Search Results

Search found 21563 results on 863 pages for 'game testing'.

Page 369/863 | < Previous Page | 365 366 367 368 369 370 371 372 373 374 375 376  | Next Page >

  • RenderTarget2D behavior in XNA

    - by Utkarsh Sinha
    I've been dabbling with XNA for a couple of days now. This chunk of code doesn't work as I expect. The goal is to render sprites individually and composite them on another rendertarget. P = RenderTarget2D(with RenderTargetUsage.PreserveContents) D = RenderTarget2D(with RenderTargetUsage.DiscardContents) for all sprites: graphicsDevice.SetRenderTarget(D); <draw sprite i> graphicsDevice.SetRenderTarget(P); <Draw D> graphicsDevice.SetRenderTarget(null); <Draw P> The result I get is - only the last sprite is visible. I'm sure I'm missing some piece of information about RenderTarget2D. Any hints on what that might be? Cross posted from - http://stackoverflow.com/questions/9970349/weird-rendertarget2d-behaviour

    Read the article

  • What is a better abstraction layer for D3D9 and OpenGL vertex data management?

    - by Sam Hocevar
    My rendering code has always been OpenGL. I now need to support a platform that does not have OpenGL, so I have to add an abstraction layer that wraps OpenGL and Direct3D 9. I will support Direct3D 11 later. TL;DR: the differences between OpenGL and Direct3D cause redundancy for the programmer, and the data layout feels flaky. For now, my API works a bit like this. This is how a shader is created: Shader *shader = Shader::Create( " ... GLSL vertex shader ... ", " ... GLSL pixel shader ... ", " ... HLSL vertex shader ... ", " ... HLSL pixel shader ... "); ShaderAttrib a1 = shader->GetAttribLocation("Point", VertexUsage::Position, 0); ShaderAttrib a2 = shader->GetAttribLocation("TexCoord", VertexUsage::TexCoord, 0); ShaderAttrib a3 = shader->GetAttribLocation("Data", VertexUsage::TexCoord, 1); ShaderUniform u1 = shader->GetUniformLocation("WorldMatrix"); ShaderUniform u2 = shader->GetUniformLocation("Zoom"); There is already a problem here: once a Direct3D shader is compiled, there is no way to query an input attribute by its name; apparently only the semantics stay meaningful. This is why GetAttribLocation has these extra arguments, which get hidden in ShaderAttrib. Now this is how I create a vertex declaration and two vertex buffers: VertexDeclaration *decl = VertexDeclaration::Create( VertexStream<vec3,vec2>(VertexUsage::Position, 0, VertexUsage::TexCoord, 0), VertexStream<vec4>(VertexUsage::TexCoord, 1)); VertexBuffer *vb1 = new VertexBuffer(NUM * (sizeof(vec3) + sizeof(vec2)); VertexBuffer *vb2 = new VertexBuffer(NUM * sizeof(vec4)); Another problem: the information VertexUsage::Position, 0 is totally useless to the OpenGL/GLSL backend because it does not care about semantics. Once the vertex buffers have been filled with or pointed at data, this is the rendering code: shader->Bind(); shader->SetUniform(u1, GetWorldMatrix()); shader->SetUniform(u2, blah); decl->Bind(); decl->SetStream(vb1, a1, a2); decl->SetStream(vb2, a3); decl->DrawPrimitives(VertexPrimitive::Triangle, NUM / 3); decl->Unbind(); shader->Unbind(); You see that decl is a bit more than just a D3D-like vertex declaration, it kinda takes care of rendering as well. Does this make sense at all? What would be a cleaner design? Or a good source of inspiration?

    Read the article

  • Index out of bounds, Java bukkit plugin

    - by Robby Duke
    I'm getting index out of bounds errors in my Bukkit plugin, and it's really beginning to piss me off... I for the life of me can't figure this issue out! Caused by: java.lang.IndexOutOfBoundsException: Index: 1, Size: 1 This is where I believe the code to be erroring... for(int i = 0; i <= staffOnline.size(); i++) { if(i == staffOnline.size()) { staffList = staffList + staffOnline.get(i); } else { staffList = staffList + staffOnline.get(i) + ", "; } }

    Read the article

  • Geometry shader for multiple primitives

    - by Byte56
    How can I create a geometry shader that can handle multiple primitives? For example when creating a geometry shader for triangles, I define a layout like so: layout(triangles) in; layout(triangle_strip, max_vertices=3) out; But if I use this shader then lines or points won't show up. So adding: layout(triangles) in; layout(triangle_strip, max_vertices=3) out; layout(lines) in; layout(line_strip, max_vertices=2) out; The shader will compile and run, but will only render lines (or whatever the last primitive defined is). So how do I define a single geometry shader that will handle multiple types of primitives? Or is that not possible and I need to create multiple shader programs and change shader programs before drawing each type?

    Read the article

  • How do you unit test a unit test?

    - by FlySwat
    I was watching Rob Connerys webcasts on the MVCStoreFront App, and I noticed he was unit testing even the most mundane things, things like: public Decimal DiscountPrice { get { return this.Price - this.Discount; } } Would have a test like: [TestMethod] public void Test_DiscountPrice { Product p = new Product(); p.Price = 100; p.Discount = 20; Assert.IsEqual(p.DiscountPrice,80); } While, I am all for unit testing, I sometimes wonder if this form of test first development is really beneficial, for example, in a real process, you have 3-4 layers above your code (Business Request, Requirements Document, Architecture Document), where the actual defined business rule (Discount Price is Price - Discount) could be misdefined. If that's the situation, your unit test means nothing to you. Additionally, your unit test is another point of failure: [TestMethod] public void Test_DiscountPrice { Product p = new Product(); p.Price = 100; p.Discount = 20; Assert.IsEqual(p.DiscountPrice,90); } Now the test is flawed. Obviously in a simple test, it's no big deal, but say we were testing a complicated business rule. What do we gain here? Fast forward two years into the application's life, when maintenance developers are maintaining it. Now the business changes its rule, and the test breaks again, some rookie developer then fixes the test incorrectly...we now have another point of failure. All I see is more possible points of failure, with no real beneficial return, if the discount price is wrong, the test team will still find the issue, how did unit testing save any work? What am I missing here? Please teach me to love TDD, as I'm having a hard time accepting it as useful so far. I want too, because I want to stay progressive, but it just doesn't make sense to me. EDIT: A couple people keep mentioned that testing helps enforce the spec. It has been my experience that the spec has been wrong as well, more often than not, but maybe I'm doomed to work in an organization where the specs are written by people who shouldn't be writing specs.

    Read the article

  • Single and Double Jump with single button.

    - by Asad
    I want to make Single Jump on Single Tap and Double Jump on Double Tap. My problem is that if I make double Tap on ground then it’s fine but if I make first Tap on ground and second Tap in Air then Player gain more height then usual As in image 1. I want to Make my jump like in Image 2, No matter from which point user gives second Tap, player Always get a specific height. I Used both Impulse and Linear velocity to make Jump but my problem did not solved.

    Read the article

  • Making body (box2d) a sprite (andengine) in Android

    - by Kadir
    I can't make body (box2d) a sprite (andengine) and at the same time apply MoveModifier to sprite which is body. If i can make just body, it works namely the sprites can collide. If I apply just MoveModifier to sprites, the sprites can move where i want. But I want to make body (they can collide) and apply MoveModifier (they can move where I want) at the same time. How can i do it? This my code just run MoveModifier not as body at the same time. circles[i] = new Sprite(startX, startY, textRegCircle[i]); body[i] = PhysicsFactory.createCircleBody(physicsWorld, circles[i], BodyType.DynamicBody, FIXTURE_DEF); physicsWorld.registerPhysicsConnector(new PhysicsConnector(circles[i], body[i], true, true)); circles[i].registerEntityModifier( (IEntityModifier) new SequenceEntityModifier ( new MoveModifier(10.0f, circles[i].getX(), circles[i].getX(), circles[i].getY(),CAMERA_HEIGHT+64.0f))); scene.getLastChild().attachChild(circles[i]); scene.registerUpdateHandler(physicsWorld);

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Blending textures together, texture fade over / fade in

    - by Deukalion
    What is the best way to render a texture overlapping effect? Like in this example: I want either the grass to fade in to the snow texture, or the other way around. No rough edges. Somehow make them blend over. So the grass has a bit of snow or the snow has a bit of grass How is this possible during runtime? If that's possible. I don't render this by using the SpriteBatch, since the ground isn't rectangles (they can be moved). This is the way I render each shape (each one of those squares): // LoadTexture // Apply EffectPass device.DrawUserIndexedPrimitives<VertexPositionNormalTexture> ( PrimitiveType.TriangleList, render.Item.Points, // Array of VertexPositionNormalTexture 0, render.Item.Points.Length, render.Item.Indexes, // Array of int indexes (triangulation) 0, render.Item.Indexes.Length / 3, VertexPositionNormalTexture.VertexDeclaration );

    Read the article

  • Having a problem with texturing vertices in WebGL, think parameters are off in the image?

    - by mathacka
    I'm having a problem texturing a simple rectangle in my WebGL program, I have the parameters set as follows: gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage); I'm using this image: On the properties of this image it says it's 32 bit depth, so that should take care of the gl.UNSIGNED_BYTE, and I've tried both gl.RGBA and gl.RGB to see if it's not reading the transparency. It is a 32x32 pixel image, so it's power of 2. And I've tried almost all the combinations of formats and types, but I'm not sure if this is the answer or not. I'm getting these two errors in the chrome console: INVALID_VALUE: texImage2D: invalid image (index):101 WebGL: drawArrays: texture bound to texture unit 0 is not renderable. It maybe non-power-of-2 and have incompatible texture filtering or is not 'texture complete'. Or the texture is Float or Half Float type with linear filtering while OES_float_linear or OES_half_float_linear extension is not enabled. the drawArrays function is simply: "gl.drawArrays(gl.TRIANGLES, 0, 6);" using 6 vertices to make a rectangle.

    Read the article

  • Atmospheric scattering sky from space artifacts

    - by ollipekka
    I am in the process of implementing atmospheric scattering of a planets from space. I have been using Sean O'Neil's shaders from http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html as a starting point. I have pretty much the same problem related to fCameraAngle except with SkyFromSpace shader as opposed to GroundFromSpace shader as here: http://www.gamedev.net/topic/621187-sean-oneils-atmospheric-scattering/ I get strange artifacts with sky from space shader when not using fCameraAngle = 1 in the inner loop. What is the cause of these artifacts? The artifacts disappear when fCameraAngle is limtied to 1. I also seem to lack the hue that is present in O'Neil's sandbox (http://sponeil.net/downloads.htm) Camera position X=0, Y=0, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. Camera position X=500, Y=500, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. I've found that the camera angle seems to handled very differently depending the source: In the original shaders the camera angle in SkyFromSpaceShader is calculated as: float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; Whereas in ground from space shader the camera angle is calculated as: float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos); However, various sources online tinker with negating the ray. Why is this? Here is a C# Windows.Forms project that demonstrates the problem and that I've used to generate the images: https://github.com/ollipekka/AtmosphericScatteringTest/ Update: I have found out from the ScatterCPU project found on O'Neil's site that the camera ray is negated when the camera is above the point being shaded so that the scattering is calculated from point to the camera. Changing the ray direction indeed does remove artifacts, but introduces other problems as illustrated here: Furthermore, in the ScatterCPU project, O'Neil guards against situations where optical depth for light is less than zero: float fLightDepth = Scale(fLightAngle, fScaleDepth); if (fLightDepth < float.Epsilon) { continue; } As pointed out in the comments, along with these new artifacts this still leaves the question, what is wrong with the images where camera is positioned at 500, 500, 500? It feels like the halo is focused on completely wrong part of the planet. One would expect that the light would be closer to the spot where the sun should hits the planet, rather than where it changes from day to night. The github project has been updated to reflect changes in this update.

    Read the article

  • Geometry Shader: distortions

    - by Christophe Lionet
    This is a cross-question from Stack Overflow, I thought it would be more appropriate here. There is a lot of code I could be posting. To avoid overloading the page with code, I will post any part of the code if requested. I am working from the ParticleGS DirectX10 sample, to build a geometry shader based particle system in DirectX 11. Using the sample code, and changing it to my liking, I am able to draw a single quad (which is essentially one particle constantly recreating itself). However, I noticed a problem which was similar to one I once had: the rendered shape is distorted. Here is a video showcasing what is happening. http://youtu.be/6NY_hxjMfwY Now, I used to have this issue when using several effects together, when I realised that I needed to explicitely set the geometry shader to null for the other effects. I solved this problem, as you can see in the video, as the rest of the scene is drawing properly. Note that some sides are being culled somehow, although I turned off culling in my main render state. The texturing is fine too, the texture draws with appropriate proportions relative to the quad. I really don't see what I could be doing wrong here... what would cause the geometry shader to behave in such a way? Again, I will post any piece code you will request.

    Read the article

  • How to fix OpenGL Co-ordinate System in SFML?

    - by Marc Alexander Reed
    My OpenGL setup is somehow configured to work like so: (-1, 1) (0, 1) (1, 1) (-1, 0) (0, 0) (1, 0) (-1, -1) (0, -1) (1, -1) How do I configure it so that it works like so: (0, 0) (SW/2, 0) (SW, 0) (0, SH/2) (SW/2, SH/2) (SW, SH/2) (0, SH) (SW/2, SH) (SW/2, SH) SW as Screen Width. SH as Screen Height. This solution would have to fix the problem of I can't translate significantly(1) on the Z axis. Depth doesn't seem to be working either. The Perspective code I'm using is that of my WORKING GLUT OpenGL code which has a cool 3d grid and camera system etc. But my OpenGL setup doesn't seem to work with SFML. Help me guys. :( Thanks in advance. :) #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <SFML/Audio.hpp> #include <SFML/Network.hpp> #include <SFML/OpenGL.hpp> #include "ResourcePath.hpp" //Mac-only #define _USE_MATH_DEFINES #include <cmath> double screen_width = 640.f; double screen_height = 480.f; int main (int argc, const char **argv) { sf::ContextSettings settings; settings.depthBits = 24; settings.stencilBits = 8; settings.antialiasingLevel = 2; sf::Window window(sf::VideoMode(screen_width, screen_height, 32), "SFML OpenGL", sf::Style::Close, settings); window.setActive(); glEnable(GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_NORMALIZE); glEnable(GL_COLOR_MATERIAL); glShadeModel(GL_SMOOTH); glViewport(0, 0, screen_width, screen_height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); //glOrtho(0.0f, screen_width, screen_height, 0.0f, -100.0f, 100.0f); gluPerspective(45.0f, (double) screen_width / (double) screen_height , 0.f, 100.f); glClearColor(0.f, 0.f, 1.f, 0.f); //blue while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { switch (event.type) { case sf::Event::Closed: window.close(); break; } switch (event.key.code) { case sf::Keyboard::Escape: window.close(); break; case 'W': break; case 'S': break; case 'A': break; case 'D': break; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.f, 0.f, 0.f); glPushMatrix(); glBegin(GL_QUADS); glColor3f(1.f, 0.f, 0.f); glVertex3f(-1.f, 1.f, 0.f); glColor3f(0.f, 1.f, 0.f); glVertex3f(1.f, 1.f, 0.f); glColor3f(1.f, 0.f, 1.f); glVertex3f(1.f, -1.f, 0.f); glColor3f(0.f, 0.f, 1.f); glVertex3f(-1.f, -1.f, 0.f); glEnd(); glPopMatrix(); window.display(); } return EXIT_SUCCESS; }

    Read the article

  • Skyrim Nexus Mods on Xbox 360 by use of dawnguard?

    - by user17895
    i think it's possible i opened up the dawnguard marketplace content and it consists 3 files: dawnguard.bsa < mod dawnguard.esp <- mod installing file. and spa.bin <-dont know where this is for. and it has been confirmed you can use the top 2 files on pc for a not fully functional dawnguard (barely functional to be exact) and if we could just replace or add a few other bsa and esp files to this marketplace content we could get mods up and running on xbox altough i need confirmation on this. I also have no clue where the spa.bin file for is, i need to examine it some further. Further this is adding a few non-distributed Files to marketplace content and wont get you booted from XBL. Also if anyone wants to examine these files for further information i will gladly share them with you. if you have any information or answers please email me at [email protected] thx

    Read the article

  • Render 2 images that uses different shaders

    - by Code Vader
    Based on the giawa/nehe tutorials, how can I render 2 images with different shaders. I'm pretty new to OpenGl and shaders so I'm not completely sure whats happening in my code, but I think the shaders that is called last overwrites the first one. private static void OnRenderFrame() { // calculate how much time has elapsed since the last frame watch.Stop(); float deltaTime = (float)watch.ElapsedTicks / System.Diagnostics.Stopwatch.Frequency; watch.Restart(); // use the deltaTime to adjust the angle of the cube angle += deltaTime; // set up the OpenGL viewport and clear both the color and depth bits Gl.Viewport(0, 0, width, height); Gl.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); // use our shader program and bind the crate texture Gl.UseProgram(program); //<<<<<<<<<<<< TOP PYRAMID // set the transformation of the top_pyramid program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(top_pyramid, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(top_pyramidNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(top_pyramidUV, program, "vertexUV"); Gl.BindBuffer(top_pyramidTrianlges); // draw the textured top_pyramid Gl.DrawElements(BeginMode.Triangles, top_pyramidTrianlges.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<< CUBE // set the transformation of the cube program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(cube, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(cubeNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(cubeUV, program, "vertexUV"); Gl.BindBuffer(cubeQuads); // draw the textured cube Gl.DrawElements(BeginMode.Quads, cubeQuads.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<<<< BOTTOM PYRAMID // set the transformation of the bottom_pyramid program["model_matrix"].SetValue(Matrix4.CreateRotationY(angle * rotate_cube)); program["enable_lighting"].SetValue(lighting); // bind the vertex positions, UV coordinates and element array Gl.BindBufferToShaderAttribute(bottom_pyramid, program, "vertexPosition"); Gl.BindBufferToShaderAttribute(bottom_pyramidNormals, program, "vertexNormal"); Gl.BindBufferToShaderAttribute(bottom_pyramidUV, program, "vertexUV"); Gl.BindBuffer(bottom_pyramidTrianlges); // draw the textured bottom_pyramid Gl.DrawElements(BeginMode.Triangles, bottom_pyramidTrianlges.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); //<<<<<<<<<<<<< STAR Gl.Disable(EnableCap.DepthTest); Gl.Enable(EnableCap.Blend); Gl.BlendFunc(BlendingFactorSrc.SrcAlpha, BlendingFactorDest.One); Gl.BindTexture(starTexture); //calculate the camera position using some fancy polar co-ordinates Vector3 position = 20 * new Vector3(Math.Cos(phi) * Math.Sin(theta), Math.Cos(theta), Math.Sin(phi) * Math.Sin(theta)); Vector3 upVector = ((theta % (Math.PI * 2)) > Math.PI) ? Vector3.Up : Vector3.Down; program_2["view_matrix"].SetValue(Matrix4.LookAt(position, Vector3.Zero, upVector)); // make sure the shader program and texture are being used Gl.UseProgram(program_2); // loop through the stars, drawing each one for (int i = 0; i < stars.Count; i++) { // set the position and color of this star program_2["model_matrix"].SetValue(Matrix4.CreateTranslation(new Vector3(stars[i].dist, 0, 0)) * Matrix4.CreateRotationZ(stars[i].angle)); program_2["color"].SetValue(stars[i].color); Gl.BindBufferToShaderAttribute(star, program_2, "vertexPosition"); Gl.BindBufferToShaderAttribute(starUV, program_2, "vertexUV"); Gl.BindBuffer(starQuads); Gl.DrawElements(BeginMode.Quads, starQuads.Count, DrawElementsType.UnsignedInt, IntPtr.Zero); // update the position of the star stars[i].angle += (float)i / stars.Count * deltaTime * 2 * rotate_stars; stars[i].dist -= 0.2f * deltaTime * rotate_stars; // if we've reached the center then move this star outwards and give it a new color if (stars[i].dist < 0f) { stars[i].dist += 5f; stars[i].color = new Vector3(generator.NextDouble(), generator.NextDouble(), generator.NextDouble()); } } Glut.glutSwapBuffers(); } The same goes for the textures, whichever one I mention last gets applied to both object?

    Read the article

  • Calculate the Intersection of Two Volumes

    - by igrad
    If you've ever played The Swapper, you'll have a good idea of what I'm asking about. I need to check for, and isolate, areas of a rectangle that may intersect with either a circle or another rectangle. These selected areas will receive special properties, and the areas will be non-static, since the intersecting shapes themselves will also be dynamic. My first thought was to use raycasting detection, though I've only seen that in use with circles, or even ellipses. I'm curious if there's a method of using raycasting with a more rectangular approach, or if there's a totally different method already in use to accomplish this task. I would like something more exact than checking in large chunks, and since I'm using SDL2 with a logical renderer size of 1920x1080, checking if each pixel is intersecting is out of the question, as it would slow things down past a playable speed. I already have a multi-shape collision function-template in place, and I could use that, though it only checks if sides or corners are intersecting; it does not compute the overlapping area, or even find the circle's secant line, though I can't imagine it would be overly complex to implement. TL;DR: I need to find and isolate areas of a rectangle that may intersect with a circle or another rectangle without checking every single pixel on-screen.

    Read the article

  • Sprite sheets, Clamp or Wrap?

    - by David
    I'm using a combination of sprite sheets for well, sprites and individual textures for infinite tiling. For the tiling textures I'm obviously using Wrap to draw the entire surface in one call but up until now I've been making a seperate batch using Clamp for drawing sprites from the sprite sheets. The sprite sheets include a border (repeating the edge pixels of each sprite) and my code uses the correct source coordinates for sprites. But since I'm never giving coordinates outside of the texture when drawing sprites (and indeed the border exists to prevent bleed over when filtering) it's struck me that I'd be better off just using Wrap so that I can combine everything into one batch. I just want to be sure that I haven't overlooked something obvious. Is there any reason that Wrap would be harmful when used with a sprite sheet?

    Read the article

  • How can I compile SM 3.0 effects in D3D11 in slimdx?

    - by jacker
    var bytecode = ShaderBytecode.CompileFromFile("shaders\\testShader.fx", "fx_5_0", ShaderFlags.None, SlimDX.D3DCompiler.EffectFlags.None, null, null, out str); var effect = new SlimDX.Direct3D11.Effect(gpu.Device, bytecode); Works fine but if I try to use another shader model like 4.0 or 3.0 it throws an error on the new effect creation: E_FAIL: An undetermined error occurred (-2147467259) How do I compile older shaders? And I've read about device context but I can't find any information on how to use them to maintain DX9 compatibility.

    Read the article

  • SlimDX and Parsing .X Files

    - by P. Avery
    I'm trying to parse a .x file using SlimDX. I can create the XFile object and register templates but I'm having problems with the enumeration object. The enumeration object has a child count of 0 for a file I know to have valid data. Here is code to create file, enumeration, and data objects: public void Parse(string filename, string templates, ref Frame aParam) { XFile xfile = null; XFileEnumerationObject enumObj = null; XFileData dataObj = null; // create file object xfile = new XFile(); // register templates if (xfile.RegisterTemplates(XFile.DefaultTemplates).IsFailure) { Console.WriteLine(Result.Last); xfile.Dispose(); return; } // create enumeration object enumObj = xfile.CreateEnumerationObject(filename, System.Runtime.InteropServices.CharSet.Auto); if (enumObj == null) { xfile.Dispose(); return; } // get child count( returns 0 here ) long ncElements = enumObj.ChildCount; for (int i = 0; i < ncElements; ++i) { // never reached... dataObj = enumObj.GetChild(i); if (dataObj.IsReference) continue; try { Parse(dataObj, ref aParam); } catch (Exception e) { e.Write(); } finally { dataObj.Dispose(); } } enumObj.Dispose(); xfile.Dispose(); } ...There are no exceptions thrown by this function...the child count is 0 so the conditional loop breaks right away, the file objects are disposed of and the function returns... Here is .x file...a simple cube: xof 0303txt 0032 Frame Root { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Frame Cube { FrameTransformMatrix { 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.000000;; } Mesh Cube{ //Cube Mesh 36; -1.000000; 1.000000; 1.000000;, -1.000000;-1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000;-1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000; 0.999999; 1.000000;, -1.000000; 1.000000; 1.000000;, 0.999999;-1.000001; 1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, 1.000000; 1.000000;-1.000000;, 1.000000; 0.999999; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;, -1.000000; 1.000000; 1.000000;, 1.000000; 1.000000;-1.000000;, -1.000000;-1.000000; 1.000000;, -1.000000;-1.000000;-1.000000;, 0.999999;-1.000001; 1.000000;, 1.000000;-1.000000;-1.000000;, -1.000000;-1.000000;-1.000000;, -1.000000; 1.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; MeshNormals { //Mesh Normals 36; 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, 0.000000;-0.000000; 1.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-1.000000;-0.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -0.000000;-0.000000; 1.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, 1.000000;-0.000001; 0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, -1.000000; 0.000000;-0.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 0.000000; 0.000000;-1.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 1.000000; 0.000000;-0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, 0.000000; 1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, -0.000000;-1.000000; 0.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;, 0.000000;-0.000000;-1.000000;; 12; 3;0;1;2;, 3;3;4;5;, 3;6;7;8;, 3;9;10;11;, 3;12;13;14;, 3;15;16;17;, 3;18;19;20;, 3;21;22;23;, 3;24;25;26;, 3;27;28;29;, 3;30;31;32;, 3;33;34;35;; } //End of Mesh Normals MeshMaterialList { //Mesh Material List 1; 12; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;; Material Material { 0.640000; 0.640000; 0.640000; 1.000000;; 96.078431; 0.500000; 0.500000; 0.500000;; 0.000000; 0.000000; 0.000000;; TextureFilename {"Yellow.jpg";} } } //End of Mesh Material List MeshTextureCoords UVMap{ //Mesh UV Coordinates 36; 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 0.000000;, 0.000000; 1.000000;, 1.000000; 1.000000;, 1.000000; 0.000000;; } //End of Mesh UV Coordinates } //End of Mesh Mesh } //End of Cube } //End of Root Frame

    Read the article

  • Bodies do not stay sticked together by joint in retina display

    - by Mike JM
    I'm rehearsing on Box2D revolute joints. Everything's going pretty well except for one thing. For some reason bodies joined together with revolute joints do not stay sticked, they start getting apart from each other from the app start when I run it on retina device or simulator. On non retina device it works just fine, as expected. Here's the screenshot of the non-retina version: And here's the behavior when I run the same app on retina device/simulator: I'm taking content scale factor into account.

    Read the article

  • Can I use GLFW and GLEW together in the same code

    - by Brendan Webster
    I use the g++ compiler, which could be causing the main problem, but I'm using GLFW for window and input management, and I am using GLEW so that I can use OpenGL 3.x functionality. I loaded in models and then tried to make Vertex and Index buffers for the data, but it turned out that I kept getting segmentation faults in the program. I finally figured out that GLEW just wasn't working with GLFW included. Do they not work together? Also I've done the context creation through GLFW so that may be another factor in the problem.

    Read the article

  • Axis-Aligned Bounding Boxes vs Bounding Ellipse

    - by Griffin
    Why is it that most, if not all collision detection algorithms today require each body to have an AABB for the use in the broad phase only? It seems to me like simply placing a circle at the body's centroid, and extending the radius to where the circle encompasses the entire body would be optimal. This would not need to be updated after the body rotates and broad overlap-calculation would be faster to. Correct? Bonus: Would a bounding ellipse be practical for broad phase calculations also, since it would better represent long, skinny shapes? Or would it require extensive calculations, defeating the purpose of broad-phase?

    Read the article

  • Weird y offset when using custom frag shader (Cocos2d-x)

    - by Mister Guacamole
    I'm trying to mask a sprite so I wrote a simple fragment shader that renders only the pixels that are not hidden under another texture (the mask). The problem is that it seems my texture has its y-coordinate offset after passing through the shader. This is the init method of the sprite (GroundZone) I want to mask: bool GroundZone::initWithSize(Size size) { // [...] // Setup the mask of the sprite m_mask = RenderTexture::create(textureWidth, textureHeight); m_mask->retain(); m_mask->setKeepMatrix(true); Texture2D *maskTexture = m_mask->getSprite()->getTexture(); maskTexture->setAliasTexParameters(); // Disable linear interpolation on the mask // Load the custom frag shader with a default vert shader as the sprite’s program FileUtils *fileUtils = FileUtils::getInstance(); string vertexSource = ccPositionTextureA8Color_vert; string fragmentSource = fileUtils->getStringFromFile( fileUtils->fullPathForFilename("CustomShader_AlphaMask_frag.fsh")); GLProgram *shader = new GLProgram; shader->initWithByteArrays(vertexSource.c_str(), fragmentSource.c_str()); shader->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); shader->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORDS); shader->link(); CHECK_GL_ERROR_DEBUG(); shader->updateUniforms(); CHECK_GL_ERROR_DEBUG(); int maskTexUniformLoc = shader->getUniformLocationForName("u_alphaMaskTexture"); shader->setUniformLocationWith1i(maskTexUniformLoc, 1); this->setShaderProgram(shader); shader->release(); // [...] } These are the custom drawing methods for actually drawing the mask over the sprite: You need to know that m_mask is modified externally by another class, the onDraw() method only render it. void GroundZone::draw(Renderer *renderer, const kmMat4 &transform, bool transformUpdated) { m_renderCommand.init(_globalZOrder); m_renderCommand.func = CC_CALLBACK_0(GroundZone::onDraw, this, transform, transformUpdated); renderer->addCommand(&m_renderCommand); Sprite::draw(renderer, transform, transformUpdated); } void GroundZone::onDraw(const kmMat4 &transform, bool transformUpdated) { GLProgram *shader = this->getShaderProgram(); shader->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, m_mask->getSprite()->getTexture()->getName()); glActiveTexture(GL_TEXTURE0); } Below is the method (located in another class, GroundLayer) that modify the mask by drawing a line from point start to point end. Both points are in Cocos2d coordinates (Point (0,0) is down-left). void GroundLayer::drawTunnel(Point start, Point end) { // To dig a line, we need first to get the texture of the zone we will be digging into. Then we get the // relative position of the start and end point in the zone's node space. Finally we use the custom shader to // draw a mask over the existing texture. for (auto it = _children.begin(); it != _children.end(); it++) { GroundZone *zone = static_cast<GroundZone *>(*it); Point nodeStart = zone->convertToNodeSpace(start); Point nodeEnd = zone->convertToNodeSpace(end); // Now that we have our two points converted to node space, it's easy to draw a mask that contains a line // going from the start point to the end point and that is then applied over the current texture. Size groundZoneSize = zone->getContentSize(); RenderTexture *rt = zone->getMask(); rt->begin(); { // Draw a line going from start and going to end in the texture, the line will act as a mask over the // existing texture DrawNode *line = DrawNode::create(); line->retain(); line->drawSegment(nodeStart, nodeEnd, 20, Color4F::RED); line->visit(); } rt->end(); } } Finally, here's the custom shader I wrote. #ifdef GL_ES precision mediump float; #endif varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_alphaMaskTexture; void main() { float maskAlpha = texture2D(u_alphaMaskTexture, v_texCoord).a; float texAlpha = texture2D(u_texture, v_texCoord).a; float blendAlpha = (1.0 - maskAlpha) * texAlpha; // Show only where mask is invisible vec3 texColor = texture2D(u_texture, v_texCoord).rgb; gl_FragColor = vec4(texColor, blendAlpha); return; } I got a problem with the y coordinates. Indeed, it seems that once it has passed through my custom shader, the sprite's texture is not at the right place: Without custom shader (the sprite is the brown thing): With custom shader: What's going on here? Thanks :) EDIT It looks like after passing through the shader when I set the position of the sprite I set it in points, with (0,0) being in the top-right. Indeed, when I do sprite->setPosition(320, 480), the sprite is perfectly placed at the top of the screen.

    Read the article

  • Vertex buffer acting strange? [on hold]

    - by Ryan Capote
    I'm having a strange problem, and I don't know what could be causing it. My current code is identical to how I've done this before. I'm trying to render a rectangle using VBO and orthographic projection.   My results:     What I expect: 3x3 rectangle in the top left corner   #include <stdio.h> #include <GL\glew.h> #include <GLFW\glfw3.h> #include "lodepng.h"   static const int FALSE = 0; static const int TRUE = 1;   static const char* VERT_SHADER =     "#version 330\n"       "layout(location=0) in vec4 VertexPosition; "     "layout(location=1) in vec2 UV;"     "uniform mat4 uProjectionMatrix;"     /*"out vec2 TexCoords;"*/       "void main(void) {"     "    gl_Position = uProjectionMatrix*VertexPosition;"     /*"    TexCoords = UV;"*/     "}";   static const char* FRAG_SHADER =     "#version 330\n"       /*"uniform sampler2D uDiffuseTexture;"     "uniform vec4 uColor;"     "in vec2 TexCoords;"*/     "out vec4 FragColor;"       "void main(void) {"    /* "    vec4 texel = texture2D(uDiffuseTexture, TexCoords);"     "    if(texel.a <= 0) {"     "         discard;"     "    }"     "    FragColor = texel;"*/     "    FragColor = vec4(1.f);"     "}";   static int g_running; static GLFWwindow *gl_window; static float gl_projectionMatrix[16];   /*     Structures */ typedef struct _Vertex {     float x, y, z, w;     float u, v; } Vertex;   typedef struct _Position {     float x, y; } Position;   typedef struct _Bitmap {     unsigned char *pixels;     unsigned int width, height; } Bitmap;   typedef struct _Texture {     GLuint id;     unsigned int width, height; } Texture;   typedef struct _VertexBuffer {     GLuint bufferObj, vertexArray; } VertexBuffer;   typedef struct _ShaderProgram {     GLuint vertexShader, fragmentShader, program; } ShaderProgram;   /*   http://en.wikipedia.org/wiki/Orthographic_projection */ void createOrthoProjection(float *projection, float width, float height, float far, float near)  {       const float left = 0;     const float right = width;     const float top = 0;     const float bottom = height;          projection[0] = 2.f / (right - left);     projection[1] = 0.f;     projection[2] = 0.f;     projection[3] = -(right+left) / (right-left);     projection[4] = 0.f;     projection[5] = 2.f / (top - bottom);     projection[6] = 0.f;     projection[7] = -(top + bottom) / (top - bottom);     projection[8] = 0.f;     projection[9] = 0.f;     projection[10] = -2.f / (far-near);     projection[11] = (far+near)/(far-near);     projection[12] = 0.f;     projection[13] = 0.f;     projection[14] = 0.f;     projection[15] = 1.f; }   /*     Textures */ void loadBitmap(const char *filename, Bitmap *bitmap, int *success) {     int error = lodepng_decode32_file(&bitmap->pixels, &bitmap->width, &bitmap->height, filename);       if (error != 0) {         printf("Failed to load bitmap. ");         printf(lodepng_error_text(error));         success = FALSE;         return;     } }   void destroyBitmap(Bitmap *bitmap) {     free(bitmap->pixels); }   void createTexture(Texture *texture, const Bitmap *bitmap) {     texture->id = 0;     glGenTextures(1, &texture->id);     glBindTexture(GL_TEXTURE_2D, texture);       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bitmap->width, bitmap->height, 0,              GL_RGBA, GL_UNSIGNED_BYTE, bitmap->pixels);       glBindTexture(GL_TEXTURE_2D, 0); }   void destroyTexture(Texture *texture) {     glDeleteTextures(1, &texture->id);     texture->id = 0; }   /*     Vertex Buffer */ void createVertexBuffer(VertexBuffer *vertexBuffer, Vertex *vertices) {     glGenBuffers(1, &vertexBuffer->bufferObj);     glGenVertexArrays(1, &vertexBuffer->vertexArray);     glBindVertexArray(vertexBuffer->vertexArray);       glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj);     glBufferData(GL_ARRAY_BUFFER, sizeof(Vertex) * 6, (const GLvoid*)vertices, GL_STATIC_DRAW);       const unsigned int uvOffset = sizeof(float) * 4;       glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), 0);     glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)uvOffset);       glEnableVertexAttribArray(0);     glEnableVertexAttribArray(1);       glBindBuffer(GL_ARRAY_BUFFER, 0);     glBindVertexArray(0); }   void destroyVertexBuffer(VertexBuffer *vertexBuffer) {     glDeleteBuffers(1, &vertexBuffer->bufferObj);     glDeleteVertexArrays(1, &vertexBuffer->vertexArray); }   void bindVertexBuffer(VertexBuffer *vertexBuffer) {     glBindVertexArray(vertexBuffer->vertexArray);     glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer->bufferObj); }   void drawVertexBufferMode(GLenum mode) {     glDrawArrays(mode, 0, 6); }   void drawVertexBuffer() {     drawVertexBufferMode(GL_TRIANGLES); }   void unbindVertexBuffer() {     glBindVertexArray(0);     glBindBuffer(GL_ARRAY_BUFFER, 0); }   /*     Shaders */ void compileShader(ShaderProgram *shaderProgram, const char *vertexSrc, const char *fragSrc) {     GLenum err;     shaderProgram->vertexShader = glCreateShader(GL_VERTEX_SHADER);     shaderProgram->fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);       if (shaderProgram->vertexShader == 0) {         printf("Failed to create vertex shader.");         return;     }       if (shaderProgram->fragmentShader == 0) {         printf("Failed to create fragment shader.");         return;     }       glShaderSource(shaderProgram->vertexShader, 1, &vertexSrc, NULL);     glCompileShader(shaderProgram->vertexShader);     glGetShaderiv(shaderProgram->vertexShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile vertex shader.");         return;     }       glShaderSource(shaderProgram->fragmentShader, 1, &fragSrc, NULL);     glCompileShader(shaderProgram->fragmentShader);     glGetShaderiv(shaderProgram->fragmentShader, GL_COMPILE_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to compile fragment shader.");         return;     }       shaderProgram->program = glCreateProgram();     glAttachShader(shaderProgram->program, shaderProgram->vertexShader);     glAttachShader(shaderProgram->program, shaderProgram->fragmentShader);     glLinkProgram(shaderProgram->program);          glGetProgramiv(shaderProgram->program, GL_LINK_STATUS, &err);       if (err != GL_TRUE) {         printf("Failed to link shader.");         return;     } }   void destroyShader(ShaderProgram *shaderProgram) {     glDetachShader(shaderProgram->program, shaderProgram->vertexShader);     glDetachShader(shaderProgram->program, shaderProgram->fragmentShader);       glDeleteShader(shaderProgram->vertexShader);     glDeleteShader(shaderProgram->fragmentShader);       glDeleteProgram(shaderProgram->program); }   GLuint getUniformLocation(const char *name, ShaderProgram *program) {     GLuint result = 0;     result = glGetUniformLocation(program->program, name);       return result; }   void setUniformMatrix(float *matrix, const char *name, ShaderProgram *program) {     GLuint loc = getUniformLocation(name, program);       if (loc == -1) {         printf("Failed to get uniform location in setUniformMatrix.\n");         return;     }       glUniformMatrix4fv(loc, 1, GL_FALSE, matrix); }   /*     General functions */ static int isRunning() {     return g_running && !glfwWindowShouldClose(gl_window); }   static void initializeGLFW(GLFWwindow **window, int width, int height, int *success) {     if (!glfwInit()) {         printf("Failed it inialize GLFW.");         *success = FALSE;        return;     }          glfwWindowHint(GLFW_RESIZABLE, 0);     *window = glfwCreateWindow(width, height, "Alignments", NULL, NULL);          if (!*window) {         printf("Failed to create window.");         glfwTerminate();         *success = FALSE;         return;     }          glfwMakeContextCurrent(*window);       GLenum glewErr = glewInit();     if (glewErr != GLEW_OK) {         printf("Failed to initialize GLEW.");         printf(glewGetErrorString(glewErr));         *success = FALSE;         return;     }       glClearColor(0.f, 0.f, 0.f, 1.f);     glViewport(0, 0, width, height);     *success = TRUE; }   int main(int argc, char **argv) {          int err = FALSE;     initializeGLFW(&gl_window, 480, 320, &err);     glDisable(GL_DEPTH_TEST);     if (err == FALSE) {         return 1;     }          createOrthoProjection(gl_projectionMatrix, 480.f, 320.f, 0.f, 1.f);          g_running = TRUE;          ShaderProgram shader;     compileShader(&shader, VERT_SHADER, FRAG_SHADER);     glUseProgram(shader.program);     setUniformMatrix(&gl_projectionMatrix, "uProjectionMatrix", &shader);       Vertex rectangle[6];     VertexBuffer vbo;     rectangle[0] = (Vertex){0.f, 0.f, 0.f, 1.f, 0.f, 0.f}; // Top left     rectangle[1] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top right     rectangle[2] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[3] = (Vertex){3.f, 0.f, 0.f, 1.f, 1.f, 0.f}; // Top left     rectangle[4] = (Vertex){0.f, 3.f, 0.f, 1.f, 0.f, 1.f}; // Bottom left     rectangle[5] = (Vertex){3.f, 3.f, 0.f, 1.f, 1.f, 1.f}; // Bottom right       createVertexBuffer(&vbo, &rectangle);            bindVertexBuffer(&vbo);          while (isRunning()) {         glClear(GL_COLOR_BUFFER_BIT);         glfwPollEvents();                    drawVertexBuffer();                    glfwSwapBuffers(gl_window);     }          unbindVertexBuffer(&vbo);       glUseProgram(0);     destroyShader(&shader);     destroyVertexBuffer(&vbo);     glfwTerminate();     return 0; }

    Read the article

  • Off center projection

    - by N0xus
    I'm trying to implement the code that was freely given by a very kind developer at the following link: http://forum.unity3d.com/threads/142383-Code-sample-Off-Center-Projection-Code-for-VR-CAVE-or-just-for-fun Right now, all I'm trying to do is bring it in on one camera, but I have a few issues. My class, looks as follows: using UnityEngine; using System.Collections; public class PerspectiveOffCenter : MonoBehaviour { // Use this for initialization void Start () { } // Update is called once per frame void Update () { } public static Matrix4x4 GeneralizedPerspectiveProjection(Vector3 pa, Vector3 pb, Vector3 pc, Vector3 pe, float near, float far) { Vector3 va, vb, vc; Vector3 vr, vu, vn; float left, right, bottom, top, eyedistance; Matrix4x4 transformMatrix; Matrix4x4 projectionM; Matrix4x4 eyeTranslateM; Matrix4x4 finalProjection; ///Calculate the orthonormal for the screen (the screen coordinate system vr = pb - pa; vr.Normalize(); vu = pc - pa; vu.Normalize(); vn = Vector3.Cross(vr, vu); vn.Normalize(); //Calculate the vector from eye (pe) to screen corners (pa, pb, pc) va = pa-pe; vb = pb-pe; vc = pc-pe; //Get the distance;; from the eye to the screen plane eyedistance = -(Vector3.Dot(va, vn)); //Get the varaibles for the off center projection left = (Vector3.Dot(vr, va)*near)/eyedistance; right = (Vector3.Dot(vr, vb)*near)/eyedistance; bottom = (Vector3.Dot(vu, va)*near)/eyedistance; top = (Vector3.Dot(vu, vc)*near)/eyedistance; //Get this projection projectionM = PerspectiveOffCenter(left, right, bottom, top, near, far); //Fill in the transform matrix transformMatrix = new Matrix4x4(); transformMatrix[0, 0] = vr.x; transformMatrix[0, 1] = vr.y; transformMatrix[0, 2] = vr.z; transformMatrix[0, 3] = 0; transformMatrix[1, 0] = vu.x; transformMatrix[1, 1] = vu.y; transformMatrix[1, 2] = vu.z; transformMatrix[1, 3] = 0; transformMatrix[2, 0] = vn.x; transformMatrix[2, 1] = vn.y; transformMatrix[2, 2] = vn.z; transformMatrix[2, 3] = 0; transformMatrix[3, 0] = 0; transformMatrix[3, 1] = 0; transformMatrix[3, 2] = 0; transformMatrix[3, 3] = 1; //Now for the eye transform eyeTranslateM = new Matrix4x4(); eyeTranslateM[0, 0] = 1; eyeTranslateM[0, 1] = 0; eyeTranslateM[0, 2] = 0; eyeTranslateM[0, 3] = -pe.x; eyeTranslateM[1, 0] = 0; eyeTranslateM[1, 1] = 1; eyeTranslateM[1, 2] = 0; eyeTranslateM[1, 3] = -pe.y; eyeTranslateM[2, 0] = 0; eyeTranslateM[2, 1] = 0; eyeTranslateM[2, 2] = 1; eyeTranslateM[2, 3] = -pe.z; eyeTranslateM[3, 0] = 0; eyeTranslateM[3, 1] = 0; eyeTranslateM[3, 2] = 0; eyeTranslateM[3, 3] = 1f; //Multiply all together finalProjection = new Matrix4x4(); finalProjection = Matrix4x4.identity * projectionM*transformMatrix*eyeTranslateM; //finally return return finalProjection; } // Update is called once per frame public void FixedUpdate () { Camera cam = camera; //calculate projection Matrix4x4 genProjection = GeneralizedPerspectiveProjection( new Vector3(0,1,0), new Vector3(1,1,0), new Vector3(0,0,0), new Vector3(0,0,0), cam.nearClipPlane, cam.farClipPlane); //(BottomLeftCorner, BottomRightCorner, TopLeftCorner, trackerPosition, cam.nearClipPlane, cam.farClipPlane); cam.projectionMatrix = genProjection; } } My error lies in projectionM = PerspectiveOffCenter(left, right, bottom, top, near, far); The debugger states: Expression denotes a `type', where a 'variable', 'value' or 'method group' was expected. Thus, I changed the line to read: projectionM = new PerspectiveOffCenter(left, right, bottom, top, near, far); But then the error is changed to: The type 'PerspectiveOffCenter' does not contain a constructor that takes '6' arguments. For reasons that are obvious. So, finally, I changed the line to read: projectionM = new GeneralizedPerspectiveProjection(left, right, bottom, top, near, far); And the error I get is: is a 'method' but a 'type' was expected. With this last error, I'm not sure what it is I should do / missing. Can anyone see what it is that I'm missing to fix this error?

    Read the article

< Previous Page | 365 366 367 368 369 370 371 372 373 374 375 376  | Next Page >