Search Results

Search found 25405 results on 1017 pages for 'document oriented db'.

Page 34/1017 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • Isn't MVC anti OOP?

    - by m3th0dman
    The main idea behind OOP is to unify data and behavior in a single entity - the object. In procedural programming there is data and separately algorithms modifying the data. In the Model-View-Controller pattern the data and the logic/algorithms are placed in distinct entities, the model and the controller respectively. In an equivalent OOP approach shouldn't the model and the controller be placed in the same logical entity?

    Read the article

  • Information Spilling Across Object Boundaries

    - by Winston Ewert
    Many times my business objects tend to have situations where information needs to cross object boundaries too often. When doing OO, we want information to be in one object and as much as possible all code dealing with that information should be in that object. However, business rules do not follow this principle giving me trouble. As an example suppose that we have an Order which has a number of OrderItems which refers to an InventoryItem which has a price. I invoke Order.GetTotal() which sums the result of OrderItem.GetPrice() which multiples a quantity by InventoryItem.GetPrice(). So far so good. But then we find out that some items are sold with a two for one deal. We can handle this by having OrderItem.GetPrice() do something like InventoryItem.GetPrice( quantity ) and letting InventoryItem deal with this. However, then we find out that the two-for-one deal only lasts for a particular time period. This time period needs to be based on the date of the order. Now we change OrderItem.GetPrice() to be InventoryItem.GetPrice( quatity, order.GetDate() ) But then we need to support different prices depending on how long the customer has been in the system: InventoryItem.GetPrice( quantity, order.GetDate(), order.GetCustomer() ) But then it turns out that the two-for-one deals apply not just to buying multiple of the same inventory item but multiple for any item in a InventoryCategory. At this point we throw up our hands and just give the InventoryItem the order item and allow it to travel over the object reference graph via accessors to get the information its needs: InventoryItem.GetPrice( this ) TL;DR I want to have coupling in objects, but business rules often force me to access information from all over the place in order to make particular decisions. Are there good techniques for dealing with this? Do others find the same problem?

    Read the article

  • Chicago Architects Group &ndash; Document Generation Architectures

    - by Tim Murphy
    Thank you to everyone who came out to the Chicago Architects Group presentation last night.  It seemed like the weather has a way of keeping a large portion of the people who registered from making the meeting.  There was some lively networking going on before and after the meeting.  I enjoyed the questions that people had during the presentation.  It helped to bring out some of the challenges with dealing with the OOXML and ODF standards from an architecture perspective. I have posted the Slides and Code.  Feel free to contact me with any questions. For those of you who missed the presentation I will be giving a similar one at the Lake County .NET Users Group on June 24th. The next CAG presentation will be July 20th.  The presentation will be Architecting A BI Installation by David Leininger.  Look for the registration to open in the next day or so. del.icio.us Tags: Chicago architects Group,OOXML,ODF,BI,LCNUG,slides,code

    Read the article

  • Very simple OOP question

    - by Mosty Mostacho
    I was creating and discussing a class diagram with a partner of mine. To simplify things, I've modify the real domain we're working on and made up the following diagram: Basically, a company works on constructions that are quite different one from each other but are still constructions. Note I've added one field for each class but there should be many more. Now, I thought this was the way to go but my partner told me that if in the future new construction classes appear we would have to modify the Company class, which is correct. So the new proposed class diagram would be this: Now I've been wondering: Should the fact that in no place of the application will there be mixed lists of planes and bridges affect the design in any way? When we have to list only planes for a company, how are we supposed to distinguish them from the other elements in the list without checking for their class names? Related to the previous question, is it correct to assume that this type of diagram should be high-level and this is something it shouldn't matter at this stage but rather be thought and decided at implementation time? Any comment will be appreciated.

    Read the article

  • If immutable objects are good, why do people keep creating mutable objects?

    - by Vinoth Kumar
    If immutable objects are good,simple and offers benefits in concurrent programming why do programmers keep creating mutable objects? I have four years of experience in Java programming and as I see it, the first thing people do after creating a class is generate getters and setters in the IDE (thus making it mutable). Is there a lack of awareness or can we get away with using mutable objects in most scenarios?

    Read the article

  • Turning your code inside out (functional style) compared to a OO paradigm

    - by Acaz Souza
    I have find this article Turning Your Code Inside Out and I want to know how this approach described in article is for OO programmers/languages. Is this style of design used in OO programmers/languages? What's downsides and goodsides of this approach in a OO language? Update: OO objects have state and behavior, the design explained in article is stateless. Is not only Single Responsability Principle. (If I'm talking shit, please explain to me instead of only downside/close votes)

    Read the article

  • Better solution then simple factory method when concrete implementations have different attributes

    - by danip
    abstract class Animal { function eat() {..} function sleep() {..} function isSmart() } class Dog extends Animal { public $blnCanBark; function isSmart() { return $this->blnCanBark; } } class Cat extends Animal { public $blnCanJumpHigh; function isSmart() { return $this->blnCanJumpHigh; } } .. and so on up to 10-20 animals. Now I created a factory using simple factory method and try to create instances like this: class AnimalFactory { public static function create($strName) { switch($strName) { case 'Dog': return new Dog(); case 'Cat': return new Cat(); default: break; } } } The problem is I can't set the specific attributes like blnCanBark, blnCanJumpHigh in an efficient way. I can send all of them as extra params to create but this will not scale to more then a few classes. Also I can't break the inheritance because a lot of the basic functionality is the same. Is there a better pattern to solve this?

    Read the article

  • What is considered third party code?

    - by Songo
    Inspired by this question Using third-party libraries - always use a wrapper? I wanted to know what people actually consider as third-party libraries. Example from PHP: If I'm building an application using Zend framework, should I treat Zend framework libraries as third party code? Example from C#: If I'm building a desktop application, should I treat all .Net classes as third party code? Example from Java: Should I treat all libraries in the JDK as third party libraries? Some people say that if a library is stable and won't change often then one doesn't need to wrap it. However I fail to see how one would test a class that depends on a third party code without wrapping it.

    Read the article

  • Relative encapsulation design

    - by taher1992
    Let's say I am doing a 2D application with the following design: There is the Level object that manages the world, and there are world objects which are entities inside the Level object. A world object has a location and velocity, as well as size and a texture. However, a world object only exposes get properties. The set properties are private (or protected) and are only available to inherited classes. But of course, Level is responsible for these world objects, and must somehow be able to manipulate at least some of its private setters. But as of now, Level has no access, meaning world objects must change its private setters to public (violating encapsulation). How to tackle this problem? Should I just make everything public? Currently what I'm doing is having a inner class inside game object that does the set work. So when Level needs to update an objects location it goes something like this: void ChangeObject(GameObject targetObject, int newX, int newY){ // targetObject.SetX and targetObject.SetY cannot be set directly var setter = new GameObject.Setter(targetObject); setter.SetX(newX); setter.SetY(newY); } This code feels like overkill, but it doesn't feel right to have everything public so that anything can change an objects location for example.

    Read the article

  • A programming language that does not allow IO. Haskell is not a pure language

    - by TheIronKnuckle
    (I asked this on Stack Overflow and it got closed as off-topic, I was a bit confused until I read the FAQ, which discouraged subjective theoratical debate style questions. The FAQ here doesn't seem to have a problem with it and it sounds like this is a more appropriate place to post. If this gets closed again, forgive me, I'm not trying to troll) Are there any 100% pure languages (as I describe in the Stack Overflow post) out there already and if so, could they feasibly be used to actually do stuff? i.e. do they have an implementation? I'm not looking for raw maths on paper/Pure lambda calculus. However Pure lambda calculus with a compiler or a runtime system attached is something I'd be interested in hearing about.

    Read the article

  • How to decide whether to implement an operation as Entity operation vs Service operation in Domain Driven Design?

    - by Louis Rhys
    I am reading Evans's Domain Driven Design. The book says that there are entity and there are services. If I were to implement an operation, how to decide whether I should add it as a method on an entity or do it in a service class? e.g. myEntity.DoStuff() or myService.DoStuffOn(myEntity)? Does it depend on whether other entities are involved? If it involves other entities, implement as service operation? But entities can have associations and can traverse it from there too right? Does it depend on stateless or not? But service can also access entities' variable, right? Like in do stuff myService.DoStuffOn, it can have code like if(myEntity.IsX) doSomething(); Which means that it will depend on the state? Or does it depend on complexity? How do you define complex operations?

    Read the article

  • Make methods that do not depend on instance fields, static?

    - by m3th0dman
    Recently I started programming in Groovy for a integration testing framework, for a Java project. I use Intellij IDEA with Groovy plug-in and I am surprised to see as a warning for all the methods that are non-static and do not depend on any instance fields. In Java, however, this is not an issue (at least from IDE's point of view). Should all methods that do not depend onto any instance fields be transformed into static functions? If true, is this specific to Groovy or it is available for OOP in general? And why?

    Read the article

  • Rails: Law of Demeter Confusion

    - by user2158382
    I am reading a book called Rails AntiPatterns and they talk about using delegation to to avoid breaking the Law of Demeter. Here is their prime example: They believe that calling something like this in the controller is bad (and I agree) @street = @invoice.customer.address.street Their proposed solution is to do the following: class Customer has_one :address belongs_to :invoice def street address.street end end class Invoice has_one :customer def customer_street customer.street end end @street = @invoice.customer_street They are stating that since you only use one dot, you are not breaking the Law of Demeter here. I think this is incorrect, because you are still going through customer to go through address to get the invoice's street. I primarily got this idea from a blog post I read: http://www.dan-manges.com/blog/37 In the blog post the prime example is class Wallet attr_accessor :cash end class Customer has_one :wallet # attribute delegation def cash @wallet.cash end end class Paperboy def collect_money(customer, due_amount) if customer.cash < due_ammount raise InsufficientFundsError else customer.cash -= due_amount @collected_amount += due_amount end end end The blog post states that although there is only one dot customer.cash instead of customer.wallet.cash, this code still violates the Law of Demeter. Now in the Paperboy collect_money method, we don't have two dots, we just have one in "customer.cash". Has this delegation solved our problem? Not at all. If we look at the behavior, a paperboy is still reaching directly into a customer's wallet to get cash out. EDIT I completely understand and agree that this is still a violation and I need to create a method in Wallet called withdraw that handles the payment for me and that I should call that method inside the Customer class. What I don't get is that according to this process, my first example still violates the Law of Demeter because Invoice is still reaching directly into Customer to get the street. Can somebody help me clear the confusion. I have been searching for the past 2 days trying to let this topic sink in, but it is still confusing.

    Read the article

  • Pattern for a class that does only one thing

    - by Heinzi
    Let's say I have a procedure that does stuff: void doStuff(initalParams) { ... } Now I discover that "doing stuff" is quite a compex operation. The procedure becomes large, I split it up into multiple smaller procedures and soon I realize that having some kind of state would be useful while doing stuff, so that I need to pass less parameters between the small procedures. So, I factor it out into its own class: class StuffDoer { private someInternalState; public Start(initalParams) { ... } // some private helper procedures here ... } And then I call it like this: new StuffDoer().Start(initialParams); or like this: new StuffDoer(initialParams).Start(); And this is what feels wrong. When using the .NET or Java API, I always never call new SomeApiClass().Start(...);, which makes me suspect that I'm doing it wrong. Sure, I could make StuffDoer's constructor private and add a static helper method: public static DoStuff(initalParams) { new StuffDoer().Start(initialParams); } But then I'd have a class whose external interface consists of only one static method, which also feels weird. Hence my question: Is there a well-established pattern for this type of classes that have only one entry point and have no "externally recognizable" state, i.e., instance state is only required during execution of that one entry point?

    Read the article

  • What is the use of Association, Aggregation and Composition (Encapsulation) in Classes

    - by SahilMahajanMj
    I have gone through lots of theories about what is encapsulation and the three techniques of implementing it, which are Association, Aggregation and Composition. What i found is, Encapsulation Encapsulation is the technique of making the fields in a class private and providing access to the fields via public methods. If a field is declared private, it cannot be accessed by anyone outside the class, thereby hiding the fields within the class. For this reason, encapsulation is also referred to as data hiding. Encapsulation can be described as a protective barrier that prevents the code and data being randomly accessed by other code defined outside the class. Access to the data and code is tightly controlled by an interface. The main benefit of encapsulation is the ability to modify our implemented code without breaking the code of others who use our code. With this feature Encapsulation gives maintainability, flexibility and extensibility to our code. Association Association is a relationship where all object have their own lifecycle and there is no owner. Let’s take an example of Teacher and Student. Multiple students can associate with single teacher and single student can associate with multiple teachers but there is no ownership between the objects and both have their own lifecycle. Both can create and delete independently. Aggregation Aggregation is a specialize form of Association where all object have their own lifecycle but there is ownership and child object can not belongs to another parent object. Let’s take an example of Department and teacher. A single teacher can not belongs to multiple departments, but if we delete the department teacher object will not destroy. We can think about “has-a” relationship. Composition Composition is again specialize form of Aggregation and we can call this as a “death” relationship. It is a strong type of Aggregation. Child object dose not have their lifecycle and if parent object deletes all child object will also be deleted. Let’s take again an example of relationship between House and rooms. House can contain multiple rooms there is no independent life of room and any room can not belongs to two different house if we delete the house room will automatically delete. The question is: Now these all are real world examples. I am looking for some description about how to use these techniques in actual class code. I mean what is the point for using three different techniques for encapsulation, How these techniques could be implemented and How to choose which technique is applicable at time.

    Read the article

  • Can you point me to a nontrivial strategy pattern implementation?

    - by Eugen Martynov
    We are faced implementing a registration workflow with many branches. There are three main flows which in some conditions lead to one another. Each flow has at least four different steps; some steps interact with the server, and every step adds more information to the state. Also the requirement is to have it persistent between sessions, so if the user closes the app (this is a mobile app), it will restore the process from the last completed step with the state from the previous session. I think this could benefit from the use of the strategy pattern, but I've never had to implement it for such a complex case. Does anyone know of any examples in open source or articles from which I could find inspiration? Preferably the examples would be from a live/working/stable application. I'm interested in Java implementation mostly; we are developing for Java mobile phones: android, blackberry and J2ME. We have an SDK which is quite well separated from platform specific implementations, but examples in C++, C#, Objective-C or Python would be acceptable.

    Read the article

  • Connect to MySQL on remote server from inside python script (DB API)

    - by Atul Kakrana
    Very recently I have started to write python scripts that need to connect few databases on mySQL server. The problem is that when I work from office my script works fine but running a script from my home while on office VPN generates connection error. I also noticed the mySQL client Squirrel also cannot connect from my home but works fine on Office computer. I think both are giving problem for the same reason. Do I need to create a ssh tunnel and forward the port? If yes how do I do it? mySQL is installed on server I have ssh access. Please help me on this AK

    Read the article

  • When to use identity comparison instead of equals?

    - by maaartinus
    I wonder why would anybody want to use identity comparison for fields in equals, like here (Java syntax): class C { private A a; public boolean equals(Object other) { // standard boring prelude if (other==this) return true; if (other==null) return false; if (other.getClass() != this.getClass()) return false; C c = (C) other; // the relevant part if (c.a != this.a) return false; // more tests... and then return true; } // getter, setters, hashCode, ... } Using == is a bit faster than equals and a bit shorter (due to no need for null tests), too, but in what cases (if any) you'd say it's really better to use == for fields inside equals?

    Read the article

  • Recommened design pattern to handle multiple compression algorithms for a class hierarchy

    - by sgorozco
    For all you OOD experts. What would be the recommended way to model the following scenario? I have a certain class hierarchy similar to the following one: class Base { ... } class Derived1 : Base { ... } class Derived2 : Base { ... } ... Next, I would like to implement different compression/decompression engines for this hierarchy. (I already have code for several strategies that best handle different cases, like file compression, network stream compression, legacy system compression, etc.) I would like the compression strategy to be pluggable and chosen at runtime, however I'm not sure how to handle the class hierarchy. Currently I have a tighly-coupled design that looks like this: interface ICompressor { byte[] Compress(Base instance); } class Strategy1Compressor : ICompressor { byte[] Compress(Base instance) { // Common compression guts for Base class ... // if( instance is Derived1 ) { // Compression guts for Derived1 class } if( instance is Derived2 ) { // Compression guts for Derived2 class } // Additional compression logic to handle other class derivations ... } } As it is, whenever I add a new derived class inheriting from Base, I would have to modify all compression strategies to take into account this new class. Is there a design pattern that allows me to decouple this, and allow me to easily introduce more classes to the Base hierarchy and/or additional compression strategies?

    Read the article

  • Inheritance vs composition in this example

    - by Gerenuk
    I'm wondering about the differences between inheritance and composition examined with concrete code relevant arguments. In particular my example was Inheritance: class Do: def do(self): self.doA() self.doB() def doA(self): pass def doB(self): pass class MyDo(Do): def doA(self): print("A") def doB(self): print("B") x=MyDo() vs Composition: class Do: def __init__(self, a, b): self.a=a self.b=b def do(self): self.a.do() self.b.do() x=Do(DoA(), DoB()) (Note for composition I'm missing code so it's not actually shorter) Can you name particular advantages of one or the other? I'm think of: composition is useful if you plan to reuse DoA() in another context inheritance seems easier; no additional references/variables/initialization method doA can access internal variable (be it a good or bad thing :) ) inheritance groups logic A and B together; even though you could equally introduce a grouped delegate object inheritance provides a preset class for the users; with composition you'd have to encapsule the initialization in a factory so that the user does have to assemble the logic and the skeleton ... Basically I'd like to examine the implications of inheritance vs composition. I heard often composition is prefered, but I'd like to understand that by example. Of course I can always start with one and refactor later to the other.

    Read the article

  • Help to understand the abstract factory pattern

    - by Chobeat
    I'm learning the 23 design patterns of the GoF. I think I've found a way to understand and simplify how the Abstract Factory works but I would like to know if this is a correct assumption or if I am wrong. What I want to know is if we can see the result of the Abstract Factory method as a matrix of possible products where there's a Product for every "Concrete Factory" x "AbstractProduct" where the Concrete Factory is a single implementation among the implementations of an AbstractFactory and an AbstractProduct is an interface among the interfaces to create Products. Is this correct or am I missing something?

    Read the article

  • Customizing MFC Document Recovery

    This C++ tutorial demonstrates how MFC 10 delivers on it's promise by delivering the boiler-plate functionality required to build a professional Windows C++ application with minimal effort while allowing .NET developers to customize aspects of MFC behavior.

    Read the article

  • In which object should I implement wait()/notify()?

    - by Christopher Francisco
    I'm working in an Android project with multithreading. Basically I have to wait to the server to respond before sending more data. The data sending task is delimited by the flag boolean hasServerResponded so the Thread will loop infinitely without doing anything until the flag becomes true. Since this boolean isn't declared as volatile (yet), and also looping without doing anything wastes resources, I thought maybe I should use AtomicBoolean and also implement wait() / notify() mechanism. Should I use the AtomicBoolean object notify() and wait() methods or should I create a lock Object?

    Read the article

  • Share Mulitple Classes as one dll or a lib with Mulitple Projects

    - by JNL
    Currently I have some shared class files(.cpp and .h) which I include them in around 20 Projects. Currently I have to include them in all of the projects. So if I get some business requirments and I change some of the shared(.cpp or .h) files I have to include them in all the 20 Projects which is kind of tedious. Is there a way where I can create a shared dll or library and include it all of my Projects. So if I have to change it, I just have to change it once and then just Add Reference to include that dll or library which contains all the shared(.cpp, .h) files. Any help/recommendations regarding the same, will be highly appreciated. I am using VS2012 for VC++.

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >