-style: lower-alpha; } ol.upperalpha { list-style: upper-alpha; } ol.lowerroman { list-style: lower-roman; } ol.upperroman { list-style: upper-roman; } dl { margin-bottom: 15px; } dd p { margin-top: 0px; } dd ul, dd table { margin-bottom: 10px; } dd { margin-top: 3px; margin-bottom: 10px; margin-left: 30px; } dt:target, .highlighted { background-color: #fbe54e; } dl.glossary dt { font-weight: bold; font-size: 1.1em; } .field-list ul { margin: 0; padding-left: 1em; } .field-list p { margin: 0; } .refcount { color: #060; } .optional { font-size: 1.3em; } .versionmodified { font-style: italic; } .system-message { background-color: #fda; padding: 5px; border: 3px solid red; } .footnote:target { background-color: #ffa; } .line-block { display: block; margin-top: 1em; margin-bottom: 1em; } .line-block .line-block { margin-top: 0; margin-bottom: 0; margin-left: 1.5em; } .guilabel, .menuselection { font-family: sans-serif; } .accelerator { text-decoration: underline; } .classifier { font-style: oblique; } /* -- code displays --------------------------------------------------------- */ pre { overflow: auto; overflow-y: hidden; /* fixes display issues on Chrome browsers */ } td.linenos pre { padding: 5px 0px; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { margin-left: 0.5em; } table.highlighttable td { padding: 0 0.5em 0 0.5em; } tt.descname { background-color: transparent; font-weight: bold; font-size: 1.2em; } tt.descclassname { background-color: transparent; } tt.xref, a tt { background-color: transparent; font-weight: bold; } h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt { background-color: transparent; } .viewcode-link { float: right; } .viewcode-back { float: right; font-family: sans-serif; } div.viewcode-block:target { margin: -1px -10px; padding: 0 10px; } /* -- math display ---------------------------------------------------------- */ img.math { vertical-align: middle; } div.body div.math p { text-align: center; } span.eqno { float: right; } /* -- printout stylesheet --------------------------------------------------- */ @media print { div.document, div.documentwrapper, div.bodywrapper { margin: 0 !important; width: 100%; } div.sphinxsidebar, div.related, div.footer, #top-link { display: none; } } body { font-family: sans-serif; font-size: 100%; background-color: #11303d; color: #000; margin: 0; padding: 0; } div.document { background-color: #d4e9f7; } div.documentwrapper { float: left; width: 100%; } div.bodywrapper { margin: 0 0 0 230px; } div.body { background-color: #ffffff; color: #222222; padding: 0 20px 30px 20px; } div.footer { color: #ffffff; width: 100%; padding: 9px 0 9px 0; text-align: center; font-size: 75%; } div.footer a { color: #ffffff; text-decoration: underline; } div.related { background-color: #191a19; line-height: 30px; color: #ffffff; } div.related a { color: #ffffff; } div.sphinxsidebar { top: 30px; bottom: 60px; margin: 0; position: fixed; overflow: auto; height: auto; } div.sphinxsidebar h3 { font-family: 'Trebuchet MS', sans-serif; color: #3a3a3a; font-size: 1.4em; font-weight: normal; margin: 0; padding: 0; } div.sphinxsidebar h3 a { color: #3a3a3a; } div.sphinxsidebar h4 { font-family: 'Trebuchet MS', sans-serif; color: #3a3a3a; font-size: 1.3em; font-weight: normal; margin: 5px 0 0 0; padding: 0; } div.sphinxsidebar p { color: #3a3a3a; } div.sphinxsidebar p.topless { margin: 5px 10px 10px 10px; } div.sphinxsidebar ul { margin: 10px; padding: 0; color: #3a3a3a; } div.sphinxsidebar ul li { margin-top: .2em; } div.sphinxsidebar a { color: #3a8942; } div.sphinxsidebar input { border: 1px solid #3a8942; font-family: sans-serif; font-size: 1em; } /* -- body styles ----------------------------------------------------------- */ a { color: #355f7c; text-decoration: none; } a:hover { text-decoration: underline; } div.body p, div.body dd, div.body li { text-align: left; line-height: 130%; margin-top: 0px; margin-bottom: 0px; } div.body h1, div.body h2, div.body h3, div.body h4, div.body h5, div.body h6 { font-family: 'Trebuchet MS', sans-serif; background-color: #f2f2f2; font-weight: normal; color: #20435c; border-top: 2px solid #cccccc; border-bottom: 1px solid #cccccc; margin: 30px -20px 20px -20px; padding: 3px 0 3px 10px; } div.body h1 { margin-top: 0; font-size: 200%; } div.body h2 { font-size: 160%; } div.body h3 { font-size: 140%; padding-left: 20px; } div.body h4 { font-size: 120%; padding-left: 20px; } div.body h5 { font-size: 110%; padding-left: 20px; } div.body h6 { font-size: 100%; padding-left: 20px; } a.headerlink { color: #c60f0f; font-size: 0.8em; padding: 0 4px 0 4px; text-decoration: none; } a.headerlink:hover { background-color: #c60f0f; color: white; } div.body p, div.body dd, div.body li { text-align: left; line-height: 110%; } div.admonition p.admonition-title + p { display: inline; } div.note { background-color: #eee; border: 1px solid #ccc; } div.seealso { background-color: #ffc; border: 1px solid #ff6; } div.topic { background-color: #eee; } div.warning { background-color: #ffe4e4; border: 1px solid #f66; } p.admonition-title { display: inline; } p.admonition-title:after { content: ":"; } pre { padding: 0px; background-color: #ffffff; color: #000000; line-height: 120%; border: 0px solid #ffffff; border-left: none; border-right: none; white-space: pre-wrap; /* word-wrap: break-word; */ /* width:100px; */ } tt { background-color: #ecf0f3; padding: 0 1px 0 1px; font-size: 110%; } .warning tt { background: #efc2c2; } .note tt { background: #d6d6d6; } body { width:150%; }

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

< Previous Page | 328 329 330 331 332 333 334 335 336 337 338 339  | Next Page >