Search Results

Search found 38522 results on 1541 pages for 'single source'.

Page 357/1541 | < Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >

  • CacheAdapter 2.4 – Bug fixes and minor functional update

    - by Glav
    Note: If you are unfamiliar with the CacheAdapter library and what it does, you can read all about its awesome ability to utilise memory, Asp.Net Web, Windows Azure AppFabric and memcached caching implementations via a single unified, simple to use API from here and here.. The CacheAdapter library is receiving an update to version 2.4 and is currently available on Nuget here. Update: The CacheAdapter has actualy just had a minor revision to 2.4.1. This significantly increases the performance and reliability in memcached scenario under more extreme loads. General to moderate usage wont see any noticeable difference though. Bugs This latest version fixes a big that is only present in the memcached implementation and is only seen in rare, intermittent times (making i particularly hard to find). The bug is where a cache node would be removed from the farm when errors in deserialization of cached objects would occur due to serialised data not being read from the stream in entirety. The code also contains enhancements to better surface serialization exceptions to aid in the debugging process. This is also specifically targeted at the memcached implementation. This is important when moving from something like memory or Asp.Web caching mechanisms to memcached where the serialization rules are not as lenient. There are a few other minor bug fixes, code cleanup and a little refactoring. Minor feature addition In addition to this bug fix, many people have asked for a single setting to either enable or disable the cache.In this version, you can disable the cache by setting the IsCacheEnabled flag to false in the application configuration file. Something like the example below: <Glav.CacheAdapter.MainConfig> <setting name="CacheToUse" serializeAs="String"> <value>memcached</value> </setting> <setting name="DistributedCacheServers" serializeAs="String"> <value>localhost:11211</value> </setting> <setting name="IsCacheEnabled" serializeAs="String"> <value>False</value> </setting> </Glav.CacheAdapter.MainConfig> Your reasons to use this feature may vary (perhaps some performance testing or problem diagnosis). At any rate, disabling the cache will cause every attempt to retrieve data from the cache, resulting in a cache miss and returning null. If you are using the ICacheProvider with the delegate/Func<T> syntax to populate the cache, this delegate method will get executed every single time. For example, when the cache is disabled, the following delegate/Func<T> code will be executed every time: var data1 = cacheProvider.Get<SomeData>("cache-key", DateTime.Now.AddHours(1), () => { // With the cache disabled, this data access code is executed every attempt to // get this data via the CacheProvider. var someData = new SomeData() { SomeText = "cache example1", SomeNumber = 1 }; return someData; }); One final note: If you access the cache directly via the ICache instance, instead of the higher level ICacheProvider API, you bypass this setting and still access the underlying cache implementation. Only the ICacheProvider instance observes the IsCacheEnabled setting. Thanks to those individuals who have used this library and provided feedback. Ifyou have any suggestions or ideas, please submit them to the issue register on bitbucket (which is where you can grab all the source code from too)

    Read the article

  • HOWTO Turn off SPARC T4 or Intel AES-NI crypto acceleration.

    - by darrenm
    Since we released hardware crypto acceleration for SPARC T4 and Intel AES-NI support we have had a common question come up: 'How do I test without the hardware crypto acceleration?'. Initially this came up just for development use so developers can do unit testing on a machine that has hardware offload but still cover the code paths for a machine that doesn't (our integration and release testing would run on all supported types of hardware anyway).  I've also seen it asked in a customer context too so that we can show that there is a performance gain from the hardware crypto acceleration, (not just the fact that SPARC T4 much faster performing processor than T3) and measure what it is for their application. With SPARC T2/T3 we could easily disable the hardware crypto offload by running 'cryptoadm disable provider=n2cp/0'.  We can't do that with SPARC T4 or with Intel AES-NI because in both of those classes of processor the encryption doesn't require a device driver instead it is unprivileged user land callable instructions. Turns out there is away to do this by using features of the Solaris runtime loader (ld.so.1). First I need to expose a little bit of implementation detail about how the Solaris Cryptographic Framework is implemented in Solaris 11.  One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.  The alternate to this is having the application coded to call getisax() and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so, and the unfortunately misnamed due to historical reasons libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  For SPARC T4 that would be: export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" and for Intel systems with AES-NI support: export LD_HWCAP="-aes" This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  It also works for the Oracle DB and Java JCE.  However does not work for the default enabled OpenSSL "t4" or "aes-ni" engines (unfortunately) because they do explicit calls to getisax() themselves rather than using multiple ELF cap sections. However we can still use OpenSSL to demonstrate this by explicitly selecting "pkcs11" engine  using only a single process and thread.  $ openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 54170.81k 187416.00k 489725.70k 805445.63k 1018880.00k $ LD_HWCAP="-aes" openssl speed -engine pkcs11 -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 29376.37k 58328.13k 79031.55k 86738.26k 89191.77k We can clearly see the difference this makes in the case where AES offload to the SPARC T4 was disabled. The "t4" engine is faster than the pkcs11 one because there is less overhead (again on a SPARC T4-1 using only a single process/thread - using -multi you will get even bigger numbers). $ openssl speed -evp aes-128-cbc ... type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes aes-128-cbc 85526.61k 89298.84k 91970.30k 92662.78k 92842.67k Yet another cool feature of the Solaris linker/loader, thanks Rod and Ali. Note these above openssl speed output is not intended to show the actual performance of any particular benchmark just that there is a significant improvement from using hardware acceleration on SPARC T4. For cryptographic performance benchmarks see the http://blogs.oracle.com/BestPerf/ postings.

    Read the article

  • Grid pathfinding with a lot of entities

    - by Vee
    I'd like to explain this problem with a screenshot from a released game, DROD: Gunthro's Epic Blunder, by Caravel Games. The game is turn-based and tile-based. I'm trying to create something very similar (a clone of the game), and I've got most of the fundamentals done, but I'm having trouble implementing pathfinding. Look at the screenshot. The guys in yellow are friendly, and want to kill the roaches. Every turn, every guy in yellow pathfinds to the closest roach, and every roach pathfinds to the closest guy in yellow. By closest I mean the target with the shortest path, not a simple distance calculation. All of this without any kind of slowdown when loading the level or when passing turns. And all of the entities change position every turn. Also (not shown in screenshot), there can be doors that open and close and change the level's layout. Impressive. I've tried implementing pathfinding in my clone. First attempt was making every roach find a path to a yellow guy every turn, using a breadth-first search algorithm. Obviously incredibly slow with more than a single roach, and would get exponentially slower with more than a single yellow guy. Second attempt was mas making every yellow guy generate a pathmap (still breadth-first search) every time he moved. Worked perfectly with multiple roaches and a single yellow guy, but adding more yellow guys made the game slow and unplayable. Last attempt was implementing JPS (jump point search). Every entity would individually calculate a path to its target. Fast, but with a limited number of entities. Having less than half the entities in the screenshot would make the game slow. And also, I had to get the "closest" enemy by calculating distance, not shortest path. I've asked on the DROD forums how they did it, and a user replied that it was breadth-first search. The game is open source, and I took a look at the source code, but it's C++ (I'm using C#) and I found it confusing. I don't know how to do it. Every approach I tried isn't good enough. And I believe that DROD generates global pathmaps, somehow, but I can't understand how every entity find the best individual path to other entities that move every turn. What's the trick? This is a reply I just got on the DROD forums: Without having looked at the code I'd wager it's two (or so) pathmaps for the whole room: One to the nearest enemy, and one to the nearest friendly for every tile. There's no need to make a separate pathmap for every entity when the overall goal is "move towards nearest enemy/friendly"... just mark every tile with the number of moves it takes to the nearest target and have the entity chose the move that takes it to the tile with the lowest number. To be honest, I don't understand it that well.

    Read the article

  • Insurers Pushed to Transform Their Business

    - by Calvin Glenn
    Everyone in the P&C industry has heard it “We can’t do it.” “Nobody wants to do it.” “We can’t afford to do it.”  Unfortunately, what they’re referencing are the reasons many insurers are still trying to maintain their business processing on legacy policy administration systems, attempting to bide time until there is no other recourse but to give in, bite the bullet, and take on the monumental task of replacing an entire policy administration system (PAS). Just the thought of that project sends IT, Business Users and Management reeling. However, is that fear real?  It is a bit daunting when one realizes that a complete policy administration system replacement will touch most every function an insurer manages, from quoting and rating, to underwriting, distribution, and even customer service. With that, everyone has heard at least one horror story around a transformation initiative that has far exceeded budget and the promised implementation / go-live timeline.    But, does it have to be that hard?  Surely, in the age where a person can voice-activate their DVR to record a TV program from a cell phone, there has to be someone somewhere who’s figured out how to simplify this process. To be able to help insurers, of all sizes, transform and grow their business while also delivering on their overall objectives of providing speed to market, straight-through-processing for applications, quoting, underwriting, and simplified product development. Maybe we’re looking too hard and the answer is simple and straight-forward. Why replace the entire machine when all it really needs is a new part…a single enterprise rating system? This core, modular piece of the policy administration system is the foundation of product development and rate management that enables insurers to provide the right product at the right price to the right customer through the best channels at any given moment in time. The real benefit of a single enterprise rating system is the ability to deliver enhanced business capabilities, such as improved product management, streamlined underwriting, and speed to market. With these benefits, carriers have accomplished a portion of their overall transformation goal. Furthermore, lessons learned from the rating project can be applied to the bigger, down-the-road PAS project to support the successful completion of the overall transformation endeavor. At the recent Oracle OpenWorld Conference in San Francisco, information was shared with attendees about a recent “go-live” project from an Oracle Insurance Tier 1 insurer who did what is proposed above…replaced just the rating portion of their legacy policy administration system with Oracle Insurance Insbridge Rating and Underwriting.  This change provided the insurer greater flexibility to set rates that better reflect risk while enabling the company to support its market segment strategy. Using the Oracle Insurance Insbridge enterprise rating solution, the insurer was able to reduce processing time for agents and underwriters, gained the ability to support proprietary rating models and improved pricing accuracy.      There is mounting pressure on P&C insurers to produce growth and show net profitability in the midst of modest overall industry growth, large weather-related losses and intensifying competition for market share.  Insurers are also being asked to improve customer service, offer a differentiated value proposition and simplify insurance processes.  While the demands are many there is an easy answer…invest in and update the most mission critical application in your arsenal, the single enterprise rating system. Download the Podcast to listen to “Stand-Alone Rating Engine - Leading Force Behind Core Transformation Projects in the P&C Market,” a podcast originally recorded in October 2013. Related Resources: White Paper: Stand-Alone Rating Engine: Leading Force Behind Core Transformation Projects in the P&C Market Webcast On Demand: Stand-Alone Rating Engine and Core Transformation for P&C Insurers Don’t forget to keep up with us year-round: Facebook: www.facebook.com/oracleinsurance Twitter: www.twitter.com/oracleinsurance YouTube: www.youtube.com/oracleinsurance

    Read the article

  • Sprinkle Some Magik on that Java Virtual Machine

    - by Jim Connors
    GE Energy, through its Smallworld subsidiary, has been providing geospatial software solutions to the utility and telco markets for over 20 years.  One of the fundamental building blocks of their technology is a dynamically-typed object oriented programming language called Magik.  Like Java, Magik source code is compiled down to bytecodes that run on a virtual machine -- in this case the Magik Virtual Machine. Throughout the years, GE has invested considerable engineering talent in the support and maintenance of this virtual machine.  At the same time vast energy and resources have been invested in the Java Virtual Machine. The question for GE has been whether to continue to make that investment on its own or to leverage massive effort provided by the Java community? Utilizing the Java Virtual Machine instead of maintaining its own virtual machine would give GE more opportunity to focus on application solutions.   At last count, there are dozens, perhaps hundreds of examples of programming languages that have been hosted atop the Java Virtual Machine.  Prior to the release of Java 7, that effort, although certainly possible, was generally less than optimal for languages like Magik because of its dynamic nature.  Java, as a statically typed language had little use for this capability.  In the quest to be a more universal virtual machine, Java 7, via JSR-292, introduced a new bytecode called invokedynamic.  In short, invokedynamic affords a more flexible method call mechanism needed by dynamic languages like Magik. With this new capability GE Energy has succeeded in hosting their Magik environment on top of the Java Virtual Machine.  So you may ask, why would GE wish to do such a thing?  The benefits are many: Competitors to GE Energy claimed that the Magik environment was proprietary.  By utilizing the Java Virtual Machine, that argument gets put to bed.  JVM development is done in open source, where contributions are made world-wide by all types of organizations and individuals. The unprecedented wealth of class libraries and applications written for the Java platform are now opened up to Magik/JVM platform as first class citizens. In addition, the Magik/JVM solution vastly increases the developer pool to include the 9 million Java developers -- the largest developer community on the planet. Applications running on the JVM showed substantial performance gains, in some cases as much as a 5x speed up over the original Magik platform. Legacy Magik applications can still run on the original platform.  They can be seamlessly migrated to run on the JVM by simply recompiling the source code. GE can now leverage the huge Java community.  Undeniably the best virtual machine ever created, hundreds if not thousands of world class developers continually improve, poke, prod and scrutinize all aspects of the Java platform.  As enhancements are made, GE automatically gains access to these. As Magik has little in the way of support for multi-threading, GE will benefit from current and future Java offerings (e.g. lambda expressions) that aim to further facilitate multi-core/multi-threaded application development. As the JVM is available for many more platforms, it broadens the reach of Magik, including the potential to run on a class devices never envisioned just a few short years ago.  For example, Java SE compatible runtime environments are available for popular embedded ARM/Intel/PowerPC configurations that could theoretically host this software too. As compared to other JVM language projects, the Magik integration differs in that it represents a serious commercial entity betting a sizable part of its business on the success of this effort.  Expect to see announcements not only from General Electric, but other organizations as they realize the benefits of utilizing the Java Virtual Machine.

    Read the article

  • PECL OCI8 2.0 Production Release Announcement

    - by cj
    The PHP OCI8 2.0.6 extension for Oracle Database is now "production" status. The source code is available on PECL. This can be used immediately to update your OCI8 extension in PHP 5.2 and later versions. The extension compiles with Oracle 10.2 or later client libraries. Oracle's standard cross-version database connectivity applies. OCI8 2.0 and PHP 5.5.5 RPMs for Oracle and Red Hat Linux are available from oss.oracle.com. Windows DLLs are available on PECL for PHP 5.3, PHP 5.4 and PHP 5.5. OCI8 2.0 source code will also be automatically included in the next major version of PHP. New Functionality Oracle Database 12c Implicit Result Set support. IRS's make it easy to pass query results back from stored PL/SQL procedures or anonymous PL/SQL blocks. Individual IRS statement resources, each corresponding to a single query, can be obtained with the new function oci_get_implicit_resultset(). These 'child' statement resources can be passed to any oci_fetch_* function. See Using PHP and Oracle Database 12c Implicit Result Sets and the PHP Manual: oci_get_implicit_resultset(). DTrace Dynamic Trace static probes. This well respected DTrace tracing framework is available on a number of platforms, including Oracle Linux. PHP OCI8 static user-space probes can be enabled with PHP's --enable-dtrace configuration option. See Using PHP DTrace on Oracle Linux. Documentation is also available in the PHP Manual OCI8 and DTrace Dynamic Tracing Improved Functionality Using oci_execute($s, OCI_NO_AUTO_COMMIT) for a SELECT no longer unnecessarily initiates an internal ROLLBACK during connection close. This can improve overall scalability by reducing "round trips" between PHP and the database. Changed Functionality PHP OCI8 2.0's minimum pre-requisites are now PHP 5.2 and Oracle client library 10.2. Later versions of both are usable and, in fact, recommended. Use the older PHP OCI8 1.4.10 extension when using PHP 4.3.9 through to PHP 5.1.x, or when only Oracle Database 9.2 client libraries are available. oci_set_*($connection, ...) meta data setting call error handling is fixed so that oci_error($connection) works for these calls. Note: The old, deprecated function aliases like ocilogon still exist but are not recommended for new applications. Phpinfo() Changes Some cosmetic changes were made to the output of php --ri oci8 and the phpinfo() function. The oci8.event and oci8.connection_class values are now shown only when the Oracle client libraries support the respective functionality. Connection statistics are now in a separate phpinfo() table. Temporary LOB and Collection support status lines in phpinfo() output were removed. These two features have always been enabled since 2007. Oci_internal_debug() Changes The oci_internal_debug() function is now a no-op. Use PHP's --enable-dtrace functionality with DTrace or SystemTap instead. References OCI8 Extension source code and Windows DLLs http://pecl.php.net/package/oci8 Oracle Linux RPMs oss.oracle.com PHP Manual for OCI8 OCI8 and DTrace Dynamic Tracing Oracle OpenWorld Conference paper What's New in Oracle Database 12c for PHP

    Read the article

  • Logging errors caused by exceptions deep in the application

    - by Kaleb Pederson
    What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error? For example, let's say that I have an ETL system whose transform step involves: a transformer, pipeline, processing algorithm, and processing engine. In brief, the transformer takes in an input file, parses out records, and sends the records through the pipeline. The pipeline aggregates the results of the processing algorithm (which could do serial or parallel processing). The processing algorithm sends each record through one or more processing engines. So, I have at least four levels: Transformer - Pipeline - Algorithm - Engine. My code might then look something like the following: class Transformer { void Process(InputSource input) { try { var inRecords = _parser.Parse(input.Stream); var outRecords = _pipeline.Transform(inRecords); } catch (Exception ex) { var inner = new ProcessException(input, ex); _logger.Error("Unable to parse source " + input.Name, inner); throw inner; } } } class Pipeline { IEnumerable<Result> Transform(IEnumerable<Record> records) { // NOTE: no try/catch as I have no useful information to provide // at this point in the process var results = _algorithm.Process(records); // examine and do useful things with results return results; } } class Algorithm { IEnumerable<Result> Process(IEnumerable<Record> records) { var results = new List<Result>(); foreach (var engine in Engines) { foreach (var record in records) { try { engine.Process(record); } catch (Exception ex) { var inner = new EngineProcessingException(engine, record, ex); _logger.Error("Engine {0} unable to parse record {1}", engine, record); throw inner; } } } } } class Engine { Result Process(Record record) { for (int i=0; i<record.SubRecords.Count; ++i) { try { Validate(record.subRecords[i]); } catch (Exception ex) { var inner = new RecordValidationException(record, i, ex); _logger.Error( "Validation of subrecord {0} failed for record {1}", i, record ); } } } } There's a few important things to notice: A single error at the deepest level causes three log entries (ugly? DOS?) Thrown exceptions contain all important and useful information Logging only happens when failure to do so would cause loss of useful information at a lower level. Thoughts and concerns: I don't like having so many log entries for each error I don't want to lose important, useful data; the exceptions contain all the important but the stacktrace is typically the only thing displayed besides the message. I can log at different levels (e.g., warning, informational) The higher level classes should be completely unaware of the structure of the lower-level exceptions (which may change as the different implementations are replaced). The information available at higher levels should not be passed to the lower levels. So, to restate the main questions: What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error?

    Read the article

  • NetworkManager Applet shows no networks

    - by Kkelk
    I am "the friend" referred to in the questions here and here. I decided to come and ask a question myself, as I can still not connect to the wireless network. I downloaded Keryx, as suggested here, and managed to download the necessary package and its dependencies. When I attempted to install the packages on Ubuntu using Keryx, Keryx just closed. Following this, I installed the packages manually using dpkg, and as far as I can tell, this was successful: kieran@ubuntu:~$ cd /host/wifi/Keryx/keryx/projects/Kieran/packages kieran@ubuntu:/host/wifi/Keryx/keryx/projects/Kieran/packages$ sudo dpkg -i *.deb [sudo] password for kieran: Selecting previously deselected package bcmwl-kernel-source. (Reading database ... 118296 files and directories currently installed.) Unpacking bcmwl-kernel-source (from bcmwl-kernel-source_5.60.48.36+bdcom-0ubuntu5_i386.deb) ... Selecting previously deselected package dkms. Unpacking dkms (from dkms_2.1.1.2-3ubuntu1.1_all.deb) ... Selecting previously deselected package fakeroot. Unpacking fakeroot (from fakeroot_1.14.4-1ubuntu1_i386.deb) ... Selecting previously deselected package linux-image. Unpacking linux-image (from linux-image_2.6.35.22.23_i386.deb) ... Selecting previously deselected package menu. Unpacking menu (from menu_2.1.44ubuntu1_i386.deb) ... Selecting previously deselected package patch. Unpacking patch (from patch_2.6-2ubuntu1_i386.deb) ... Setting up fakeroot (1.14.4-1ubuntu1) ... update-alternatives: using /usr/bin/fakeroot-sysv to provide /usr/bin/fakeroot (fakeroot) in auto mode. Setting up linux-image (2.6.35.22.23) ... Setting up menu (2.1.44ubuntu1) ... Setting up patch (2.6-2ubuntu1) ... Processing triggers for man-db ... Setting up dkms (2.1.1.2-3ubuntu1.1) ... Setting up bcmwl-kernel-source (5.60.48.36+bdcom-0ubuntu5) ... Loading new bcmwl-5.60.48.36+bdcom DKMS files... First Installation: checking all kernels... Building only for 2.6.35-22-generic Building for architecture i686 Building initial module for 2.6.35-22-generic Done. wl.ko: Running module version sanity check. - Original module - No original module exists within this kernel - Installation - Installing to /lib/modules/2.6.35-22-generic/updates/dkms/ depmod..... DKMS: install Completed. update-initramfs: deferring update (trigger activated) Processing triggers for install-info ... Processing triggers for doc-base ... Processing 31 changed 1 added doc-base file(s)... Registering documents with scrollkeeper... Processing triggers for menu ... Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-2.6.35-22-generic Warning: No support for locale: en_GB.utf8 After rebooting, however, there were still no wireless networks in the NetworkManager Applet list. I opened the file /var/lib/NetworkManager/NetworkManager.state, and both NetworkEnabled and WirelessEnabled were set to True. While i'm very concious I may be asking a stupid question here, both my friend and I have nothing left to suggest, and as such - I would be very grateful for any answers as to how to get wireless working.

    Read the article

  • User Produtivity Kit - Powerful Packages (Part 1)

    - by [email protected]
    User Productivity Kit provides the ability to create a variety of content types including robust topics on system process and web pages with formatted text and graphics. There are times when you want to enhance content with media types not naively created by User Productivity Kit, media types such as video, custom animations, forms, and more. One method of doing this is to maintain these media files on a web server - separate from the User Productivity Kit player content and link to the files using absolute URLs such as http://myserver/overview.html. While this will get you going, you won't benefit from the content management capabilities of the UPK Developer. Features such as check-in / check-out, history, document properties, folder permissions and more are not available to this external content. Further, if you ever need to move that content to a server with a different name or domain, you'd need to update all your links. UPK version 3.1 introduced a new document type - the package. A package is a group of folders and files that you manage in the Developer library as a single document. These package documents work in the same manner as any other document in the library and you can use all of the collaborative content development features you see with other document types. Packages can be used for anything from single Word documents, PDF files, and graphics to more intricate sets of inter-related files commonly seen with HTML files and their graphics, style sheets, and JavaScript files. The structure of the files and folders within a package will always be preserved so this means that any relative links between files in the package will work. For example, an HTML file containing an image tag with a relative link to a graphic elsewhere in the same package will continue to function properly both when viewed in the Developer and when published to outputs such as the UPK Player. Once you start to use packages, you'll soon discover that there is a lot of existing content that can be re-purposed by placing it into UPK packages. Packages are easily created by selecting File...New...Package. Files can be added in a number of ways including the "Add Files" button, copy & paste from Windows Explorer, and drag & drop. To use one of the files in the package, just create a link to the file in the package you want to target. This is supported throughout the Developer in places such as section & topic concepts, frame links and hyperlinks in web pages. A little more challenging is determining how to structure packages in your library. As I mentioned earlier, a package can contain anything from a single file to dozens of files and folders. So what should you do? You could create a package for each file. You could create one package for all your files. But which one is right? Well, there's not a right and wrong answer to this question. There are advantages and disadvantages to each. The right decision will be influenced by the package files themselves, the structure of the content in the library, the size and working style of the development team, how content is shared between different outlines and more. The first consideration can be assessed the quickest. If the content to be placed in the package is composed of multiple files and those files reference each other, they should be in the same package. There are loads of examples of this type of content. HTML files with graphics and style sheets, HTML files with embedded Flash movies, and Word documents saved as HTML are all examples where the content is composed of multiple files and the files reference each other in some way. Content like this should always be placed in a singe package such that these relative links between the files are preserved and play properly in the UPK Player. In upcoming posts, I'll explain additional considerations.

    Read the article

  • Future Of F# At Jazoon 2011

    - by Alois Kraus
    I was at the Jazoon 2011 in Zurich (Switzerland). It was a really cool event and it had many top notch speaker not only from the Microsoft universe. One of the most interesting talks was from Don Syme with the title: F# Today/F# Tomorrow. He did show how to use F# scripting to browse through open databases/, OData Web Services, Sharepoint, …interactively. It looked really easy with the help of F# Type Providers which is the next big language feature in a future F# version. The object returned by a Type Provider is used to access the data like in usual strongly typed object model. No guessing how the property of an object is called. Intellisense will show it just as you expect. There exists a range of Type Providers for various data sources where the schema of the stored data can somehow be dynamically extracted. Lets use e.g. a free database it would be then let data = DbProvider(http://.....); data the object which contains all data from e.g. a chemical database. It has an elements collection which contains an element which has the properties: Name, AtomicMass, Picture, …. You can browse the object returned by the Type Provider with full Intellisense because the returned object is strongly typed which makes this happen. The same can be achieved of course with code generators that use an input the schema of the input data (OData Web Service, database, Sharepoint, JSON serialized data, …) and spit out the necessary strongly typed objects as an assembly. This does work but has the downside that if the schema of your data source is huge you will quickly run against a wall with traditional code generators since the generated “deserialization” assembly could easily become several hundred MB. *** The following part contains guessing how this exactly work by asking Don two questions **** Q: Can I use Type Providers within C#? D: No. Q: F# is after all a library. I can reference the F# assemblies and use the contained Type Providers? D: F# does annotate the generated types in a special way at runtime which is not a static type that C# could use. The F# type providers seem to use a hybrid approach. At compilation time the Type Provider is instantiated with the url of your input data. The obtained schema information is used by the compiler to generate static types as usual but only for a small subset (the top level classes up to certain nesting level would make sense to me). To make this work you need to access the actual data source at compile time which could be a problem if you want to keep the actual url in a config file. Ok so this explains why it does work at all. But in the demo we did see full intellisense support down to the deepest object level. It looks like if you navigate deeper into the object hierarchy the type provider is instantiated in the background and attach to a true static type the properties determined at run time while you were typing. So this type is not really static at all. It is static if you define as a static type that its properties shows up in intellisense. But since this type information is determined while you are typing and it is not used to generate a true static type and you cannot use these “intellistatic” types from C#. Nonetheless this is a very cool language feature. With the plotting libraries you can generate expressive charts from any datasource within seconds to get quickly an overview of any structured data storage. My favorite programming language C# will not get such features in the near future there is hope. If you restrict yourself to OData sources you can use LINQPad to query any OData enabled data source with LINQ with ease. There you can query Stackoverflow with The output is also nicely rendered which makes it a very good tool to explore OData sources today.

    Read the article

  • jtreg update, December 2012

    - by jjg
    There is a new version of jtreg available. The primary new feature is support for tests that have been written for use with TestNG, the popular open source testing framework. TestNG is supported by a variety of tools and plugins, which means that it is now possible to develop tests for OpenJDK using those tools, while still retaining the ability to have the tests be part of the OpenJDK test suite, and run with a single test harness, jtreg. jtreg can be downloaded from the OpenJDK jtreg page: http://openjdk.java.net/jtreg. TestNG support jtreg supports both single TestNG tests, which can be freely intermixed with other types of jtreg tests, and groups of TestNG tests. A single TestNG test class can be compiled and run by providing a test description using the new action tag: @run testng classname The test will be executed by using org.testng.TestNG. No main method is required. A group of TestNG tests organized in a standard package hierarchy can also be compiled and run by jtreg. Any such group must be identified by specifying the root directory of the package hierarchy. You can either do this in the top level TEST.ROOT file, or in a TEST.properties file in any subdirectory enclosing the group of tests. In either case, add a line to the file of the form: TestNG.dirs = dir ... Directories beginning with '/' are evaluated relative to the root directory of the test suite; otherwise they are evaluated relative to the directory containing the declaring file. In particular, note that you can simply use "TestNG.dirs = ." in a TEST.properties file in the root directory of the test group's package hierarchy. No additional test descriptions are necessary, but test descriptions containing information tags, such as @bug, @summary, etc are permitted. All the Java source files in the group will be compiled if necessary, before any of the tests in the group are run. The selected tests within the group will be run, one at a time, using org.testng.TestNG. Library classes The specification for the @library tag has been extended so that any paths beginning with '/' will be evaluated relative to the root directory of the test suite. In addition, some bugs have been fixed that prevented sharing the compiled versions of library classes between tests in different directories. Note: This has uncovered some issues in tests that use a combination of @build and @library tags, such that some tests may fail unexpectedly with ClassNotFoundException. The workaround for now is to ensure that library classes are listed before the test classes in any @build tags. To specify one or more library directories for a group of TestNG tests, add a line of the following form to the TEST.properties file in the root directory of the group's package hierarchy: lib.dirs = dir ... As before, directories beginning with '/' are evaluated relative to the root directory of the test suite; otherwise they are evaluated relative to the directory containing the declaring file. The libraries will be available to all classes in the group; you cannot specify different libraries for different tests within the group. Coming soon ... From this point on, jtreg development will be using the new jtreg repository in the OpenJDK code-tools project. There is a new email alias jtreg-dev at openjdk.java.net for discussions about jtreg development. The existing alias jtreg-use at openjdk.java.net will continue to be available for questions about using jtreg. For more information ... An updated version of the jtreg Tag Language Specification is being prepared, and will be made available when it is ready. In the meantime, you can find more information about the support for TestNG by executing the following command: $ jtreg -onlinehelp TestNG For more information on TestNG itself, visit testng.org.

    Read the article

  • Simple Merging Of PDF Documents with iTextSharp 5.4.5.0

    - by Mladen Prajdic
    As we were working on our first SQL Saturday in Slovenia, we came to a point when we had to print out the so-called SpeedPASS's for attendees. This SpeedPASS file is a PDF and contains thier raffle, lunch and admission tickets. The problem is we have to download one PDF per attendee and print that out. And printing more than 10 docs at once is a pain. So I decided to make a little console app that would merge multiple PDF files into a single file that would be much easier to print. I used an open source PDF manipulation library called iTextSharp version 5.4.5.0 This is a console program I used. It’s brilliantly named MergeSpeedPASS. It only has two methods and is really short. Don't let the name fool you It can be used to merge any PDF files. The first parameter is the name of the target PDF file that will be created. The second parameter is the directory containing PDF files to be merged into a single file. using iTextSharp.text; using iTextSharp.text.pdf; using System; using System.IO; namespace MergeSpeedPASS { class Program { static void Main(string[] args) { if (args.Length == 0 || args[0] == "-h" || args[0] == "/h") { Console.WriteLine("Welcome to MergeSpeedPASS. Created by Mladen Prajdic. Uses iTextSharp 5.4.5.0."); Console.WriteLine("Tool to create a single SpeedPASS PDF from all downloaded generated PDFs."); Console.WriteLine(""); Console.WriteLine("Example: MergeSpeedPASS.exe targetFileName sourceDir"); Console.WriteLine(" targetFileName = name of the new merged PDF file. Must include .pdf extension."); Console.WriteLine(" sourceDir = path to the dir containing downloaded attendee SpeedPASS PDFs"); Console.WriteLine(""); Console.WriteLine(@"Example: MergeSpeedPASS.exe MergedSpeedPASS.pdf d:\Downloads\SQLSaturdaySpeedPASSFiles"); } else if (args.Length == 2) CreateMergedPDF(args[0], args[1]); Console.WriteLine(""); Console.WriteLine("Press any key to exit..."); Console.Read(); } static void CreateMergedPDF(string targetPDF, string sourceDir) { using (FileStream stream = new FileStream(targetPDF, FileMode.Create)) { Document pdfDoc = new Document(PageSize.A4); PdfCopy pdf = new PdfCopy(pdfDoc, stream); pdfDoc.Open(); var files = Directory.GetFiles(sourceDir); Console.WriteLine("Merging files count: " + files.Length); int i = 1; foreach (string file in files) { Console.WriteLine(i + ". Adding: " + file); pdf.AddDocument(new PdfReader(file)); i++; } if (pdfDoc != null) pdfDoc.Close(); Console.WriteLine("SpeedPASS PDF merge complete."); } } } } Hope it helps you and have fun.

    Read the article

  • WebLogic Server Performance and Tuning: Part II - Thread Management

    - by Gokhan Gungor
    WebLogic Server, like any other java application server, provides resources so that your applications use them to provide services. Unfortunately none of these resources are unlimited and they must be managed carefully. One of these resources is threads which are pooled to provide better throughput and performance along with the fast response time and to avoid deadlocks. Threads are execution points that WebLogic Server delivers its power and execute work. Managing threads is very important because it may affect the overall performance of the entire system. In previous releases of WebLogic Server 9.0 we had multiple execute queues and user defined thread pools. There were different queues for different type of work which had fixed number of execute threads.  Tuning of this thread pools and finding the proper number of threads was time consuming which required many trials. WebLogic Server 9.0 and the following releases use a single thread pool and a single priority-based execute queue. All type of work is executed in this single thread pool. Its size (thread count) is automatically decreased or increased (self-tuned). The new “self-tuning” system simplifies getting the proper number of threads and utilizing them.Work manager allows your applications to run concurrently in multiple threads. Work manager is a mechanism that allows you to manage and utilize threads and create rules/guidelines to follow when assigning requests to threads. We can set a scheduling guideline or priority a request with a work manager and then associate this work manager with one or more applications. At run-time, WebLogic Server uses these guidelines to assign pending work/requests to execution threads. The position of a request in the execute queue is determined by its priority. There is a default work manager that is provided. The default work manager should be sufficient for most applications. However there can be cases you want to change this default configuration. Your application(s) may be providing services that need mixture of fast response time and long running processes like batch updates. However wrong configuration of work managers can lead a performance penalty while expecting improvement.We can define/configure work managers at;•    Domain Level: config.xml•    Application Level: weblogic-application.xml •    Component Level: weblogic-ejb-jar.xml or weblogic.xml(For a specific web application use weblogic.xml)We can use the following predefined rules/constraints to manage the work;•    Fair Share Request Class: Specifies the average thread-use time required to process requests. The default is 50.•    Response Time Request Class: Specifies a response time goal in milliseconds.•    Context Request Class: Assigns request classes to requests based on context information.•    Min Threads Constraint: Limits the number of concurrent threads executing requests.•    Max Threads Constraint: Guarantees the number of threads the server will allocate to requests.•    Capacity Constraint: Causes the server to reject requests only when it has reached its capacity. Let’s create a work manager for our application for a long running work.Go to WebLogic console and select Environment | Work Managers from the domain structure tree. Click New button and select Work manager and click next. Enter the name for the work manager and click next. Then select the managed server instances(s) or clusters from available targets (the one that your long running application is deployed) and finish. Click on MyWorkManager, and open the Configuration tab and check Ignore Stuck Threads and save. This will prevent WebLogic to tread long running processes (that is taking more than a specified time) as stuck and enable to finish the process.

    Read the article

  • Utility to Script SQL Server Configuration

    - by Bill Graziano
    I wrote a small utility to script some key SQL Server configuration information. I had two goals for this utility: Assist with disaster recovery preparation Identify configuration changes I’ve released the application as open source through CodePlex. You can download it from CodePlex at the Script SQL Server Configuration project page. The application is a .NET 2.0 console application that uses SMO. It writes its output to a directory that you specify.  Disaster Planning ScriptSqlConfig generates scripts for logins, jobs and linked servers.  It writes the properties and configuration from the instance to text files. The scripts are designed so they can be run against a DR server in the case of a disaster. The properties and configuration will need to be manually compared. Each job is scripted to its own file. Each linked server is scripted to its own file. The linked servers don’t include the password if you use a SQL Server account to connect to the linked server. You’ll need to store those somewhere secure. All the logins are scripted to a single file. This file includes windows logins, SQL Server logins and any server role membership.  The SQL Server logins are scripted with the correct SID and hashed passwords. This means that when you create the login it will automatically match up to the users in the database and have the correct password. This is the only script that I programmatically generate rather than using SMO. The SQL Server configuration and properties are scripted to text files. These will need to be manually reviewed in the event of a disaster. Or you could DIFF them with the configuration on the new server. Configuration Changes These scripts and files are all designed to be checked into a version control system.  The scripts themselves don’t include any date specific information. In my environments I run this every night and check in the changes. I call the application once for each server and script each server to its own directory.  The process will delete any existing files before writing new ones. This solved the problem I had where the scripts for deleted jobs and linked servers would continue to show up.  To see any changes I just need to query the version control system to show many any changes to the files. Database Scripting Utilities that script database objects are plentiful.  CodePlex has at least a dozen of them including one I wrote years ago. The code is so easy to write it’s hard not to include that functionality. This functionality wasn’t high on my list because it’s included in a database backup.  Unless you specify the /nodb option, the utility will script out many user database objects. It will script one object per file. It will script tables, stored procedures, user-defined data types, views, triggers, table types and user-defined functions. I know there are more I need to add but haven’t gotten around it yet. If there’s something you need, please log an issue and get it added. Since it scripts one object per file these really aren’t appropriate to recreate an empty database. They are really good for checking into source control every night and then seeing what changed. I know everyone tells me all their database objects are in source control but a little extra insurance never hurts. Conclusion I hope this utility will help a few of you out there. My goal is to have it script all server objects that aren’t contained in user databases. This should help with configuration changes and especially disaster recovery.

    Read the article

  • Unable to Sign in to the Microsoft Online Services Signin application from Windows 7 client located behind ISA firewall

    - by Ravindra Pamidi
    A while ago i helped a customer troubleshoot authentication problem with Microsoft Online Services Signin application.  This customer was evaluating Microsoft BPOS (Business Productivity Online Services) and was having trouble using the single sign on application behind ISA 2004 firewall.The network structure is fairly simple with single Windows 2003 Active Directory domain and Windows 7 clients. On a successful logon to the Microsoft Online Services Signin application, this application provides single signon functionality to all of Microsoft online services in the BPOS package. Symptoms:When trying to signin it fails with error "The service is currently unavailable. Please try again later. If problems continue, contact your service administrator". If ISA 2004 firewall is removed from the picture the authentication succeeds.Troubleshooting: Enabled ISA Server firewall logging along with Microsoft Network Monitor tool on the Windows 7 Client while reproducing the issue. Analysis of the ISA Server Firewall logs and Microsoft Network capture revealed that the Microsoft Online Services Sign In application when sending request to ISA Server does not send the domain credentials and as a result ISA Server responds with an error code of HTTP 407 Proxy authentication required listing out the supported authentication mechanisms.  The application in question is expected to send the credentials of the domain user in response to this request. However in this case, it fails to send the logged on user's domain credentials. Bit of researching on the Internet revealed that The "Microsoft Online Services Sign In" application by default does not support Outbound Internet Proxy authentication. In order for it to send the logged on user's domain credentials we had to make  changes to its configuration file "SignIn.exe.config" located under "Program Files\Microsoft Online Services\Sign In" folder. Step by Step details to configure the configuration file are documented on Microsoft TechNet website given below.  Configure your outbound authenticating proxy serverhttp://www.microsoft.com/online/help/en-us/helphowto/cc54100d-d149-45a9-8e96-f248ecb1b596.htm After the above problem was addressed we were still not able to use the "Microsoft Online Services Sign In" application and it failed with the same error.  Analysis of another network capture revealed that the application in question is now sending the required credentials and the connection seems to terminate at a later stage. Enabled verbose logging for the "Microsoft Online Services Sign In" application and then reproduced the problem. Analysis of the logs revealed a time difference between the local client and Microsoft Online services server of around seven minutes which is above the acceptable time skew of five minutes. Excerpt from Microsoft Online Services Sign In application verbose log:  1/26/2012 1:57:51 PM Verbose SingleSignOn.GetSSOGenericInterface SSO Interface URL: https://signinservice.apac.microsoftonline.com/ssoservice/UID1/26/2012 1:57:52 PM Exception SSOSignIn.SignIn The security timestamp is invalid because its creation time ('2012-01-26T08:34:52.767Z') is in the future. Current time is '2012-01-26T08:27:52.987Z' and allowed clock skew is '00:05:00'.1/26/2012 1:57:52 PM Exception SSOSignIn.SignIn  Although the Windows 7 Clients successfully synchronized time to the domain controller for the domain, the domain controller was not configured to synchronize time with external NTP servers. This caused a gradual drift in time on the network thus resulting in the above issue. Reconfigured the domain controller holding the PDC FSMO role to synchronize time with external time source ( time.nist.gov ) and edited the system policy on the ISA server firewall to allow NTP traffic to time.nist.gov Configure the time source for the forest:Windows Time Servicehttp://technet.microsoft.com/en-us/library/cc794937(WS.10).aspx Forced synchronization of Windows time using the command w32tm /resync on the domain controller and later on the clients each of which had corrected the seven minutes difference. This resolved the problem with logon to Microsoft Online Services Sign In.

    Read the article

  • Getting Help with 'SEPA' Questions

    - by MargaretW
    What is 'SEPA'? The Single Euro Payments Area (SEPA) is a self-regulatory initiative for the European banking industry championed by the European Commission (EC) and the European Central Bank (ECB). The aim of the SEPA initiative is to improve the efficiency of cross border payments and the economies of scale by developing common standards, procedures, and infrastructure. The SEPA territory currently consists of 33 European countries -- the 28 EU states, together with Iceland, Liechtenstein, Monaco, Norway and Switzerland. Part of that infrastructure includes two new SEPA instruments that were introduced in 2008: SEPA Credit Transfer (a Payables transaction in Oracle EBS) SEPA Core Direct Debit (a Receivables transaction in Oracle EBS) A SEPA Credit Transfer (SCT) is an outgoing payment instrument for the execution of credit transfers in Euro between customer payment accounts located in SEPA. SEPA Credit Transfers are executed on behalf of an Originator holding a payment account with an Originator Bank in favor of a Beneficiary holding a payment account at a Beneficiary Bank. In R12 of Oracle applications, the current SEPA credit transfer implementation is based on Version 5 of the "SEPA Credit Transfer Scheme Customer-To-Bank Implementation Guidelines" and the "SEPA Credit Transfer Scheme Rulebook" issued by European Payments Council (EPC). These guidelines define the rules to be applied to the UNIFI (ISO20022) XML message standards for the implementation of the SEPA Credit Transfers in the customer-to-bank space. This format is compliant with SEPA Credit Transfer version 6. A SEPA Core Direct Debit (SDD) is an incoming payment instrument used for making domestic and cross-border payments within the 33 countries of SEPA, wherein the debtor (payer) authorizes the creditor (payee) to collect the payment from his bank account. The payment can be a fixed amount like a mortgage payment, or variable amounts such as those of invoices. The "SEPA Core Direct Debit" scheme replaces various country-specific direct debit schemes currently prevailing within the SEPA zone. SDD is based on the ISO20022 XML messaging standards, version 5.0 of the "SEPA Core Direct Debit Scheme Rulebook", and "SEPA Direct Debit Core Scheme Customer-to-Bank Implementation Guidelines". This format is also compliant with SEPA Core Direct Debit version 6. EU Regulation #260/2012 established the technical and business requirements for both instruments in euro. The regulation is referred to as the "SEPA end-date regulation", and also defines the deadlines for the migration to the new SEPA instruments: Euro Member States: February 1, 2014 Non-Euro Member States: October 31, 2016. Oracle and SEPA Within the Oracle E-Business Suite of applications, Oracle Payables (AP), Oracle Receivables (AR), and Oracle Payments (IBY) provide SEPA transaction capabilities for the following releases, as noted: Release 11.5.10.x -  AP & AR Release 12.0.x - AP & AR & IBY Release 12.1.x - AP & AR & IBY Release 12.2.x - AP & AR & IBY Resources To assist our customers in migrating, using, and troubleshooting SEPA functionality, a number of resource documents related to SEPA are available on My Oracle Support (MOS), including: R11i: AP: White Paper - SEPA Credit Transfer V5 support in Oracle Payables, Doc ID 1404743.1R11i: AR: White Paper - SEPA Core Direct Debit v5.0 support in Oracle Receivables, Doc ID 1410159.1R12: IBY: White Paper - SEPA Credit Transfer v5 support in Oracle Payments, Doc ID 1404007.1R12: IBY: White Paper - SEPA Core Direct Debit v5 support in Oracle Payments, Doc ID 1420049.1R11i/R12: AP/AR/IBY: Get Help Setting Up, Using, and Troubleshooting SEPA Payments in Oracle, Doc ID 1594441.2R11i/R12: Single European Payments Area (SEPA) - UPDATES, Doc ID 1541718.1R11i/R12: FAQs for Single European Payments Area (SEPA), Doc ID 791226.1

    Read the article

  • Snap App Windows to Pre-Defined Screen Sections with Acer GridVista

    - by Asian Angel
    The window snapping feature in Windows 7 and the ability to organize monitor(s) into specific gridded sections have both become popular lately. If you love the idea of having both combined in a single software then join us as we look at Acer GridVista. Note: Acer GridVista works with Windows XP, Vista, & 7. It will also work with dual monitors. Setup Acer GridVista comes in a zip file format and at first you might assume that it is portable in nature but it is not. Once you unzip the enclosed folder you will need to double click on “Setup.exe” to install the program. Acer GridVista in Action Once you have installed the program and started it up all that you will notice at first is the new “System Tray Icon”. Here you can see the “Context Menu”… The only menu command that you will likely use most of the time is the “Grid Configuration Command”. Notice that for our single monitor setup that it lists “Display 1”. The “Single Setting” is enabled by default and you can easily choose the layout that best suits your needs. The enabled layout style will always be highlighted in yellow for easy reference. For our example we chose the “Triple (primary at right)” layout style. Each section will be specifically numbered as shown here. Do not worry…the grid and numbers only appear for a moment and then become invisible again until you move an app window into that section/area of your screen. On every regular app window that you open you will notice three new buttons in the upper right corner. Here is what each of these new buttons do: Acer GridVista Extensions (Transparent, Send To Window Grid, About Acer GridVista): Viewable in a drop-down menu Lock To Grid (Enable/Disable): Enabled by default –> Note: Set to disable on a particular window to keep it free of the “grid locking function” Always On Top (Enable/Disable): Disabled by default A good look at the “Extensions Drop-Down Menu” where you can set an app window to be transparent or send it to a specific screen section on your monitor(s). If you open an app it will not automatically lock into a specific section. To lock the window into a specific section drag-and-drop the app window into the desired section. Notice the red outline and highlighted number on “Section 2” below. The red outline and highlighted number serves as an indicator that if you release the app window at that moment it will lock into the outlined/highlighted section. Now that Notepad is locked into “Section 2” you can see that it is maximized within that section. Continue to drag-and-drop your app windows into the appropriate sections as desired…apps can still be reduced to the “Taskbar” the same as before. Options These are the options available for Acer GridVista… Conclusion If you have been wanting the ability to “snap” windows and organize them into specific screen areas then Acer GridVista is definitely a program that you should try out. Links Download Acer GridVista at Softpedia View detailed information at the Acer GridVista Homepage Similar Articles Productive Geek Tips Multitask Like a Pro with AquaSnapHelp Troubleshoot the Blue Screen of Death by Preventing Automatic RebootAdd Windows 7’s AeroSnap Feature to Vista and XPResize Windows to Specific Dimensions Easily With SizerKeyboard Ninja: Assign a Hotkey to any Window TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Playing Games In Chrome Made Easier Stop In The Name Of Love (Firefox addon) Chitika iPad Labs Gives Live iPad Sale Stats Heaven & Hell Finder Icon Using TrueCrypt to Secure Your Data Quickly Schedule Meetings With NeedtoMeet

    Read the article

  • The Three-Legged Milk Stool - Why Oracle Fusion Incentive Compensation makes the difference!

    - by Richard Lefebvre
    During the London Olympics, we were exposed to dozens of athletes who worked with sports psychologists to maximize their performance. Executives often hire business psychologists to coach their teams to excellence. In the same vein, Fusion Incentive Compensation can be used to get people to change their sales behavior so we can make our numbers. But what about using incentive compensation solutions in a non-sales scenario to drive change? Recently, I was working an opportunity where a company was having a low user adoption rate for Salesforce.com, which was causing problems for them. I suggested they use Fusion Incentive Comp to change the reps' behavior. We tossed around the idea of tracking user adoption by creating a variable bonus for reps based on how well they forecasted revenues in the new system. Another thought was to reward the reps for how often they logged into the system or for the percentage of leads that became opportunities and turned into revenue. A new twist on a great product. Fusion CRM's Sweet Spot I'm excited about the sales performance management (SPM) tools in Fusion CRM. This trio of Incentive Compensation, Territory Management, and Quota Management sets us apart from the competition because Oracle is the only vendor that provides all three of these capabilities on a single tech stack, in a single application, and with a single look and feel. The niche vendors offer standalone territory or incentive compensation solutions, but then the customer has to custom build the other tools and can end up with a Frankenstein-type environment. On average, companies overpay sales commissions by three to eight percent. You calculate that number for a company the size of Oracle for one quarter and it makes a pretty air-tight financial case for using SPM tools to figure accurate commissions. Plus when sales reps get the right compensation, they can be out selling rather than spending precious time figuring out what they didn't get paid or looking for another job. And one more thing ... Oracle knows incentive comp. We have been a Gartner Market Scope leader in this space for the last five years. Our solution gets high marks because of its scalability and because of its interoperability with other technologies. And now that we're leading with Fusion, our incentive compensation offering includes the innovations that the Fusion team built, plus enhancements from the E-Business Suite Incentive Comp team. It's a case of making a good thing even better. (See product video.) The "Wedge" Apps In a number of accounts that I'm working on, there is a non-Oracle CRM system of record. That gives me the perfect opportunity to introduce the benefits of our SPM tools and to get the customer using Fusion. Then the door is wide open for the company to uptake more of Fusion CRM, especially since all the integrations they need are out of the box. I really believe that implementing this wedge of SPM tools is the ticket to taking market share away from other vendors. It allows us to insert ourselves in an environment where no other CRM solution in the market has the extending capabilities of Fusion. Not Just Your Usual Suspects Usually the stakeholders that I talk to for Territory Management are tightly aligned with the sales management team. When I sell the quota planning tool, I'm talking to finance people on the ERP side of the house who are measuring quotas and forecasting revenue. And then Incentive Comp is of most interest to the sales operations people, and generally these people roll up to either HR or the payroll department. I think of our Fusion SPM tools as a three-legged stool straddling an organization's Sales, Finance, and HR departments. So when you're prospecting for opportunities -- yes, people with a CRM perspective will be very interested -- but don't limit yourselves to that constituency. You might find stakeholders in accounting, revenue planning, or HR compensation teams. You just might discover, as I did at United Airlines, that the HR organization is spearheading the CRM project because incentive compensation is what they need ... and they're the ones with the budget. Jason Loh Global Solutions Manager, Fusion CRM Sales Planning Oracle Corporation

    Read the article

  • I am trying to figure out the best way to understand how to cache domain objects

    - by Brett Ryan
    I've always done this wrong, I'm sure a lot of others have too, hold a reference via a map and write through to DB etc.. I need to do this right, and I just don't know how to go about it. I know how I want my objects to be cached but not sure on how to achieve it. What complicates things is that I need to do this for a legacy system where the DB can change without notice to my application. So in the context of a web application, let's say I have a WidgetService which has several methods: Widget getWidget(); Collection<Widget> getAllWidgets(); Collection<Widget> getWidgetsByCategory(String categoryCode); Collection<Widget> getWidgetsByContainer(Integer parentContainer); Collection<Widget> getWidgetsByStatus(String status); Given this, I could decide to cache by method signature, i.e. getWidgetsByCategory("AA") would have a single cache entry, or I could cache widgets individually, which would be difficult I believe; OR, a call to any method would then first cache ALL widgets with a call to getAllWidgets() but getAllWidgets() would produce caches that match all the keys for the other method invocations. For example, take the following untested theoretical code. Collection<Widget> getAllWidgets() { Entity entity = cache.get("ALL_WIDGETS"); Collection<Widget> res; if (entity == null) { res = loadCache(); } else { res = (Collection<Widget>) entity.getValue(); } return res } Collection<Widget> loadCache() { // Get widgets from underlying DB Collection<Widget> res = db.getAllWidgets(); cache.put("ALL_WIDGETS", res); Map<String, List<Widget>> byCat = new HashMap<>(); for (Widget w : res) { // cache by different types of method calls, i.e. by category if (!byCat.containsKey(widget.getCategory()) { byCat.put(widget.getCategory(), new ArrayList<Widget>); } byCat.get(widget.getCatgory(), widget); } cacheCategories(byCat); return res; } Collection<Widget> getWidgetsByCategory(String categoryCode) { CategoryCacheKey key = new CategoryCacheKey(categoryCode); Entity ent = cache.get(key); if (entity == null) { loadCache(); } ent = cache.get(key); return ent == null ? Collections.emptyList() : (Collection<Widget>)ent.getValue(); } NOTE: I have not worked with a cache manager, the above code illustrates cache as some object that may hold caches by key/value pairs, though it's not modelled on any specific implementation. Using this I have the benefit of being able to cache all objects in the different ways they will be called with only single objects on the heap, whereas if I were to cache the method call invocation via say Spring It would (I believe) cache multiple copies of the objects. I really wish to try and understand the best ways to cache domain objects before I go down the wrong path and make it harder for myself later. I have read the documentation on the Ehcache website and found various articles of interest, but nothing to give a good solid technique. Since I'm working with an ERP system, some DB calls are very complicated, not that the DB is slow, but the business representation of the domain objects makes it very clumsy, coupled with the fact that there are actually 11 different DB's where information can be contained that this application is consolidating in a single view, this makes caching quite important.

    Read the article

  • Investigating Strategies For Functional Decomposition

    - by Liam McLennan
    Introducing Functional Decomposition Before I begin I must apologise. I think I am using the term ‘functional decomposition’ loosely, and probably incorrectly. For the purpose of this article I use functional decomposition to mean the recursive splitting of a large problem into increasingly smaller ones, so that the one large problem may be solved by solving a set of smaller problems. The justification for functional decomposition is that the decomposed problem is more easily solved. As software developers we recognise that the smaller pieces are more easily tested, since they do less and are more cohesive. Functional decomposition is important to all scientific pursuits. Once we understand natural selection we can start to look for humanities ancestral species, once we understand the big bang we can trace our expanding universe back to its origin. Isaac Newton acknowledged the compositional nature of his scientific achievements: If I have seen further than others, it is by standing upon the shoulders of giants   The Two Strategies For Functional Decomposition of Computer Programs Private Methods When I was working on my undergraduate degree I was taught to functionally decompose problems by using private methods. Consider the problem of painting a house. The obvious solution is to solve the problem as a single unit: public void PaintAHouse() { // all the things required to paint a house ... } We decompose the problem by breaking it into parts: public void PaintAHouse() { PaintUndercoat(); PaintTopcoat(); } private void PaintUndercoat() { // everything required to paint the undercoat } private void PaintTopcoat() { // everything required to paint the topcoat } The problem can be recursively decomposed until a sufficiently granular level of detail is reached: public void PaintAHouse() { PaintUndercoat(); PaintTopcoat(); } private void PaintUndercoat() { prepareSurface(); fetchUndercoat(); paintUndercoat(); } private void PaintTopcoat() { fetchPaint(); paintTopcoat(); } According to Wikipedia, at least one computer programmer has referred to this process as “the art of subroutining”. The practical issues that I have encountered when using private methods for decomposition are: To preserve the top level API all of the steps must be private. This means that they can’t easily be tested. The private methods often have little cohesion except that they form part of the same solution. Decomposing to Classes The alternative is to decompose large problems into multiple classes, effectively using a class instead of each private method. The API delegates to related classes, so the API is not polluted by the sub-steps of the problem, and the steps can be easily tested because they are each in their own highly cohesive class. Additionally, I think that this technique facilitates better adherence to the Single Responsibility Principle, since each class can be decomposed until it has precisely one responsibility. Revisiting my previous example using class composition: public class HousePainter { private undercoatPainter = new UndercoatPainter(); private topcoatPainter = new TopcoatPainter(); public void PaintAHouse() { undercoatPainter.Paint(); topcoatPainter.Paint(); } } Summary When decomposing a problem there is more than one way to represent the sub-problems. Using private methods keeps the logic in one place and prevents a proliferation of classes (thereby following the four rules of simple design) but the class decomposition is more easily testable and more compatible with the Single Responsibility Principle.

    Read the article

  • 3 Incredibly Useful Projects to jump-start your Kinect Development.

    - by mbcrump
    I’ve been playing with the Kinect SDK Beta for the past few days and have noticed a few projects on CodePlex worth checking out. I decided to blog about them to help spread awareness. If you want to learn more about Kinect SDK then you check out my”Busy Developer’s Guide to the Kinect SDK Beta”. Let’s get started:   KinectContrib is a set of VS2010 Templates that will help you get started building a Kinect project very quickly. Once you have it installed you will have the option to select the following Templates: KinectDepth KinectSkeleton KinectVideo Please note that KinectContrib requires the Kinect for Windows SDK beta to be installed. Kinect Templates after installing the Template Pack. The reference to Microsoft.Research.Kinect is added automatically.  Here is a sample of the code for the MainWindow.xaml in the “Video” template: <Window x:Class="KinectVideoApplication1.MainWindow" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="480" Width="640"> <Grid> <Image Name="videoImage"/> </Grid> </Window> and MainWindow.xaml.cs using System; using System.Windows; using System.Windows.Media; using System.Windows.Media.Imaging; using Microsoft.Research.Kinect.Nui; namespace KinectVideoApplication1 { public partial class MainWindow : Window { //Instantiate the Kinect runtime. Required to initialize the device. //IMPORTANT NOTE: You can pass the device ID here, in case more than one Kinect device is connected. Runtime runtime = new Runtime(); public MainWindow() { InitializeComponent(); //Runtime initialization is handled when the window is opened. When the window //is closed, the runtime MUST be unitialized. this.Loaded += new RoutedEventHandler(MainWindow_Loaded); this.Unloaded += new RoutedEventHandler(MainWindow_Unloaded); //Handle the content obtained from the video camera, once received. runtime.VideoFrameReady += new EventHandler<Microsoft.Research.Kinect.Nui.ImageFrameReadyEventArgs>(runtime_VideoFrameReady); } void MainWindow_Unloaded(object sender, RoutedEventArgs e) { runtime.Uninitialize(); } void MainWindow_Loaded(object sender, RoutedEventArgs e) { //Since only a color video stream is needed, RuntimeOptions.UseColor is used. runtime.Initialize(Microsoft.Research.Kinect.Nui.RuntimeOptions.UseColor); //You can adjust the resolution here. runtime.VideoStream.Open(ImageStreamType.Video, 2, ImageResolution.Resolution640x480, ImageType.Color); } void runtime_VideoFrameReady(object sender, Microsoft.Research.Kinect.Nui.ImageFrameReadyEventArgs e) { PlanarImage image = e.ImageFrame.Image; BitmapSource source = BitmapSource.Create(image.Width, image.Height, 96, 96, PixelFormats.Bgr32, null, image.Bits, image.Width * image.BytesPerPixel); videoImage.Source = source; } } } You will find this template pack is very handy especially for those new to Kinect Development.   Next up is The Coding4Fun Kinect Toolkit which contains extension methods and a WPF control to help you develop with the Kinect SDK. After downloading the package simply add a reference to the .dll using either the WPF or WinForms version. Now you will have access to several methods that can help you save an image: (for example) For a full list of extension methods and properties, please visit the site at http://c4fkinect.codeplex.com/. Kinductor – This is a great application for just learning how to use the Kinect SDK. The project uses MVVM Light and is a great start for those looking how to structure their first Kinect Application. Conclusion: Things are already getting easier for those working with the Kinect SDK. I imagine that after a few more months we will see the SDK go out of beta and allow commercial applications to run using it. I am very excited and hope that you continue reading my blog for more Kinect, WPF and Silverlight news.  Subscribe to my feed

    Read the article

  • Should I expose IObservable<T> on my interfaces?

    - by Alex
    My colleague and I have dispute. We are writing a .NET application that processes massive amounts of data. It receives data elements, groups subsets of them into blocks according to some criterion and processes those blocks. Let's say we have data items of type Foo arriving some source (from the network, for example) one by one. We wish to gather subsets of related objects of type Foo, construct an object of type Bar from each such subset and process objects of type Bar. One of us suggested the following design. Its main theme is exposing IObservable objects directly from the interfaces of our components. // ********* Interfaces ********** interface IFooSource { // this is the event-stream of objects of type Foo IObservable<Foo> FooArrivals { get; } } interface IBarSource { // this is the event-stream of objects of type Bar IObservable<Bar> BarArrivals { get; } } / ********* Implementations ********* class FooSource : IFooSource { // Here we put logic that receives Foo objects from the network and publishes them to the FooArrivals event stream. } class FooSubsetsToBarConverter : IBarSource { IFooSource fooSource; IObservable<Bar> BarArrivals { get { // Do some fancy Rx operators on fooSource.FooArrivals, like Buffer, Window, Join and others and return IObservable<Bar> } } } // this class will subscribe to the bar source and do processing class BarsProcessor { BarsProcessor(IBarSource barSource); void Subscribe(); } // ******************* Main ************************ class Program { public static void Main(string[] args) { var fooSource = FooSourceFactory.Create(); var barsProcessor = BarsProcessorFactory.Create(fooSource) // this will create FooSubsetToBarConverter and BarsProcessor barsProcessor.Subscribe(); fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } The other suggested another design that its main theme is using our own publisher/subscriber interfaces and using Rx inside the implementations only when needed. //********** interfaces ********* interface IPublisher<T> { void Subscribe(ISubscriber<T> subscriber); } interface ISubscriber<T> { Action<T> Callback { get; } } //********** implementations ********* class FooSource : IPublisher<Foo> { public void Subscribe(ISubscriber<Foo> subscriber) { /* ... */ } // here we put logic that receives Foo objects from some source (the network?) publishes them to the registered subscribers } class FooSubsetsToBarConverter : ISubscriber<Foo>, IPublisher<Bar> { void Callback(Foo foo) { // here we put logic that aggregates Foo objects and publishes Bars when we have received a subset of Foos that match our criteria // maybe we use Rx here internally. } public void Subscribe(ISubscriber<Bar> subscriber) { /* ... */ } } class BarsProcessor : ISubscriber<Bar> { void Callback(Bar bar) { // here we put code that processes Bar objects } } //********** program ********* class Program { public static void Main(string[] args) { var fooSource = fooSourceFactory.Create(); var barsProcessor = barsProcessorFactory.Create(fooSource) // this will create BarsProcessor and perform all the necessary subscriptions fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } Which one do you think is better? Exposing IObservable and making our components create new event streams from Rx operators, or defining our own publisher/subscriber interfaces and using Rx internally if needed? Here are some things to consider about the designs: In the first design the consumer of our interfaces has the whole power of Rx at his/her fingertips and can perform any Rx operators. One of us claims this is an advantage and the other claims that this is a drawback. The second design allows us to use any publisher/subscriber architecture under the hood. The first design ties us to Rx. If we wish to use the power of Rx, it requires more work in the second design because we need to translate the custom publisher/subscriber implementation to Rx and back. It requires writing glue code for every class that wishes to do some event processing.

    Read the article

  • Setting up your project

    - by ssoolsma
    Before any coding we first make sure that the project is setup correctly. (Please note, that this blog is all about how I do it, and incase i forget, i can return here and read how i used to do it. Maybe you come up with some idea’s for yourself too.) In these series we will create a minigolf scoring cart. Please note that we eventually create a fully functional application which you cannot use unless you pay me alot of money! (And i mean alot!)   1. Download and install the appropriate tools. Download the following: - TestDriven.Net (free version on the bottom of the download page) - nUnit TestDriven is a visual studio plugin for many unittest frameworks, which allows you to run  / test code very easily with a right click –> run test. nUnit is the test framework of choice, it works seamless with TestDriven.   2. Create your project Fire up visual studio and create your DataAccess project:  MidgetWidget.DataAccess is it’s name. (I choose MidgetWidget as name for the solution). Also, make sure that the MidgetWidget.DataAccess project is a c# ClassLibary Hit OK to create the solution. (in the above example the checkbox Create directory for solution is checked, because i’m pointing the location to the root of c:\development where i want MidgetWidget to be created.   3. Setup the database. You should have thought about a database when you reach this point. Let’s assume that you’ve created a database as followed: Table name: LoginKey Fields: Id (PK), KeyName (uniqueidentifier), StartDate (datetime), EndDate (datetime) Table name:  Party Fields: Id (PK), Key (uniqueidentifier, Created (datetime) Table name:  Person Fields: Id(PK),  PartyId (int), Name (varchar) Tablename: Score Fields: Id (PK), Trackid (int), PersonId (int), Strokes (int) Tablename: Track Fields: Id (PK), Name (varchar) A few things to take note about the database setup. I’ve singularized all tablenames (not “Persons“ but “Person”. This is because in a few minutes, when this is in our code, we refer to the database objects as single rows. We retrieve a single Person not a single “Persons” from the database.   4. Create the entity framework In your solution tree create a new folder and call it “DataModel”. Inside this folder: Add new item –> and choose ADO.NET Entity Data Model. Name it “Entities.edmx” and hit  “Add”. Once the edmx is added, open it (double click) and right click the white area and choose “Update model from database…". Now, point it to your database (i include sensitive data in the connectionstring) and select all the tables. After that hit “Finish” and let the entity framework do it’s code generation. Et Voila, after a few seconds you have set up your entity model. Next post we will start building the data-access! I’m off to the beach.

    Read the article

  • Hopping/Tumbling Windows Could Introduce Latency.

    This is a pre-article to one I am going to be writing on adjusting an event’s time and duration to satisfy business process requirements but it is one that I think is really useful when understanding the way that Hopping/Tumbling windows work within StreamInsight.  A Tumbling window is just a special shortcut version of  a Hopping window where the width of the window is equal to the size of the hop Here is the simplest and often used definition for a Hopping Window.  You can find them all here public static CepWindowStream<CepWindow<TPayload>> HoppingWindow<TPayload>(     this CepStream<TPayload> source,     TimeSpan windowSize,     TimeSpan hopSize,     WindowInputPolicy inputPolicy,     HoppingWindowOutputPolicy outputPolicy )   And here is the definition for a Tumbling Window public static CepWindowStream<CepWindow<TPayload>> TumblingWindow<TPayload>(     this CepStream<TPayload> source,     TimeSpan windowSize,     WindowInputPolicy inputPolicy,     HoppingWindowOutputPolicy outputPolicy )   These methods allow you to group events into windows of a temporal size.  It is a really useful and simple feature in StreamInsight.  One of the downsides though is that the windows cannot be flushed until an event in a following window occurs.  This means that you will potentially never see some events or see them with a delay.  Let me explain. Remember that a stream is a potentially unbounded sequence of events. Events in StreamInsight are given a StartTime.  It is this StartTime that is used to calculate into which temporal window an event falls.  It is best practice to assign a timestamp from the source system and not one from the system clock on the processing server.  StreamInsight cannot know when a window is over.  It cannot tell whether you have received all events in the window or whether some events have been delayed which means that StreamInsight cannot flush the stream for you.   Imagine you have events with the following Timestamps 12:10:10 PM 12:10:20 PM 12:10:35 PM 12:10:45 PM 11:59:59 PM And imagine that you have defined a 1 minute Tumbling Window over this stream using the following syntax var HoppingStream = from shift in inputStream.TumblingWindow(TimeSpan.FromMinutes(1),HoppingWindowOutputPolicy.ClipToWindowEnd) select new WindowCountPayload { CountInWindow = (Int32)shift.Count() };   The events between 12:10:10 PM and 12:10:45 PM will not be seen until the event at 11:59:59 PM arrives.  This could be a real problem if you need to react to windows promptly This can always be worked around by using a different design pattern but a lot of the examples I see assume there is a constant, very frequent stream of events resulting in windows always being flushed. Further examples of using windowing in StreamInsight can be found here

    Read the article

  • Faster Memory Allocation Using vmtasks

    - by Steve Sistare
    You may have noticed a new system process called "vmtasks" on Solaris 11 systems: % pgrep vmtasks 8 % prstat -p 8 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 8 root 0K 0K sleep 99 -20 9:10:59 0.0% vmtasks/32 What is vmtasks, and why should you care? In a nutshell, vmtasks accelerates creation, locking, and destruction of pages in shared memory segments. This is particularly helpful for locked memory, as creating a page of physical memory is much more expensive than creating a page of virtual memory. For example, an ISM segment (shmflag & SHM_SHARE_MMU) is locked in memory on the first shmat() call, and a DISM segment (shmflg & SHM_PAGEABLE) is locked using mlock() or memcntl(). Segment operations such as creation and locking are typically single threaded, performed by the thread making the system call. In many applications, the size of a shared memory segment is a large fraction of total physical memory, and the single-threaded initialization is a scalability bottleneck which increases application startup time. To break the bottleneck, we apply parallel processing, harnessing the power of the additional CPUs that are always present on modern platforms. For sufficiently large segments, as many of 16 threads of vmtasks are employed to assist an application thread during creation, locking, and destruction operations. The segment is implicitly divided at page boundaries, and each thread is given a chunk of pages to process. The per-page processing time can vary, so for dynamic load balancing, the number of chunks is greater than the number of threads, and threads grab chunks dynamically as they finish their work. Because the threads modify a single application address space in compressed time interval, contention on locks protecting VM data structures locks was a problem, and we had to re-scale a number of VM locks to get good parallel efficiency. The vmtasks process has 1 thread per CPU and may accelerate multiple segment operations simultaneously, but each operation gets at most 16 helper threads to avoid monopolizing CPU resources. We may reconsider this limit in the future. Acceleration using vmtasks is enabled out of the box, with no tuning required, and works for all Solaris platform architectures (SPARC sun4u, SPARC sun4v, x86). The following tables show the time to create + lock + destroy a large segment, normalized as milliseconds per gigabyte, before and after the introduction of vmtasks: ISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1386 245 6X X7560 64 1016 153 7X M9000 512 1196 206 6X T5240 128 2506 234 11X T4-2 128 1197 107 11x DISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1582 265 6X X7560 64 1116 158 7X M9000 512 1165 152 8X T5240 128 2796 198 14X (I am missing the data for T4 DISM, for no good reason; it works fine). The following table separates the creation and destruction times: ISM, T4-2 before after ------ ----- create 702 64 destroy 495 43 To put this in perspective, consider creating a 512 GB ISM segment on T4-2. Creating the segment would take 6 minutes with the old code, and only 33 seconds with the new. If this is your Oracle SGA, you save over 5 minutes when starting the database, and you also save when shutting it down prior to a restart. Those minutes go directly to your bottom line for service availability.

    Read the article

< Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >