Search Results

Search found 18464 results on 739 pages for 'virtual functions'.

Page 333/739 | < Previous Page | 329 330 331 332 333 334 335 336 337 338 339 340  | Next Page >

  • Farseer Physics Engine and the Ms-PL License

    - by Stephen Tierney
    Am I able to produce code for a game which uses the Farseer engine and release my code under an open source license other than the Ms-PL? My concern is with the following section from the license: If you distribute any portion of the software in source code form, you may do so only under this license by including a complete copy of this license with your distribution. If you distribute any portion of the software in compiled or object code form, you may only do so under a license that complies with this license. If I do not include Farseer in my source code distribution does this give me an exemption from this clause as I am not distributing the software? My code merely uses its functions. No where in the license does it force you to provide source code for derivative works or linking works, it simply gives you the option of "if you distribute".

    Read the article

  • New Coherence 3.6 Oracle University Course

    - by cristobal.soto(at)oracle.com
    The new "Oracle Coherence 3.6: Share and Manage Data in Clusters" course is now available through Oracle University. This new course was completed by the Curriculum Development team and the First Global Teach delivered by OU was a huge success, receiving very positive reviews from attendees. See the Course Page on education.oracle.com for course details and to view scheduled training. To request a course you can register your demand for the course (i.e need for future events) via the Course Page: Click the "View Schedule" link on the page for either the Instructor-Led Training (ILT) or the Live Virtual Class (LVC) Then click the "register a request" link in the middle of the page towards the bottom. You can register the demand with details on the preference such as event date, region, location, etc. After which, respective schedulers in the region will be notified. The regional schedulers will then take the request forward.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • VirtualBox

    - by DesigningCode
    I was wanting to play around with something in a VM the other day.  I was curious what was available for free, if anything, for windows.   I quickly came across Virtual Box  ( http://www.virtualbox.org/ ).   Downloaded, Installed. No Problem!  Works really nicely.   It was commercial software (by sun (now oracle)) that turned open source.   In terms of a license it says :- In summary, the VirtualBox PUEL allows you to use VirtualBox free of charge for personal use or, alternatively, for product evaluation. An interesting feature it has is built in RDP.   Which is useful if you have a guest OS that doesn’t support RDP.   Speaking of RDP…..  which I will in my next blog post… I learnt something REALLY useful the other day.

    Read the article

  • Can't Log in to Lubuntu 12.04 X Server

    - by isomorphismes
    As of rebooting yesterday I can't login as myself to the X server part of 64-bit Lubuntu 12.04. Same problem as Can not get passed the login screen but that solution didn't work for me. Troubleshooting steps I already took: I can log in as guest (with whatever window manager) to the graphic (X) view of Lubuntu. log in as myself into a virtual terminal. (In fact I'm writing this from w3m for that reason.) So I know my password is correct and that most aspects of the system are working. One of the top google results for "can't log into lubuntu" mentioned a disk-full problem on netbooks; I don't have that problem. Let me know if I need to paste any messages or config files to make this question clearer and I'll do so. $ ls -l /home total 12 drwxr-xr-x 99 me me 12288 May 26 14:16 me $ ls -ld /tmp drwxrwxrwt 16 root root 4096 May 26 15:46 /tmp

    Read the article

  • Why is Python slower than Java but faster than PHP

    - by good_computer
    I have many times seen various benchmarks that show how a bunch of languages perform on a given task. Always these benchmarks reveal that Python is slower then Java and faster than PHP. And I wonder why is that the case. Java, Python, and PHP run inside a virtual machine All three languages convert their programs into their custom byte codes that run on top of OS -- so none is running natively Both Java and Python can be "complied" (.pyc for Python) but the __main__ module for Python is not compiled Python and PHP are dynamically typed and Java statically -- is this the reason Java is faster, and if so, please explain how that affects speed. And, even if the dynamic-vs-static argument is correct, this does not explain why PHP is slower than Python -- because both are dynamic languages. You can see some benchmarks here and here, and here

    Read the article

  • TDE Tablespace Encryption 11.2.0.1 Certified with EBS 11i

    - by Steven Chan
    Oracle Advanced Security is an optional licenced Oracle 11g Database add-on.  Oracle Advanced Security Transparent Data Encryption (TDE) offers two different features:  column encryption and tablespace encryption.  TDE Tablespace Encryption 11.2.0.1 is now certified with Oracle E-Business Suite Release 11i. What is Transparent Data Encryption (TDE) ? Oracle Advanced Security Transparent Data Encryption (TDE) allows you to protect data at rest. TDE helps address privacy and PCI requirements by encrypting personally identifiable information (PII) such as Social Security numbers and credit card numbers. TDE is completely transparent to existing applications with no triggers, views or other application changes required. Data is transparently encrypted when written to disk and transparently decrypted after an application user has successfully authenticated and passed all authorization checks. Authorization checks include verifying the user has the necessary select and update privileges on the application table and checking Database Vault, Label Security and Virtual Private Database enforcement policies.

    Read the article

  • Which mailx package should I install for Nagios?

    - by user1196
    I'm following the Nagios Ubuntu quickstart instructions. I'm on Ubuntu 10.10 and installing Nagios 3.2.3. At the bottom of the docs it says I need to install the mailx and postfix packages. (Postfix is already installed.) But when I try to install mailx, I get asked which of 3 packages to install: $ sudo apt-get install mailx [sudo] password for nagios: Reading package lists... Done Building dependency tree Reading state information... Done Package mailx is a virtual package provided by: mailutils 1:2.1+dfsg1-4ubuntu1 heirloom-mailx 12.4-1.1 bsd-mailx 8.1.2-0.20090911cvs-2ubuntu1 You should explicitly select one to install. E: Package mailx has no installation candidate Which one should I install?

    Read the article

  • Are CK Metrics still considered useful? Is there an open source tool to help?

    - by DeveloperDon
    Chidamber & Kemerer proposed several metrics for object oriented code. Among them, depth of inheritance tree, weighted number of methods, number of member functions, number of children, and coupling between objects. Using a base of code, they tried to correlated these metrics to the defect density and maintenance effort using covariant analysis. Are these metrics actionable in projects? Perhaps they can guide refactoring. For example weighted number of methods might show which God classes needed to be broken into more cohesive classes that address a single concern. Is there approach superseded by a better method, and is there a tool that can identify problem code, particularly in moderately large project being handed off to a new developer or team?

    Read the article

  • Is there a "golden ratio" in coding?

    - by badallen
    My coworkers and I often come up with silly ideas such as adding entries to Urban Dictionary that are inappropriate but completely make sense if you are a developer. Or making rap songs that are about delegates, reflections or closures in JS... Anyhow, here is what I brought up this afternoon which was immediately dismissed to be a stupid idea. So I want to see if I can get redemptions here. My idea is coming up with a Golden Ratio (or in the neighborhood of) between the number of classes per project versus the number of methods/functions per class versus the number of lines per method/function. I know this is silly and borderline, if not completely, useless, but just think of all the legacy methods or classes you have encountered that are absolutely horrid - like methods with 10000 lines or classes with 10000 methods. So Golden Ratio, anyone? :)

    Read the article

  • Cant get lm-sensors to load ATI Radeon temp or fan

    - by woody
    New to Linux and having minor issues :/ . I followed this guide initially but did not recieve the proper output and did not show my ATI Radeon HD 5000 temp or fan speed. Then used this guide, same problems exhibited. No issues installing and no errors. I think its not reading i2c for some reason. The proprietary driver is installed and functioning correctly according fglrxinfo. I can use aticonfig commands and view both temp and fan. Any ideas on how to get it working under 'sensors'? When i run 'sudo sensors-detect' this is my ouput # sensors-detect revision 5984 (2011-07-10 21:22:53 +0200) # System: LENOVO IdeaPad Y560 (laptop) # Board: Lenovo KL3 This program will help you determine which kernel modules you need to load to use lm_sensors most effectively. It is generally safe and recommended to accept the default answers to all questions, unless you know what you're doing. Some south bridges, CPUs or memory controllers contain embedded sensors. Do you want to scan for them? This is totally safe. (YES/no): y Silicon Integrated Systems SIS5595... No VIA VT82C686 Integrated Sensors... No VIA VT8231 Integrated Sensors... No AMD K8 thermal sensors... No AMD Family 10h thermal sensors... No AMD Family 11h thermal sensors... No AMD Family 12h and 14h thermal sensors... No AMD Family 15h thermal sensors... No AMD Family 15h power sensors... No Intel digital thermal sensor... Success! (driver `coretemp') Intel AMB FB-DIMM thermal sensor... No VIA C7 thermal sensor... No VIA Nano thermal sensor... No Some Super I/O chips contain embedded sensors. We have to write to standard I/O ports to probe them. This is usually safe. Do you want to scan for Super I/O sensors? (YES/no): y Probing for Super-I/O at 0x2e/0x2f Trying family `National Semiconductor/ITE'... Yes Found unknown chip with ID 0x8502 Probing for Super-I/O at 0x4e/0x4f Trying family `National Semiconductor/ITE'... No Trying family `SMSC'... No Trying family `VIA/Winbond/Nuvoton/Fintek'... No Trying family `ITE'... No Some hardware monitoring chips are accessible through the ISA I/O ports. We have to write to arbitrary I/O ports to probe them. This is usually safe though. Yes, you do have ISA I/O ports even if you do not have any ISA slots! Do you want to scan the ISA I/O ports? (YES/no): y Probing for `National Semiconductor LM78' at 0x290... No Probing for `National Semiconductor LM79' at 0x290... No Probing for `Winbond W83781D' at 0x290... No Probing for `Winbond W83782D' at 0x290... No Lastly, we can probe the I2C/SMBus adapters for connected hardware monitoring devices. This is the most risky part, and while it works reasonably well on most systems, it has been reported to cause trouble on some systems. Do you want to probe the I2C/SMBus adapters now? (YES/no): y Using driver `i2c-i801' for device 0000:00:1f.3: Intel 3400/5 Series (PCH) Now follows a summary of the probes I have just done. Just press ENTER to continue: Driver `coretemp': * Chip `Intel digital thermal sensor' (confidence: 9) To load everything that is needed, add this to /etc/modules: #----cut here---- # Chip drivers coretemp #----cut here---- If you have some drivers built into your kernel, the list above will contain too many modules. Skip the appropriate ones! Do you want to add these lines automatically to /etc/modules? (yes/NO) My output for 'sensors' is: acpitz-virtual-0 Adapter: Virtual device temp1: +58.0°C (crit = +100.0°C) coretemp-isa-0000 Adapter: ISA adapter Core 0: +56.0°C (high = +84.0°C, crit = +100.0°C) Core 1: +57.0°C (high = +84.0°C, crit = +100.0°C) Core 2: +58.0°C (high = +84.0°C, crit = +100.0°C) Core 3: +57.0°C (high = +84.0°C, crit = +100.0°C) and my '/etc/modules' is: # /etc/modules: kernel modules to load at boot time. # # This file contains the names of kernel modules that should be loaded # at boot time, one per line. Lines beginning with "#" are ignored. lp rtc # Generated by sensors-detect on Fri Nov 30 23:24:31 2012 # Chip drivers coretemp

    Read the article

  • Installing 12.04 Ubuntu Studio on VMware Workstation 7, won't install VMware Tools

    - by Chase Kelley
    I'm attempting to install Ubuntu Studio 12.04 on my laptop by using VMware Workstation 7.1.5, and I've encountered a problem. The install goes well until the installation of Ubuntu has completed and the installation of VMware Tools starts; after that it just stops. I have waited about an hour and a half and nothing has changed. The installation is on VMware Easy Install, and I am running Windows Vista 32-bit with 3 GB system RAM and 2 GB of RAM on the virtual machine. Any help is greatly appreciated, thank you!

    Read the article

  • Podcast Show Notes: William Ulrich and Neal McWhorter on Business Architecture

    - by Bob Rhubart
    The latest ArchBeat podcast program features a four-part conversation with William Ulrich and Neal McWhorter, the authors of Business Architecture: The Art and Practice of Business Transformation, available from Meghan-Kiffer Press. Listen to Part 1 Bill and Neal cover the basics and discuss the effects of the lack of business architecture on organizations. Listen to Part 2 (Jan 19) What really happens to the billions of dollars annually invested in IT. Listen to Part 3 (Jan 26) Why the IT and business sides of many organizations can’t play nice. Listen to Part 4 (Feb 2) How IT architects and business architects can work together to get the ship back on course and keep it there. Connect William Ulrich Website | LinkedIn | Business Architecture Guild Neal McWhorter Website | LinkedIn | Business Architecture Group on OMG Coming Soon Bob Hensle, Director, Oracle Enterprise Architecture Group, discusses the recently launched IT Solutions from Oracle (ITSO) library of documents. Excerpts from a recent OTN Architect Community Virtual Meet-up. Stay tuned: RSS del.icio.us Tags: business architecture,enterprise architecture,arch2arch,archbeat,podcast,business transformation,oracle,oracle technology network Technorati Tags: business architecture,enterprise architecture,arch2arch,archbeat,podcast,business transformation,oracle,oracle technology network

    Read the article

  • What's the difference between Scala and Red Hat's Ceylon language?

    - by John Bryant
    Red Hat's Ceylon language has some interesting improvements over Java: The overall vision: learn from Java's mistakes, keep the good, ditch the bad The focus on readability and ease of learning/use Static Typing (find errors at compile time, not run time) No “special” types, everything is an object Named and Optional parameters (C# 4.0) Nullable types (C# 2.0) No need for explicit getter/setters until you are ready for them (C# 3.0) Type inference via the "local" keyword (C# 3.0 "var") Sequences (arrays) and their accompanying syntactic sugariness (C# 3.0) Straight-forward implementation of higher-order functions I don't know Scala but have heard it offers some similar advantages over Java. How would Scala compare to Ceylon in this respect?

    Read the article

  • Hyper-V for Developers - presentation from London .NET Users and VBUG Bracknell

    - by Liam Westley
    Thanks to both London .NET User group and VBUG Bracknell for allowing me to present my Hyper-V for Developers talk last week.  A weekend at DDD Scotland followed by two user group presentations means I'm a bit late getting the presentations uploaded to the blog, so many apologies if you've been waiting.   LDNUG - www.tigernews.co.uk/blog-twickers/LDNUG-HyperV4Devs.zip   VBUG - www.tigernews.co.uk/blog-twickers/VBUG-HyperV4Devs.zip Also, at VBUG Bracknell I was asked if you could configure a Hyper-V server to user wireless networking (which might be useful if you have a laptop for demonstrations).  Well here's the post from Ben Armstrong (Virtual PC Guy) which details how that can be configured,   http://blogs.msdn.com/virtual_pc_guy/archive/2008/01/09/using-hyper-v-with-a-wireless-network-adapter.aspx ... and it's also detailed on the TechNet wiki as part of running Hyper-V on a laptop,   social.technet.microsoft.com/wiki/contents/articles/hyper-v-how-to-run-hyper-v-on-a-laptop.aspx

    Read the article

  • Donald Ferguson says end-user programming is next big thing. Is it?

    - by Joris Meys
    You can guess how I came to ask this question... Anyway : http://www.bbc.co.uk/news/business-11944966 Donald Ferguson claiming that his websphere was his biggest disaster and proclaiming that end-user programming will be the way forward. This genuinely spurs the question : what with current programming languages. Honestly, I don't think that end-user programming will go much beyond a rather rigid template where you can build some apps around. If you see how many people actually manage to understand the basic functionality of functions in EXCEL... Plus, I fail to see how complex and performant systems can be built in such an end-user programming language ( Visual Basic, anyone?) Nice to play around with, but for many applications they're just not the thing. So no worries for the old languages if you ask me. What's your ideas?

    Read the article

  • Best Practices For Database Consolidation On Exadata - New Whitepapers

    - by Javier Puerta
     Best Practices For Database Consolidation On Exadata Database Machine (Nov. 2011) Consolidation can minimize idle resources, maximize efficiency, and lower costs when you host multiple schemas, applications or databases on a target system. Consolidation is a core enabler for deploying Oracle database on public and private clouds.This paper provides the Exadata Database Machine (Exadata) consolidation best practices to setup and manage systems and applications for maximum stability and availability:Download here Oracle Exadata Database Machine Consolidation: Segregating Databases and Roles (Sep. 2011) This paper is focused on the aspects of segregating databases from each other in a platform consolidation environment on an Oracle Exadata Database Machine. Platform consolidation is the consolidation of multiple databases on to a single Oracle Exadata Database Machine. When multiple databases are consolidated on a single Database Machine, it may be necessary to isolate certain database components or functions in order to meet business requirements and provide best practices for a secure consolidation. In this paper we outline the use of Oracle Exadata database-scoped security to securely separate database management and provide a detailed case study that illustrates the best practices. Download here

    Read the article

  • Learn All About MySQL Cluster

    - by Antoinette O'Sullivan
    Just released - the all new MySQL Cluster training course. This MySQL Cluster training teaches you how to install and configure a real-time database cluster at the core of your application. Expert instructors will teach you how to design and maintain your clusters for high availability and scalability by using MySQL Cluster's open-source and enterprise components. This 4-day training course is a must for those who want to learn about MySQL Cluster as you will not only learn about the concepts and features but you will get extensive hands-on experience. You can follow this training course from your own desk via a live-virtual training or by traveling to an education center to follow this course. Be the first to influence the schedule for this newly released course by registering your interest on the Oracle University portal. For more information about the authentic MySQL curriculum, go to http://education.oracle.com/mysql

    Read the article

  • Top Reasons You Need A User Engagement Platform

    - by Michael Snow
    Guest post by: Amit Sircar, Senior Sales Consultant, Oracle Deliver complex enterprise functionality through a simple intuitive and unified User Interface (UI) The modern enterprise contains a wide range of applications that are used to manage the business and drive competitive advantages. Organizations respond by creating a complex structure that results in a functional and management grouping of users. Each of these groups of users requires access to multiple applications and information sources in order to perform their job functions. This leads to the lack of a unified view of enterprise information, inconsistent user interfaces and disjointed security. To be effective, portals must be designed from the end-user perspective, enabling the user to accomplish as many tasks as possible while visiting the fewest number of portals. This requires rethinking the way that portals are built, moving from a functional business unit perspective to a user-focused, process-oriented point of view. Oracle WebCenter provides the Common User Experience Architecture that allows organizations to seamlessly present a unified view of enterprise information tailored to a particular user’s role and preferences. This architecture provides the best practices, design patterns and delivery mechanism for myriad services, applications, and data sources.  In order to serve as a primary system of access, Oracle WebCenter also provides access to unstructured content and to other users via integrated search, service-oriented artifacts, content management, and collaboration tools. Provide a modern and engaging experience without modifying the core business application Web 2.0 technologies such as blogs, wikis, forums or social media sites are having a profound impact in the public internet.  These technologies can be leveraged by enterprises to add significant value to the business. Organizations need to integrate these technologies directly into their business applications while continuing to meet their security and governance needs. To deliver richer connections and become a more agile and intelligent business, WebCenter provides an enterprise portal platform that contains pre-integrated, standards-based Enterprise 2.0 services. These Enterprise 2.0 services can be easily accessed, integrated and utilized by users. By giving users the ability to use and integrate Enterprise 2.0 services such as tags, links, wikis, activities, blogs or social networking directly with their portals and applications, they are empowered to make richer connections, optimize their productivity, and ultimately increase the value of their applications. Foster a collaborative experience The organizational workplace has undergone a major change in the last decade. With increasing globalization and a distributed workforce, project teams may be physically separated by large distances. Online collaboration technologies are becoming a critical resource to enable virtual teams to share information and work together effectively. Oracle WebCenter delivers dynamic business communities with rich Services to empower teams to quickly and efficiently manage their information, applications, projects, and people without requiring IT assistance. It brings together the latest technology around Enterprise 2.0 and social computing, communities, personal productivity, and ad-hoc team interactions without any development effort. It enables the sharing and collaboration on team content, focusing an organization’s valuable resources on solving business problems, tapping into new ideas, and reducing time-to-market. Mobile Support The traditional workplace dynamics that required employees to access their work applications from their desktops have undergone a fundamental shift. Employees were used to primarily working from company offices and utilized an IT-issued computer for performing their job functions. With the introduction of flexible work hours and the growth of remote workers, more and more employees need the ability to remain productive even when they do not have access to a computer via the use of tablets and smartphones.  In addition, customers and citizens have come to expect 24x7 access to resources and websites from wherever they are located. Tablets and smartphones have empowered everyone to quickly access services they need anytime and from any place.  WebCenter provides out of the box capabilities to deliver the mobile experience in a seamless manner. Seeded device profiles and toolkits within WebCenter can be used to render the same web pages into multiple target devices such iPads, iPhones and android devices. Web designers can preview the portal using the built in simulator, make necessary updates and then deploy their UI design for the targeted device. Conclusion The competitive economy and resource constraints facing organizations today require them to find ways to make their applications, portals and Web sites more agile and intelligent and their knowledge workers more productive no matter where they are located. Organizations need to provide faster access to relevant information and resources, enhance existing applications and business processes with rich Enterprise 2.0 services, and seamlessly deliver content to mobile platforms. Oracle WebCenter successfully meets these challenges by providing the modern user experience platform for the enterprise and the Web.

    Read the article

  • Gradual approaches to dependency injection

    - by JW01
    I'm working on making my classes unit-testable, using dependency injection. But some of these classes have a lot of clients, and I'm not ready to refactor all of them to start passing in the dependencies yet. So I'm trying to do it gradually; keeping the default dependencies for now, but allowing them to be overridden for testing. One approach I'm conisdering is just moving all the "new" calls into their own methods, e.g.: public MyObject createMyObject(args) { return new MyObject(args); } Then in my unit tests, I can just subclass this class, and override the create functions, so they create fake objects instead. Is this a good approach? Are there any disadvantages? More generally, is it okay to have hard-coded dependencies, as long as you can replace them for testing? I know the preferred approach is to explicitly require them in the constructor, and I'd like to get there eventually. But I'm wondering if this is a good first step.

    Read the article

  • OVM Templates: Oracle Solaris Container with Oracle Database 11gR2

    - by Roman Ivanov
    I am delighted to inform you that Oracle just made available new Oracle Solaris Virtual Machine (VM) Templates: Oracle Solaris Container with Oracle Database 11gR2. This VM Templates available for SPARC and x86 platforms. Both Oracle VM Templates based on encapsulating an Oracle Solaris 10 Container which can then be attached to SPARC or x86 system running Oracle Solaris 10 10/09 or later. Make sure your select correct SPARC or x86 platform. The download includes Oracle Solaris 10 10/09 Container Oracle Database 11gR2 pre-installed in the Container.

    Read the article

  • Generic and type safe I/O model in any language

    - by Eduardo León
    I am looking for an I/O model, in any programming language, that is generic and type safe. By genericity, I mean there should not be separate functions for performing the same operations on different devices (read_file, read_socket, read_terminal). Instead, a single read operation works on all read-able devices, a single write operation works on all write-able devices, and so on. By type safety, I mean operations that do not make sense should not even be expressible in first place. Using the read operation on a non-read-able device ought to cause a type error at compile time, similarly for using the write operation on a non-write-able device, and so on. Is there any generic and type safe I/O model?

    Read the article

  • Announcement Oracle Solaris Cluster 4.1 Availability!

    - by uwes
    On 26th of October Oracle announced the availability of Oracle Solaris Cluster 4.1. Highlights include: New Oracle Solaris 10 Zone Clusters: customers can now consolidate mission critical Oracle Solaris 10 applications on Oracle Solaris 11 virtualized systems in a virtual cluster Expanded disaster recovery operations: Oracle Solaris Cluster now offers managed switchover and disaster-recovery takeover of applications and data using ZFS Storage Appliance replication services in a multi-site, multi-custer configuration Faster application recovery with improved storage failure detection and resource dependencies management New labeled security environment for mission-critical deployments in Oracle Solaris Zone Clusters with Oracle Solaris 11 Trusted Extensions Learn more about Oracle Solaris Cluster 4.1: What's New in Oracle Solaris 4.1 Oracle Solaris Cluster 4.1 FAQ Oracle.com Oracle Solaris Cluster page Oracle Technology Network Oracle Solaris Cluster page Resouces for downloading: Oracle Solaris Cluster 4.1 download or order a media kit Existing Oracle Solaris Cluster 4.0 customers can quickly and simply update by using the network based repository.   Note: This repository requires keys and certificates which can be obtained here.

    Read the article

  • Massive Minecraft Creation Is a Functional Graphing Calculator

    - by Jason Fitzpatrick
    We’re no stranger to cool Minecraft creations, but this project takes Minecraft design to a whole new level. An industrious teen has built functional graphing calculator out of Minecraft blocks. It’s an absolutely enormous project that, if constructed in real life instead of in a virtual Minecraft space, would loom over a city. To fully appreciate how much ingenuity and effort went into the project, we’d suggest hitting up the comments over at Slashdot where commenters discuss the numerous obstacles and design tricks he would have needed to overcome and employ to pull the project off. [via Slashdot] What’s the Difference Between Sleep and Hibernate in Windows? Screenshot Tour: XBMC 11 Eden Rocks Improved iOS Support, AirPlay, and Even a Custom XBMC OS How To Be Your Own Personal Clone Army (With a Little Photoshop)

    Read the article

  • Is there a language where collections can be used as objects without altering the behavior?

    - by Dokkat
    Is there a language where collections can be used as objects without altering the behavior? As an example, first, imagine those functions work: function capitalize(str) //suppose this *modifies* a string object capitalizing it function greet(person): print("Hello, " + person) capitalize("pedro") >> "Pedro" greet("Pedro") >> "Hello, Pedro" Now, suppose we define a standard collection with some strings: people = ["ed","steve","john"] Then, this will call toUpper() on each object on that list people.toUpper() >> ["Ed","Steve","John"] And this will call greet once for EACH people on the list, instead of sending the list as argument greet(people) >> "Hello, Ed" >> "Hello, Steve" >> "Hello, John"

    Read the article

< Previous Page | 329 330 331 332 333 334 335 336 337 338 339 340  | Next Page >