Search Results

Search found 10046 results on 402 pages for 'repository pattern'.

Page 373/402 | < Previous Page | 369 370 371 372 373 374 375 376 377 378 379 380  | Next Page >

  • WebCenter Content shared folders for clustering

    - by Kyle Hatlestad
    When configuring a WebCenter Content (WCC) cluster, one of the things which makes it unique from some other WebLogic Server applications is its requirement for a shared file system.  This is actually not any different then 10g and previous versions of UCM when it ran directly on a JVM.  And while it is simple enough to say it needs a shared file system, there are some crucial details in how those directories are configured. And if they aren't followed, you may result in some unwanted behavior. This blog post will go into the details on how exactly the file systems should be split and what options are required. Beyond documents being stored on the file system and/or database and metadata being stored in the database along with other structured data, there is other information being read and written to on the file system.  Information such as user profile preferences, workflow item state information, metadata profiles, and other details are stored in files.  In addition, for certain processes within WCC, each of the nodes needs to know what the other nodes are doing so they don’t step on each other.  WCC keeps track of this through the use of lock files on the file system.  Because of this, each node of the WCC must have access to the same file system just as they have access to the same database. WCC uses its own locking mechanism using files, so it also needs to have access to those files without file attribute caching and without locking being done by the client (node).  If one of the nodes accesses a certain status file and it happens to be cached, that node might attempt to run a process which another node is already working on.  Or if a particular file is locked by one of the node clients, this could interfere with access by another node.  Unfortunately, when disabling file attribute caching on the file share, this can impact performance.  So it is important to only disable caching and locking on the particular folders which require it.  When configuring WebCenter Content after deploying the domain, it asks for 3 different directories: Content Server Instance Folder, Native File Repository Location, and Weblayout Folder.  And starting in PS5, it now asks for the User Profile Folder. Even if you plan on storing the content in the database, you still need to establish a Native File (Vault) and Weblayout directories.  These will be used for handling temporary files, cached files, and files used to deliver the UI. For these directories, the only folder which needs to have the file attribute caching and locking disabled is the ‘Content Server Instance Folder’.  So when establishing this share through NFS or a clustered file system, be sure to specify those options. For instance, if creating the share through NFS, use the ‘noac’ and ‘nolock’ options for the mount options. For the other directories, caching and locking should be enabled to provide best performance to those locations.   These directory path configurations are contained within the <domain dir>\ucm\cs\bin\intradoc.cfg file: #Server System PropertiesIDC_Id=UCM_server1 #Server Directory Variables IdcHomeDir=/u01/fmw/Oracle_ECM1/ucm/idc/ FmwDomainConfigDir=/u01/fmw/user_projects/domains/base_domain/config/fmwconfig/ AppServerJavaHome=/u01/jdk/jdk1.6.0_22/jre/ AppServerJavaUse64Bit=true IntradocDir=/mnt/share_no_cache/base_domain/ucm/cs/ VaultDir=/mnt/share_with_cache/ucm/cs/vault/ WeblayoutDir=/mnt/share_with_cache/ucm/cs/weblayout/ #Server Classpath variables #Additional Variables #NOTE: UserProfilesDir is only available in PS5 – 11.1.1.6.0UserProfilesDir=/mnt/share_with_cache/ucm/cs/data/users/profiles/ In addition to these folder configurations, it’s also recommended to move node-specific folders to local disk to avoid unnecessary traffic to the shared directory.  So on each node, go to <domain dir>\ucm\cs\bin\intradoc.cfg and add these additional configuration entries: VaultTempDir=<domain dir>/ucm/<cs>/vault/~temp/ TraceDirectory=<domain dir>/servers/<UCM_serverN>/logs/EventDirectory=<domain dir>/servers/<UCM_serverN>/logs/event/ And of course, don’t forget the cluster-specific configuration values to add as well.  These can be added through Admin Server -> General Configuration -> Additional Configuration Variables or directly in the <IntradocDir>/config/config.cfg file: ArchiverDoLocks=true DisableSharedCacheChecking=true ServiceAllowRetry=true    (use only with Oracle RAC Database)PublishLockTimeout=300000  (time can vary depending on publishing time and number of nodes) For additional information and details on clustering configuration, I highly recommend reviewing document [1209496.1] on the support site.  In addition, there is a great step-by-step guide on setting up a WebCenter Content cluster [1359930.1].

    Read the article

  • obiee 10g teradata Solaris deployment

    - by user554629
    I have 3-4 years worth of notes on proper Teradata deployment across multiple operating systems.   The topic that is too large to cover succinctly in a blog entry.   I'm trying something new:  document a specific situation, consolidate the facts, document diagnostic procedures and then clone the structure to cover other obiee deployments (11g and other operating systems). Until the icon below is removed, this blog entry may be revised frequently.  No construction between June 6th through June 25th. Getting started obiee 10g certification:  pg 24-25 Teradata V2R5.1.x - V2R6.2, Client 13.10, certified 10.1.3.4.1obiee 10g documentation: Deployment Guide, Server Administration, Install/Config Guideobiee overview: teradata connectivity downloads: ( requires registration )solaris odbc drivers: sparc 13.10:  Choose 13.10.00.04  ( ReadMe ) sparc 14.00: probably would work, but not certified by Oracle on 10g I assume you have obiee 10.1.3.4.1 installed; 10.1.3.4.2 would be a better choice. Teradata odbc install requires root for Solaris pkgadd Only 1 version of Teradata odbc can be installed.symbolic links to the current version are created in /usr/lib at install obiee implementation background database access has two types of implementation:  native and odbcnative drivers use DB vendor client interfaces for accessodbc drivers are provided by the DB vendor for DB accessTeradata is an odbc interface Database. odbc drivers require an ODBC Driver Managerobiee uses Merant Data Direct driver manager obiee servers communicate with one another using odbc.The internal odbc driver is implemented by the obiee team and requires Merant Driver Manager. Teradata supplies a Driver Manager, which is built by Merant, but should not be used in obiee. The nqsserver shared library deployment looks like this  OBIEE Server<->DataDirect Manager<->Teradata Driver<->Teradata Database nqsserver startup $ cd $BI/setup$ . ./sa-init64.sh$ run-sa.sh autorestart64 The following files are referenced from setup:  .variant.sh  user.sh  NQSConfig.INI  DBFeatures.INI  $ODBCINI ( odbc.ini )  sqlnet.ora How does nqsserver connect to Teradata? A teradata DSN is created in the RPD. ( TD71 )setup/odbc.ini contains: [ODBC Data Sources] TD71=tdata.so[TD71]Driver=/opt/tdodbc/odbc/drivers/tdata.soDescription=Teradata V7.1.0DBCName=###.##.##.### LastUser=Username=northwindPassword=northwindDatabase=DefaultDatabase=northwind setup/user.sh contains LIBPATH\=/opt/tdicu/lib_64\:/usr/odbc/lib\:/usr/odbc/drivers\:/usr/lpp/tdodbc/odbc/drivers\:$LIBPATHexport LIBPATH   setup/.variant.sh contains if [ "$ANA_SERVER_64" = "1" ]; then  ANA_BIN_DIR=${SAROOTDIR}/server/Bin64  ANA_WEB_DIR=${SAROOTDIR}/web/bin64  ANA_ODBC_DIR=${SAROOTDIR}/odbc/lib64         setup/sa-run.sh  contains . ${ANA_INSTALL_DIR}/setup/.variant.sh. ${ANA_INSTALL_DIR}/setup/user.sh logfile="${SAROOTDIR}/server/Log/nqsserver.out.log"${ANA_BIN_DIR}/nqsserver -quiet >> ${logfile} 2>&1 &   nqsserver is running: nqsserver produces $BI/server/nqsserver.logAt startup, the native database drivers connect and record DB versions.tdata.so is not loaded until a Teradata DB connection is attempted.    Teradata odbc client installation Accept all the defaults for pkgadd.   Install in /opt. $ mkdir odbc$ cd odbc$ gzip -dc ../tdodbc__solaris_sparc.13.10.00.04.tar.gz | tar -xf - $ sudo su# pkgadd -d . TeraGSS# pkgadd -d . tdicu1310# pkgadd -d . tdodbc1310   Directory Notes: /opt/teradata/client/13.10/odbc_64/lib/tdata.soThe 64-bit obiee library loaded by nqsserver. /opt/teradata/client/13.10/odbc_64/lib is not needed in LD_LIBRARY_PATH /opt/teradata/client/13.10/tdicu/lib64is needed in LD_LIBRARY_PATH /usr/odbc should not be referenced;  it is a link to 32-bit libraries LD_LIBRARY_PATH_64 should not be used.     Useful bash functions and aliases export SAROOTDIR=/export/home/dw_adm/OracleBIexport TERA_HOME=/opt/teradata/client/13.10 export ORACLE_HOME=/export/home/oracle/product/10.2.0/clientexport ODBCINI=$SAROOTDIR/setup/odbc.iniexport TD_ICU_DATA=$TERA_HOME/tdicu/lib64alias cds="alias | grep '^alias cd' | sed 's/^alias //' | sort"alias cdtd="cd $TERA_HOME; ls" alias cdtdodbc="cd $TERA_HOME/odbc_64; ls -l"alias cdtdicu="cd $TERA_HOME/tdicu/lib64; ls -l"alias cdbi="cd $SAROOTDIR; ls"alias cdbiodbc="cd $SAROOTDIR/odbc; ls -l"alias cdsetup="cd $SAROOTDIR/setup; ls -ltr"alias cdsvr="cd $SAROOTDIR/server; ls"alias cdrep="cd $SAROOTDIR/server/Repository; ls -ltr"alias cdsvrcfg="cd $SAROOTDIR/server/Config; ls -ltr"alias cdsvrlog="cd $SAROOTDIR/server/Log; ls -ltr"alias cdweb="cd $SAROOTDIR/web; ls"alias cdwebconfig="cd $SAROOTDIR/web/config; ls -ltr"alias cdoci="cd $ORACLE_HOME; ls"pkgfiles() { pkgchk -l $1 | awk  '/^Pathname/ {print $2}'; }pkgfind()  { pkginfo | egrep -i $1 ; } Examples: $ pkgfind td$ pkgfiles tdodbc1310 | grep 64$ cds$ cdtdodbc$ cdsetup$ cdsvrlog$ cdweblog

    Read the article

  • Solaris 11 Live CD alapú telepítés

    - by AndrasF
    Az elozo részben megigért két telepítési eljárás helyett kénytelen vagyok ebben a bejegyzésben kizárólag a Live CD-s változattal foglalkozni. Korábban nem gondoltam, hogy ennek bemutatása is több, mint 50 képernyo kimenetet igényel, ezért változtatnom kellett a korábbi tervezeten. A Solaris 11 Live CD-s telepítés elsosorban az asztali (desktop) felhasználók igényeit veszi figyelembe és kizárólag x86-os architektúrájú gépeken támogatott (annak ellenére, hogy SPARC-os rendszerek is rendelkeznek grafikus kártyával - pl. T4-1).A folyamat két részre bontható: eloször a vendéggép kerül kialakítása VirtualBox környezetben, majd ezt követi a Solaris 11-es telepítése virtuális gépre. HCL és segédprogramok (DDT, DDU) Mielott telepíteni szeretnénk a Solaris operációs rendszert, célszeru tájékozódni fizikai rendszerünk támogatottságáról. Erre jól használható a már említett hardver kompatibilitási (HCL) lista, vagy az alábbi két segédprogram: Device Detection Tool Device Driver Utility Mindkét alkalmazás képes rendszerünk hardver komponenseit feltérképezni és ellenorizni azok meghajtóprogram (driver) ellátottságát. Eltérés köztük abban nyilvánul meg, hogy míg a DDT futtatásához Java szükséges, addig a DDU Solarist igényel. Ez utóbbiról a telepítés során röviden szó fog esni. Telepíto készletek letöltési helye Hálózati installációtól eltekintve (*) telepítokészletre van szükségünk, mely az alábbi oldalról töltheto le. Célszeru letöltenünk mindhárom állományt és a csomagokat tartalmazó ún. repository médiát (a következo felsorolás utolsó eleme) is: sol-11-1111-live-x86.iso sol-11-1111-text-x86.iso sol-11-1111-ai-x86.iso sol-11-1111-repo-full.iso Az elso három változat indítható USB formátumban is rendelkezésre áll - ekkor iso végzodés helyett usb található a fájlnevek végén. Rövid utalást az egyes készletek feladatáról az elozo blog bejegyzés tartalmaz (link). Amennyiben SPARC architektúrájú rendszerre szeretnénk a telepítést végezni, 'x86' helyett a 'sparc' szöveget tartalmazó állományokra lesz szükség. (*) - arra is lehetoség van, hogy AI készletrol történo indítás segítségével végezzük a hálózaton keresztül történo telepítést. Ez akkor fontos, ha célgépünkön nincs PXE (Preboot Execution Environment) boot támogatás. VirtualBox konfigurálás Külön fizikai eszköz felhasználása nélkül virtuális környezetben is használható a Solaris 11, mint vendéggép. A VirtualBox használatával erre kényelmes lehetoség kínálkozik. Gazdagépünknek (Windows, Unix, Linux) megfelelo telepíto program, vagy programcsomag (jelenleg a 4.1.16-os verzió a legfrissebb változat) és az installációt is taglaló felhasználói kézikönyv letöltheto a termék oldaláról. A sikeres telepítést követoen az alábbi lépések során jutunk el az új virtuális gép kialakulásáig: 1. A VBox indítása után a központi ablak megmutatja a már létezo virtuális gépeinket (Sol11demo, Sol11u1b07, Sol11.1B16, Sun_ZFS_Storage_7000) és az aktuálisan kiválasztott egyed (Sol11demo) fobb jellemzoit (megnevezés, memória mérete, virtuális tároló eszközök listája...stb.) 2. A New gombra kattintva elindul a virtuális gépet létrehozó segéd (wizard) 3. Ezt követoen nevet kell adnunk a vendéggépnek és ki kell választanunk az operációs rendszer típusát (beszédes név használata esetén a VirtualBox képes az operációs rendszer családját kiválasztani, nekünk pusztán csak verziót kell beállítanunk): adjuk meg Solaris11-et névként és válasszuk a 64bites változatot (feltéve, hogy gazdagépünk támogatja ezt) 4. Telepítéshez és a kezdeti lépések megtételéhez 1536MB memória tökéletesen megfelel (ez késobb módosítható az elvárások függvényében) 5. Fizikai társaihoz hasonlóan, egyetlen virtuális gép sem létezhet merevlemez (jelen esetben virtuális diszk) nélkül. Használhatunk egy már létezo területet (virtuális lemezt tartalmazó állomány), de létrehozhatunk egy nekünk tetszo új példányt is. Maradjunk ez utóbbinál (Create new hard disk)! 6. A lehetséges formátumok közül - az egyszeruség okán - éljünk a felkínált alaptípussal (VDI - VirtualBox Disk Image). 7. Létrehozás során a virtuális lemez készülhet egyidejuleg (Fixed size), vagy több lépésben dinamikusan (Dynamically allocated). Az elso változat sokkal kevésbé terheli a rendszert, a második elonye pedig a helytakarékosság. Válasszuk a fix méretu változatot. 8. Most már csak egyetlen adat ismeretlen a VirtualBox számára, mégpedig a létrehozásra kerülo virtuális lemez nagysága. 8GB-os terület jelen esetben alkalmas az ismerkedés elkezdéséhez. 9. Amennyiben minden beállítást helyesen adtunk meg, a Create gomb megnyomása után elindul a virtuális lemez létrehozása. 10. Ez a muvelet a megadott adatoktól függoen néhány perc alatt befejezodik. 11. Hasonló megerosítés (Create gomb aktiválása) után elkezdodik a kért virtuális gép létrehozása is. 12. Sikeres végrehajtás után az új vitruális gép közvetlenül megjelenik a központi ablak baloldali listáján a rendelkezésre álló virtuális gépek közt. A blog bejegyzés folyamatosan frissül...a rész fennmaradó tartalma hamarosan felkerül az oldalra.

    Read the article

  • RDA Health Checks for SOA

    - by ShawnBailey
    What is a health check in RDA? A health check evaluates something in your environment to determine whether a change needs to be considered in order to avoid a problem or optimize fuctionality. Examples of what this 'something' might be are: Configuration Parameters JVM Options Runtime Statistics What have we done for SOA? In the latest release of RDA, 4.30, we have added a Rule Set for SOA called 'Oracle SOA 11g (11.1.1) Post Installation (Generic)'. This Rule Set contains 14 SOA related health checks. These checks were all derived from common issues / solutions we see in support of the SOA product. Many of the recommendations come from the product documentation while others are covered in the SOA Knowledge Base. Our goal is that you will be able to easily identify the areas of concern and understand the guidance available from the output of the Rule Set. Running the health checks for SOA The rules that the checks use are installed with RDA and bundled by product or functional area into what are called 'Rule Sets'. To view the available Rule Sets simply run the command from the RDA home location: rda.cmd (or .sh) -dT hcve This will bring up a list of the available HCVE (Health Check / Verification Engine) Rule Sets. Each Rule Set contains a group of related rules that are used for evalutation and display of results. A rule can be considered synonymous with a single health check and they are assigned an ID, Name and Description that can be seen when they are executed. The Rule Set for SOA is option number 11 and you just enter this selection at the prompt. The Rule Set will then execute to completion. After running an HCVE Rule Set the tool will write the output to the RDA_HOME/output folder. The simplest way to view the output is to drag the .htm file to a browser but of course it can also be uploaded to a Service Request for evaluation by Oracle Support. Many of the Rule Sets will prompt you for information before they can execute their rules but the SOA Rule Set will identify the SOA domains configured in your RDA setup.cfg file. This means that you don't need to answer all of the questions again about where stuff is but it also means that you must have configured RDA for SOA. To run the Rule Set: Download the latest version of RDA from MOS Doc ID 314422.1 Configure RDA for your SOA domains. Detailed steps can be found here In it's simplest form the command is 'rda.cmd (.sh) -S SOA' Go to the RDA home location and enter the command 'rda.cmd (or .sh) -dT hcve' Select option '11' It should be noted that this our first release of a SOA Rule Set so there will probably be some things we need to clean up or fix. None of these rules will actually modify anything on your system as they are read only and do the evaluations internally. Please let us know if you have any issues with the rules or ideas for new ones so we can make them as useful as possible. The Checks Here is a list of the SOA health checks by ID, Name and Description. ID Name Description A00100 SOA Domain Homes Lists the SOA domains that were indentified from the RDA setup.cfg file A00200 Coherence Protocol Conflict Checks to see if you have both Unicast and Multicast configured in the same domain. Checks both the setDomainEnv and config.xml entries (if it exists). We recommend Unicast with fully qualified host names or IP addresses. A00210 Coherence Fully Qualified Host Checks that the host names are fully qualified or that IP addresses are used. Will fail if unqualified host names are detected. A00220 Unicast Local Host Checks that the Coherence localhost is specified for use with Unicast A00300 JTA Timeout Checks that the JTA timeout is configured for the domain and lists the value. The bundled rule will only list the current values of the JTA timeout for each SOA Domain. In the future the rule with fail with a warning if the value is 300 seconds or lower. It is recommended that timeouts follow the pattern 'syncMaxWaitTime' < EJB Timeouts < JTA Timeout. The 300 second value is important because the EJB Timeouts default to 300 seconds. Additional information can be found in MOS Doc ID 880313.1. A00310 XA Max Time Checks that the JTA Maximum XA call time is set for the domain. Fails if it is not explicitly set or if the value is less than or equal to the default of 12000 ms. A00320 XA Timeout Checks that the XA timeout is enabled and that the value is '0' for the SOA Data Source (SOADataSource-jdbc.xml) A00330 JDBC Statement Timeout Checks that the Statement Timeout is set for all SOA Data Sources. Fails if the value is not set or if it is set to the default of -1. A00400 XA Driver Checks that the SOA Data Source is configured to use an XA driver. Fails if it is not. A00410 JDBC Capacity Settings Checks that the minimum and maximum capacity are equal for all SOA Data Sources. Fails if they are not and lists specifically which data sources failed. A00500 SOA Roles Checks that the default SOA roles 'SOAAdmin' and 'SOAOperator' are configured for the soa-infra application in the file sytem-jazn-data.xml. Fails if they are not. A00700 SOA-INFRA Deployment Checks that the soa-infra application is deployed to either a cluster, all members of a cluster or a stand alone server. A00710 SOA Deployments Checks that the SOA related applications are deployed to the same domain members as soa-infra. A00720 SOA Library Deployments Checks that the SOA related libraries are deployed to the same domain members as soa-infra. A00730 Data Source Deployments Checks that the SOA Data Sources are all targeted to the same domain members as soa-infra

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 5

    - by MarkPearl
    Learning Outcomes Describe the operation of a memory cell Explain the difference between DRAM and SRAM Discuss the different types of ROM Explain the concepts of a hard failure and a soft error respectively Describe SDRAM organization Semiconductor Main Memory The two traditional forms of RAM used in computers are DRAM and SRAM DRAM (Dynamic RAM) Divided into two technologies… Dynamic Static Dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have natural tendency to discharge, dynamic RAM requires periodic charge refreshing to maintain data storage. The term dynamic refers to the tendency of the stored charge to leak away, even with power continuously applied. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analogue device. The capacitor can store any charge value within a range, a threshold value determines whether the charge is interpreted as a 1 or 0. SRAM (Static RAM) SRAM is a digital device that uses the same logic elements used in the processor. In SRAM, binary values are stored using traditional flip flop logic configurations. SRAM will hold its data as along as power is supplied to it. Unlike DRAM, no refresh is required to retain data. SRAM vs. DRAM DRAM is simpler and smaller than SRAM. Thus it is more dense and less expensive than SRAM. The cost of the refreshing circuitry for DRAM needs to be considered, but if the machine requires a large amount of memory, DRAM turns out to be cheaper than SRAM. SRAMS are somewhat faster than DRAM, thus SRAM is generally used for cache memory and DRAM is used for main memory. Types of ROM Read Only Memory (ROM) contains a permanent pattern of data that cannot be changed. ROM is non volatile meaning no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROM is microprogramming, other applications include library subroutines for frequently wanted functions, System programs, Function tables. A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. To reduce costs of fabrication, we have PROMS. PROMS are… Written only once Non-volatile Written after fabrication Another variation of ROM is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations, but for which non volatile storage is required. There are three common forms of read-mostly memory, namely… EPROM EEPROM Flash memory Error Correction Semiconductor memory is subject to errors, which can be classed into two categories… Hard failure – Permanent physical defect so that the memory cell or cells cannot reliably store data Soft failure – Random error that alters the contents of one or more memory cells without damaging the memory (common cause includes power supply issues, etc.) Most modern main memory systems include logic for both detecting and correcting errors. Error detection works as follows… When data is to be read into memory, a calculation is performed on the data to produce a code Both the code and the data are stored When the previously stored word is read out, the code is used to detect and possibly correct errors The error checking provides one of 3 possible results… No errors are detected – the fetched data bits are sent out An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of bits to be sent out An error is detected, but it is not possible to correct it. This condition is reported Hamming Code See wiki for detailed explanation. We will probably need to know how to do a hemming code – refer to the textbook (pg. 188 – 189) Advanced DRAM organization One of the most critical system bottlenecks when using high-performance processors is the interface to main memory. This interface is the most important pathway in the entire computer system. The basic building block of main memory remains the DRAM chip. In recent years a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market including… SDRAM (Synchronous DRAM) DDR-DRAM RDRAM SDRAM (Synchronous DRAM) SDRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states. SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access In burst mode a series of data bits can be clocked out rapidly after the first bit has been accessed SDRAM has a multiple bank internal architecture that improves opportunities for on chip parallelism SDRAM performs best when it is transferring large blocks of data serially There is now an enhanced version of SDRAM known as double data rate SDRAM or DDR-SDRAM that overcomes the once-per-cycle limitation of SDRAM

    Read the article

  • IRM Item Codes &ndash; what are they for?

    - by martin.abrahams
    A number of colleagues have been asking about IRM item codes recently – what are they for, when are they useful, how can you control them to meet some customer requirements? This is quite a big topic, but this article provides a few answers. An item code is part of the metadata of every sealed document – unless you define a custom metadata model. The item code is defined when a file is sealed, and usually defaults to a timestamp/filename combination. This time/name combo tends to make item codes unique for each new document, but actually item codes are not necessarily unique, as will become clear shortly. In most scenarios, item codes are not relevant to the evaluation of a user’s rights - the context name is the critical piece of metadata, as a user typically has a role that grants access to an entire classification of information regardless of item code. This is key to the simplicity and manageability of the Oracle IRM solution. Item codes are occasionally exposed to users in the UI, but most users probably never notice and never care. Nevertheless, here is one example of where you can see an item code – when you hover the mouse pointer over a sealed file. As you see, the item code for this freshly created file combines a timestamp with the file name. But what are item codes for? The first benefit of item codes is that they enable you to manage exceptions to the policy defined for a context. Thus, I might have access to all oracle – internal files - except for 2011_03_11 13:33:29 Board Minutes.sdocx. This simple mechanism enables Oracle IRM to provide file-by-file control where appropriate, whilst offering the scalability and manageability of classification-based control for the majority of users and content. You really don’t want to be managing each file individually, but never say never. Item codes can also be used for the opposite effect – to include a file in a user’s rights when their role would ordinarily deny access. So, you can assign a role that allows access only to specified item codes. For example, my role might say that I have access to precisely one file – the one shown above. So how are item codes set? In the vast majority of scenarios, item codes are set automatically as part of the sealing process. The sealing API uses the timestamp and filename as shown, and the user need not even realise that this has happened. This automatically creates item codes that are for all practical purposes unique - and that are also intelligible to users who might want to refer to them when viewing or assigning rights in the management UI. It is also possible for suitably authorised users and applications to set the item code manually or programmatically if required. Setting the item code manually using the IRM Desktop The manual process is a simple extension of the sealing task. An authorised user can select the Advanced… sealing option, and will see a dialog that offers the option to specify the item code. To see this option, the user’s role needs the Set Item Code right – you don’t want most users to give any thought at all to item codes, so by default the option is hidden. Setting the item code programmatically A more common scenario is that an application controls the item code programmatically. For example, a document management system that seals documents as part of a workflow might set the item code to match the document’s unique identifier in its repository. This offers the option to tie IRM rights evaluation directly to the security model defined in the document management system. Again, the sealing application needs to be authorised to Set Item Code. The Payslip Scenario To give a concrete example of how item codes might be used in a real world scenario, consider a Human Resources workflow such as a payslips. The goal might be to allow the HR team to have access to all payslips, but each employee to have access only to their own payslips. To enable this, you might have an IRM classification called Payslips. The HR team have a role in the normal way that allows access to all payslips. However, each employee would have an Item Reader role that only allows them to access files that have a particular item code – and that item code might match the employee’s payroll number. So, employee number 123123123 would have access to items with that code. This shows why item codes are not necessarily unique – you can deliberately set the same code on many files for ease of administration. The employees might have the right to unseal or print their payslip, so the solution acts as a secure delivery mechanism that allows payslips to be distributed via corporate email without any fear that they might be accessed by IT administrators, or forwarded accidentally to anyone other than the intended recipient. All that remains is to ensure that as each user’s payslip is sealed, it is assigned the correct item code – something that is easily managed by a simple IRM sealing application. Each month, an employee’s payslip is sealed with the same item code, so you do not need to keep amending the list of items that the user has access to – they have access to all documents that carry their employee code.

    Read the article

  • Odd company release cycle: Go Distributed Source Control?

    - by MrLane
    sorry about this long post, but I think it is worth it! I have just started with a small .NET shop that operates quite a bit differently to other places that I have worked. Unlike any of my previous positions, the software written here is targetted at multiple customers and not every customer gets the latest release of the software at the same time. As such, there is no "current production version." When a customer does get an update, they also get all of the features added to he software since their last update, which could be a long time ago. The software is highly configurable and features can be turned on and off: so called "feature toggles." Release cycles are very tight here, in fact they are not on a shedule: when a feature is complete the software is deployed to the relevant customer. The team only last year moved from Visual Source Safe to Team Foundation Server. The problem is they still use TFS as if it were VSS and enforce Checkout locks on a single code branch. Whenever a bug fix gets put out into the field (even for a single customer) they simply build whatever is in TFS, test the bug was fixed and deploy to the customer! (Myself coming from a pharma and medical devices software background this is unbeliveable!). The result is that half baked dev code gets put into production without being even tested. Bugs are always slipping into release builds, but often a customer who just got a build will not see these bugs if they don't use the feature the bug is in. The director knows this is a problem as the company is starting to grow all of a sudden with some big clients coming on board and more smaller ones. I have been asked to look at source control options in order to eliminate deploying of buggy or unfinished code but to not sacrifice the somewhat asyncronous nature of the teams releases. I have used VSS, TFS, SVN and Bazaar in my career, but TFS is where most of my experience has been. Previously most teams I have worked with use a two or three branch solution of Dev-Test-Prod, where for a month developers work directly in Dev and then changes are merged to Test then Prod, or promoted "when its done" rather than on a fixed cycle. Automated builds were used, using either Cruise Control or Team Build. In my previous job Bazaar was used sitting on top of SVN: devs worked in their own small feature branches then pushed their changes to SVN (which was tied into TeamCity). This was nice in that it was easy to isolate changes and share them with other peoples branches. With both of these models there was a central dev and prod (and sometimes test) branch through which code was pushed (and labels were used to mark builds in prod from which releases were made...and these were made into branches for bug fixes to releases and merged back to dev). This doesn't really suit the way of working here, however: there is no order to when various features will be released, they get pushed when they are complete. With this requirement the "continuous integration" approach as I see it breaks down. To get a new feature out with continuous integration it has to be pushed via dev-test-prod and that will capture any unfinished work in dev. I am thinking that to overcome this we should go down a heavily feature branched model with NO dev-test-prod branches, rather the source should exist as a series of feature branches which when development work is complete are locked, tested, fixed, locked, tested and then released. Other feature branches can grab changes from other branches when they need/want, so eventually all changes get absorbed into everyone elses. This fits very much down a pure Bazaar model from what I experienced at my last job. As flexible as this sounds it just seems odd to not have a dev trunk or prod branch somewhere, and I am worried about branches forking never to re-integrate, or small late changes made that never get pulled across to other branches and developers complaining about merge disasters... What are peoples thoughts on this? A second final question: I am somewhat confused about the exact definition of distributed source control: some people seem to suggest it is about just not having a central repository like TFS or SVN, some say it is about being disconnected (SVN is 90% disconnected and TFS has a perfectly functional offline mode) and others say it is about Feature Branching and ease of merging between branches with no parent-child relationship (TFS also has baseless merging!). Perhaps this is a second question!

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • Oracle Fusion Middleware gives you Choice and Portability for Public and Private Cloud

    - by Michelle Kimihira
    Author: Margaret Lee, Senior Director, Product Management, Oracle Fusion Middleware Cloud Computing allows customers to quickly develop and deploy applications in a shared environment.  The environment can span across hardward (IaaS), foundation layer software (PaaS), and end-user software (SaaS). Cloud Computing provides compelling benefits in terms of business agility and IT cost savings.  However, with complex, existing heterogeneous architectures, and concerns for security and manageability, enterprises are challenged to define their Cloud strategy.  For most enterprises, the solution is a hybrid of private and public cloud.  Fusion Middleware supports customers’ Cloud requirements through choice and portability. Fusion Middleware supports a variety of cloud development and deployment models:  Oracle [Public] Cloud; customer private cloud; hybrid of these two, and traditional dedicated, on-premise model Customers can develop applications in any of these models and deployed in another, providing the flexibility and portability they need Oracle Cloud is a public cloud offering.  Within Oracle Cloud, Fusion Middleware provides two key offerings include the Developer cloud service and Java cloud deployment service. Developer Cloud Service Simplify Development: Automated provisioned environment; pre-configured and integrated; web-based administration Deploy Automatically: Fully integrated with Oracle Cloud for Java deployment; workflow ensures build & test Collaborate & Manage: Fits any size team; integrated team source repository; continuous integration; task/defect tracking Integrated with all major IDEs: Oracle JDeveloper; NetBeans; Eclipse Java Cloud Service Java Cloud service provides flexible Java deployment environment for departmental applications and development, staging, QA, training, and demo environments.  It also supports customizations deployments for SaaS-based Fusion Applications customers.  Some key features of Java Cloud Service include: WebLogic Server on Exalogic, secure, highly available infrastructure Database Service & IDE Integration Open, Standard-based Deploy Web Apps, Web Services, REST Services Fully managed and supported by Oracle For more information, please visit Oracle Cloud, Oracle Cloud Java Service and Oracle Cloud Developer Service. If your enterprise prefers a private cloud, for reasons such as security, control, manageability, and complex integration that prevent your applications from being deployed on a public cloud, Fusion Middleware also provide you with the products and tools you need.  Sometimes called Private PaaS, private clouds have their predecessors in shared-services arrangements many large companies have been building in the past decade.  The difference, however, are in the scope of the services, and depth of their capabilities.  In terms of vertical stack depth, private clouds not only provide hardware and software infrastructure to run your applications, they also provide services such as integration and security, that your applications need.  Horizontally, private clouds provide monitoring, management, lifecycle, and charge back capabilities out-of-box that shared-services platforms did not have before. Oracle Fusion Middleware includes the complete stack of hardware and software for you to build private clouds: SOA suite and BPM suite to support systems integration and process flow between applications deployed on your private cloud and the rest of your organization Identity and Access Management suite to provide security, provisioning, and access services for applications deployed on your private cloud WebLogic Server to run your applications Enterprise Manager's Cloud Management pack to monitor, manage, upgrade applications running on your private cloud Exalogic or optimized Oracle-Sun hardware to build out your private cloud The most important key differentiator for Oracle's cloud solutions is portability, between private and public clouds.  This is unique to Oracle because portability requires the vendor to have product depth and breadth in both public cloud services and private cloud product offerings.  Most public cloud vendors cannot provide the infrastructure and tools customers need to build their own private clouds.  In reverse, traditional software tools vendors typically do not have the product and expertise breadth to build out and offer a public cloud.  Oracle can.  It is important for customers that the products and technologies  Oracle uses to build its public is the same set that it sells to customers for them to build private clouds.  Fundamentally, that enables skills reuse,  as well as application portability. For more information on Oracle PaaS offerings, please visit Oracle's product information page.    Resources Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Functional Adaptation

    - by Charles Courchaine
    In real life and OO programming we’re often faced with using adapters, DVI to VGA, 1/4” to 1/8” audio connections, 110V to 220V, wrapping an incompatible interface with a new one, and so on.  Where the adapter pattern is generally considered for interfaces and classes a similar technique can be applied to method signatures.  To be fair, this adaptation is generally used to reduce the number of parameters but I’m sure there are other clever possibilities to be had.  As Jan questioned in the last post, how can we use a common method to execute an action if the action has a differing number of parameters, going back to the greeting example it was suggested having an AddName method that takes a first and last name as parameters.  This is exactly what we’ll address in this post. Let’s set the stage with some review and some code changes.  First, our method that handles the setup/tear-down infrastructure for our WCF service: 1: private static TResult ExecuteGreetingFunc<TResult>(Func<IGreeting, TResult> theGreetingFunc) 2: { 3: IGreeting aGreetingService = null; 4: try 5: { 6: aGreetingService = GetGreetingChannel(); 7: return theGreetingFunc(aGreetingService); 8: } 9: finally 10: { 11: CloseWCFChannel((IChannel)aGreetingService); 12: } 13: } Our original AddName method: 1: private static string AddName(string theName) 2: { 3: return ExecuteGreetingFunc<string>(theGreetingService => theGreetingService.AddName(theName)); 4: } Our new AddName method: 1: private static int AddName(string firstName, string lastName) 2: { 3: return ExecuteGreetingFunc<int>(theGreetingService => theGreetingService.AddName(firstName, lastName)); 4: } Let’s change the AddName method, just a little bit more for this example and have it take the greeting service as a parameter. 1: private static int AddName(IGreeting greetingService, string firstName, string lastName) 2: { 3: return greetingService.AddName(firstName, lastName); 4: } The new signature of AddName using the Func delegate is now Func<IGreeting, string, string, int>, which can’t be used with ExecuteGreetingFunc as is because it expects Func<IGreeting, TResult>.  Somehow we have to eliminate the two string parameters before we can use this with our existing method.  This is where we need to adapt AddName to match what ExecuteGreetingFunc expects, and we’ll do so in the following progression. 1: Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 2: Func<IGreeting, string, int> -> Func<IGreeting, int>   For the first step, we’ll create a method using the lambda syntax that will “eliminate” the last name parameter: 1: string lastNameToAdd = "Smith"; 2: //Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 3: Func<IGreeting, string, int> addName = (greetingService, firstName) => AddName(greetingService, firstName, lastNameToAdd); The new addName method gets us one step close to the signature we need.  Let’s say we’re going to call this in a loop to add several names, we’ll take the final step from Func<IGreeting, string, int> -> Func<IGreeting, int> in line as a lambda passed to ExecuteGreetingFunc like so: 1: List<string> firstNames = new List<string>() { "Bob", "John" }; 2: int aID; 3: foreach (string firstName in firstNames) 4: { 5: //Func<IGreeting, string, int> -> Func<IGreeting, int> 6: aID = ExecuteGreetingFunc<int>(greetingService => addName(greetingService, firstName)); 7: Console.WriteLine(GetGreeting(aID)); 8: } If for some reason you needed to break out the lambda on line 6 you could replace it with 1: aID = ExecuteGreetingFunc<int>(ApplyAddName(addName, firstName)); and use this method: 1: private static Func<IGreeting, int> ApplyAddName(Func<IGreeting, string, int> addName, string lastName) 2: { 3: return greetingService => addName(greetingService, lastName); 4: } Splitting out a lambda into its own method is useful both in this style of coding as well as LINQ queries to improve the debugging experience.  It is not strictly necessary to break apart the steps & functions as was shown above; the lambda in line 6 (of the foreach example) could include both the last name and first name instead of being composed of two functions.  The process demonstrated above is one of partially applying functions, this could have also been done with Currying (also see Dustin Campbell’s excellent post on Currying for the canonical curried add example).  Matthew Podwysocki also has some good posts explaining both Currying and partial application and a follow up post that further clarifies the difference between Currying and partial application.  In either technique the ultimate goal is to reduce the number of parameters passed to a function.  Currying makes it a single parameter passed at each step, where partial application allows one to use multiple parameters at a time as we’ve done here.  This technique isn’t for everyone or every problem, but can be extremely handy when you need to adapt a call to something you don’t control.

    Read the article

  • Community Branching

    - by Dane Morgridge
    As some may have noticed, I have taken a liking to Ruby (and Rails in particular) quite a bit recently. This last weekend I spoke at the NYC Code Camp on a comparison of ASP.NET and Rails as well as an intro to Entity Framework talk.  I am speaking at RubyNation in April and have submitted to other ruby conferences around the area and I am also doing a Rails and MongoDB talk at the Philly Code Camp in April. Before you start to think this is my "I'm leaving .NET post", which it isn't so I need to clarify. I am not, nor do I intend to any time in the near future plan on abandoning .NET.  I am simply branching out into another community based on a development technology that I very much enjoy.  If you look at my twitter bio, you will see that I am into Entity Framework, Ruby on Rails, C++ and ASP.NET MVC, and not necessarily in that order.  I know you're probably thinking to your self that I am crazy, which is probably true on several levels (especially the C++ part). I was actually crazy enough at the NYC Code Camp to show up wearing a Linux t-shirt, presenting with my MacBook Pro on Entity Framework, ASP.NET MVC and Rails. (I did get pelted in the head with candy by Rachel Appel for it though) At all of the code camps I am submitting to this year, i will be submitting sessions on likely all four topics, and some sessions will be a combination of 2 or more.  For example, my "ASP.NET MVC: A Gateway To Rails?" talk touches ASP.NET MVC, Entity Framework Code First and Rails. Simply put (and I talk about this in my MVC & Rails talk) is that learning and using Rails has made me a better ASP.NET MVC developer. Just one example of this is helper methods.  When I started working with ASP.NET MVC, I didn't really want to use helpers and preferred to just use standard html tags, especially where links were concerned.  It was just me being stubborn and not really seeing all of the benefit of the helpers.  To my defense, coming from WebForms, I wanted to be as bare metal as possible and it seemed at first like a lot of the helpers were an unnecessary abstraction. I took my first look at Rails back in v1 and didn't spend very much time with it so I dismissed it and went on my merry ASP.NET WebForms way.  Then I picked up ASP.NET MVC and grasped the MVC pattern itself much better. After this, I took another look at Rails and everything made sense.  I decided then to learn Rails. (I think it is important for developers to learn new languages and platforms regularly so it was a natural progression for me) I wanted to learn it the right way, so when I dug into code, everyone used helpers everywhere for pretty much everything possible. I took some time to dig in and found out how helpful they were and subsequently realized how awesome they were in ASP.NET MVC also and started using them. In short, I love Rails (and Ruby in general).  I also love ASP.NET MVC and Entity Framework and yes I still love C++.  I have varying degrees of love for them individually at any given moment and it is likely to shift based on the current project I am working on.  I know you're thinking it so before you ask the question. "Which do I use when?", I'm going to give the standard developer answer of: It depends.  There are a lot of factors that I am not going to even go into that would go into a decision.  The most basic question I would ask though is,  does this project depend on .NET?  If it does, then I'd say that ASP.NET MVC is probably going to be the more logical choice and I am going to leave it at that.  I am working on projects right now in both technologies and I don't see that changing anytime soon (one project even uses both). With all that being said, you'll find me at code camps, conferences and user groups presenting on .NET, Ruby or both, writing about .NET and Ruby and I will likely be blogging on both in the future.  I know of others that have successfully branched out to other communities and with any luck I'll be successful at it too. On a (sorta) side note, I read a post by Justin Etheredge the other day that pretty much sums up my feelings about Ruby as a language.  I highly recommend checking it out: What Is So Great About Ruby?

    Read the article

  • Computer Networks UNISA - Chap 15 &ndash; Network Management

    - by MarkPearl
    After reading this section you should be able to Understand network management and the importance of documentation, baseline measurements, policies, and regulations to assess and maintain a network’s health. Manage a network’s performance using SNMP-based network management software, system and event logs, and traffic-shaping techniques Identify the reasons for and elements of an asset managements system Plan and follow regular hardware and software maintenance routines Fundamentals of Network Management Network management refers to the assessment, monitoring, and maintenance of all aspects of a network including checking for hardware faults, ensuring high QoS, maintaining records of network assets, etc. Scope of network management differs depending on the size and requirements of the network. All sub topics of network management share the goals of enhancing the efficiency and performance while preventing costly downtime or loss. Documentation The way documentation is stored may vary, but to adequately manage a network one should at least record the following… Physical topology (types of LAN and WAN topologies – ring, star, hybrid) Access method (does it use Ethernet 802.3, token ring, etc.) Protocols Devices (Switches, routers, etc) Operating Systems Applications Configurations (What version of operating system and config files for serve / client software) Baseline Measurements A baseline is a report of the network’s current state of operation. Baseline measurements might include the utilization rate for your network backbone, number of users logged on per day, etc. Baseline measurements allow you to compare future performance increases or decreases caused by network changes or events with past network performance. Obtaining baseline measurements is the only way to know for certain whether a pattern of usage has changed, or whether a network upgrade has made a difference. There are various tools available for measuring baseline performance on a network. Policies, Procedures, and Regulations Following rules helps limit chaos, confusion, and possibly downtime. The following policies and procedures and regulations make for sound network management. Media installations and management (includes designing physical layout of cable, etc.) Network addressing policies (includes choosing and applying a an addressing scheme) Resource sharing and naming conventions (includes rules for logon ID’s) Security related policies Troubleshooting procedures Backup and disaster recovery procedures In addition to internal policies, a network manager must consider external regulatory rules. Fault and Performance Management After documenting every aspect of your network and following policies and best practices, you are ready to asses you networks status on an on going basis. This process includes both performance management and fault management. Network Management Software To accomplish both fault and performance management, organizations often use enterprise-wide network management software. There various software packages that do this, each collect data from multiple networked devices at regular intervals, in a process called polling. Each managed device runs a network management agent. So as not to affect the performance of a device while collecting information, agents do not demand significant processing resources. The definition of a managed devices and their data are collected in a MIB (Management Information Base). Agents communicate information about managed devices via any of several application layer protocols. On modern networks most agents use SNMP which is part of the TCP/IP suite and typically runs over UDP on port 161. Because of the flexibility and sophisticated network management applications are a challenge to configure and fine-tune. One needs to be careful to only collect relevant information and not cause performance issues (i.e. pinging a device every 5 seconds can be a problem with thousands of devices). MRTG (Multi Router Traffic Grapher) is a simple command line utility that uses SNMP to poll devices and collects data in a log file. MRTG can be used with Windows, UNIX and Linux. System and Event Logs Virtually every condition recognized by an operating system can be recorded. This is typically done using event logs. In Windows there is a GUI event log viewer. Similar information is recorded in UNIX and Linux in a system log. Much of the information collected in event logs and syslog files does not point to a problem, even if it is marked with a warning so it is important to filter your logs appropriately to reduce the noise. Traffic Shaping When a network must handle high volumes of network traffic, users benefit from performance management technique called traffic shaping. Traffic shaping involves manipulating certain characteristics of packets, data streams, or connections to manage the type and amount of traffic traversing a network or interface at any moment. Its goals are to assure timely delivery of the most important traffic while offering the best possible performance for all users. Several types of traffic prioritization exist including prioritizing traffic according to any of the following characteristics… Protocol IP address User group DiffServr VLAN tag in a Data Link layer frame Service or application Caching In addition to traffic shaping, a network or host might use caching to improve performance. Caching is the local storage of frequently needed files that would otherwise be obtained from an external source. By keeping files close to the requester, caching allows the user to access those files quickly. The most common type of caching is Web caching, in which Web pages are stored locally. To an ISP, caching is much more than just convenience. It prevents a significant volume of WAN traffic, thus improving performance and saving money. Asset Management Another key component in managing networks is identifying and tracking its hardware. This is called asset management. The first step to asset management is to take an inventory of each node on the network. You will also want to keep records of every piece of software purchased by your organization. Asset management simplifies maintaining and upgrading the network chiefly because you know what the system includes. In addition, asset management provides network administrators with information about the costs and benefits of certain types of hardware or software. Change Management Networks are always in a stage of flux with various aspects including… Software changes and patches Client Upgrades Shared Application Upgrades NOS Upgrades Hardware and Physical Plant Changes Cabling Upgrades Backbone Upgrades For a detailed explanation on each of these read the textbook (Page 750 – 761)

    Read the article

  • Implement Tree/Details With Taskflow Regions Using EJB

    - by Deepak Siddappa
    This article describes on Display Tree/Details using taskflow regions.Use Case DescriptionLet us take scenario where we need to display Tree/Details, left region contains category hierarchy with items listed in a tree structure (ex:- Region-Countries-Locations-Departments in tree format) and right region contains the Employees list.In detail, Here User may drills down through categories using a tree until Employees are listed. Clicking the tree node name displays Employee list in the adjacent pane related to particular tree node. Implementation StepsThe script for creating the tables and inserting the data required for this application CreateSchema.sql Lets create a Java EE Web Application with Entities based on Regions, Countries, Locations, Departments and Employees table. Create a Stateless Session Bean and data control for the Stateless Session Bean. Add the below code to the session bean and expose the method in local/remote interface and generate a data control for that.Note:- Here in the below code "em" is a EntityManager. public List<Employees> empFilteredByTreeNode(String treeNodeType, String paramValue) { String queryString = null; try { if (treeNodeType == "null") { queryString = "select * from Employees emp ORDER BY emp.employee_id ASC"; } else if (Pattern.matches("[a-zA-Z]+[_]+[a-zA-Z]+[_]+[[0-9]+]+", treeNodeType)) { queryString = "select * from employees emp INNER JOIN departments dept\n" + "ON emp.department_id = dept.department_id JOIN locations loc\n" + "ON dept.location_id = loc.location_id JOIN countries cont\n" + "ON loc.country_id = cont.country_id JOIN regions reg\n" + "ON cont.region_id = reg.region_id and reg.region_name = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.contains("regionsFindAll_bc_countriesList_1")) { queryString = "select * from employees emp INNER JOIN departments dept \n" + "ON emp.department_id = dept.department_id JOIN locations loc \n" + "ON dept.location_id = loc.location_id JOIN countries cont \n" + "ON loc.country_id = cont.country_id and cont.country_name = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.contains("regionsFindAll_bc_locationsList_1")) { queryString = "select * from employees emp INNER JOIN departments dept ON emp.department_id = dept.department_id JOIN locations loc ON dept.location_id = loc.location_id and loc.city = '" + paramValue + "' ORDER BY emp.employee_id ASC"; } else if (treeNodeType.trim().contains("regionsFindAll_bc_departmentsList_1")) { queryString = "select * from Employees emp INNER JOIN Departments dept ON emp.DEPARTMENT_ID = dept.DEPARTMENT_ID and dept.DEPARTMENT_NAME = '" + paramValue + "'"; } } catch (NullPointerException e) { System.out.println(e.getMessage()); } return em.createNativeQuery(queryString, Employees.class).getResultList(); } In the ViewController project, create two ADF taskflow with page Fragments and name them as FirstTaskflow and SecondTaskflow respectively. Open FirstTaskflow,from component palette drop view(Page Fragment) name it as TreeList.jsff. Open SeconfTaskflow, from component palette drop view(Page Fragment) name it as EmpList.jsff and create two paramters in its overview parameters tab as shown in below image. Open TreeList.jsff , from data control palette drop regionsFindAll->Tree as ADF Tree. In Edit Tree Binding dialog, for Tree Level Rules select the display attributes as follows:-model.Regions - regionNamemodel.Countries - countryNamemodel.Locations - citymodel.Departments - departmentName In structure panel, click on af:Tree - t1 and select selectionListener with edit property. Create a "TreeBean" managed bean with scope as "session" as shown in below Image. Create new method as getTreeNodeSelectedValue and click ok. Open TreeBean managed bean and add the below code: private String treeNodeType; private String paramValue; public void getTreeNodeSelectedValue(SelectionEvent selectionEvent) { RichTree tree = (RichTree)selectionEvent.getSource(); RowKeySet addedSet = selectionEvent.getAddedSet(); Iterator i = addedSet.iterator(); TreeModel model = (TreeModel)tree.getValue(); model.setRowKey(i.next()); JUCtrlHierNodeBinding node = (JUCtrlHierNodeBinding)tree.getRowData(); //oracle.jbo.Row Row rw = node.getRow(); Object selectedTreeNode = node.getAttribute(0); Object treeListType = node.getBindings(); String treeNodeType = treeListType.toString(); this.setParamValue(selectedTreeNode.toString()); this.setTreeNodeType(treeNodeType); } public void setTreeNodeType(String treeNodeType) { this.treeNodeType = treeNodeType; } public String getTreeNodeType() { return treeNodeType; } public void setParamValue(String paramValue) { this.paramValue = paramValue; } public String getParamValue() { return paramValue; }<br /> Open EmpList.jsff , from data control palette drop empFilteredByTreeNode->Employees->Table as ADF Read-only Table. After selecting the  Employees result set, in Edit Action Binding dialog window pass the pageFlowScope parameters as shown in below Image. In empList.jsff page, click Binding tab and click on Create Executable binding and select Invoke action and follow as shown in below image. Edit executeEmpFiltered invoke action properties and set the Refresh to ifNeeded, So when ever the page needs the method will be executed. Create Main.jspx page with page template as Oracle Three Column Layout. Drop FirstTaskflow as Region in start facet and drop SecondTaskflow as Region in center facet, Edit task Flow Binding dialog window pass the Input Paramters as shown in below Image. Run the Main.jspx, tree will be displayed in left region and emp details will displyaed on the right region. Click on the Americas in tree node, all emp related to the Americas related will be displayed. Click on Americas->United States of America->South San Francisco->Accounting, only employee belongs to the Accounting department will be displayed.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sam Drake
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • Application Composer: Exposing Your Customizations in BI Analytics and Reporting

    - by Richard Bingham
    Introduction This article explains in simple terms how to ensure the customizations and extensions you have made to your Fusion Applications are available for use in reporting and analytics. It also includes four embedded demo videos from our YouTube channel (if they don't appear check the browser address bar for a blocking shield icon). If you are new to Business Intelligence consider first reviewing our getting started article, and you can read more about the topic of custom subject areas in the documentation book Extending Sales. There are essentially four sections to this post. First we look at how custom fields added to standard objects are made available for reporting. Secondly we look at creating custom subject areas on the standard objects. Next we consider reporting on custom objects, starting with simple standalone objects, then child custom objects, and finally custom objects with relationships. Finally this article reviews how flexfields are exposed for reporting. Whilst this article applies to both Cloud/SaaS and on-premises deployments, if you are an on-premises developer then you can also use the BI Administration Tool to customize your BI metadata repository (the RPD) and create new subject areas. Whilst this is not covered here you can read more in Chapter 8 of the Extensibility Guide for Developers. Custom Fields on Standard Objects If you add a custom field to your standard object then it's likely you'll want to include it in your reports. This is very simple, since all new fields are instantly available in the "[objectName] Extension" folder in existing subject areas. The following two minute video demonstrates this. Custom Subject Areas for Standard Objects You can create your own subject areas for use in analytics and reporting via Application Composer. An example use-case could be to simplify the seeded subject areas, since they sometimes contain complex data fields and internal values that could confuse business users. One thing to note is that you cannot create subject areas in a sandbox, as it is not supported by BI, so once your custom object is tested and complete you'll need to publish the sandbox before moving forwards. The subject area creation processes is essentially two-fold. Once the request is submitted the ADF artifacts are generated, then secondly the related metadata is sent to the BI presentation server API's to make the updates there. One thing to note is that this second step may take up to ten minutes to complete. Once finished the status of the custom subject area request should show as 'OK' and it is then ready for use. Within the creation processes wizard-like steps there are three concepts worth highlighting: Date Flattening - this feature permits the roll up of reports at various date levels, such as data by week, month, quarter, or year. You simply check the box to enable it for that date field. Measures - these are your own functions that you can build into the custom subject area. They are related to the field data type and include min-max for dates, and sum(), avg(), and count() for  numeric fields. Implicit Facts - used to make the BI metadata join between your object fields and the calculated measure fields. The advice is to choose the most frequently used measure to ensure consistency. This video shows a simple example, where a simplified subject area is created for the customer 'Contact' standard object, picking just a few fields upon which users can then create reports. Custom Objects Custom subject areas support three types of custom objects. First is a simple standalone custom object and for which the same process mentioned above applies. The next is a custom child object created on a standard object parent, and finally a custom object that is related to a parent object - usually through a dynamic choice list. Whilst the steps in each of these last two are mostly the same, there are differences in the way you choose the objects and their fields. This is illustrated in the videos below.The first video shows the process for creating a custom subject area for a simple standalone custom object. This second video demonstrates how to create custom subject areas for custom objects that are of parent:child type, as well as those those with dynamic-choice-list relationships. &lt;span id=&quot;XinhaEditingPostion&quot;&gt;&lt;/span&gt; Flexfields Dynamic and Extensible Flexfields satisfy a similar requirement as custom fields (for Application Composer), with flexfields common across the Fusion Financials, Supply Chain and Procurement, and HCM applications. The basic principle is when you enable and configure your flexfields, in the edit page under each segment region (for both global and context segments) there is a BI Enabled check box. Once this is checked and you've completed your configuration, you run the Scheduled Process job named 'Import Oracle Fusion Data Extensions for Transactional Business Intelligence' to generate and migrate the related BI artifacts and data. This applies for dynamic, key, and extensible flexfields. Of course there is more to consider in terms of how you wish your flexfields to be implemented and exposed in your reports, and details are given in Chapter 4 of the Extending Applications guide.

    Read the article

  • Not getting desired results with SSAO implementation

    - by user1294203
    After having implemented deferred rendering, I tried my luck with a SSAO implementation using this Tutorial. Unfortunately, I'm not getting anything that looks like SSAO, you can see my result below. You can see there is some weird pattern forming and there is no occlusion shading where there needs to be (i.e. in between the objects and on the ground). The shaders I implemented follow: #VS #version 330 core uniform mat4 invProjMatrix; layout(location = 0) in vec3 in_Position; layout(location = 2) in vec2 in_TexCoord; noperspective out vec2 pass_TexCoord; smooth out vec3 viewRay; void main(void){ pass_TexCoord = in_TexCoord; viewRay = (invProjMatrix * vec4(in_Position, 1.0)).xyz; gl_Position = vec4(in_Position, 1.0); } #FS #version 330 core uniform sampler2D DepthMap; uniform sampler2D NormalMap; uniform sampler2D noise; uniform vec2 projAB; uniform ivec3 noiseScale_kernelSize; uniform vec3 kernel[16]; uniform float RADIUS; uniform mat4 projectionMatrix; noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } mat3 CalcRMatrix(vec3 normal, vec2 texcoord){ ivec2 noiseScale = noiseScale_kernelSize.xy; vec3 rvec = texture(noise, texcoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); return mat3(tangent, bitangent, normal); } void main(void){ vec2 TexCoord = pass_TexCoord; vec3 Position = CalcPosition(); vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); mat3 RotationMatrix = CalcRMatrix(Normal, TexCoord); int kernelSize = noiseScale_kernelSize.z; float occlusion = 0.0; for(int i = 0; i < kernelSize; i++){ // Get sample position vec3 sample = RotationMatrix * kernel[i]; sample = sample * RADIUS + Position; // Project and bias sample position to get its texture coordinates vec4 offset = projectionMatrix * vec4(sample, 1.0); offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; // Get sample depth float sample_depth = texture(DepthMap, offset.xy).r; float linearDepth = projAB.y / (sample_depth - projAB.x); if(abs(Position.z - linearDepth ) < RADIUS){ occlusion += (linearDepth <= sample.z) ? 1.0 : 0.0; } } out_AO = 1.0 - (occlusion / kernelSize); } I draw a full screen quad and pass Depth and Normal textures. Normals are in RGBA16F with the alpha channel reserved for the AO factor in the blur pass. I store depth in a non linear Depth buffer (32F) and recover the linear depth using: float linearDepth = projAB.y / (depth - projAB.x); where projAB.y is calculated as: and projAB.x as: These are derived from the glm::perspective(gluperspective) matrix. z_n and z_f are the near and far clip distance. As described in the link I posted on the top, the method creates samples in a hemisphere with higher distribution close to the center. It then uses random vectors from a texture to rotate the hemisphere randomly around the Z direction and finally orients it along the normal at the given pixel. Since the result is noisy, a blur pass follows the SSAO pass. Anyway, my position reconstruction doesn't seem to be wrong since I also tried doing the same but with the position passed from a texture instead of being reconstructed. I also tried playing with the Radius, noise texture size and number of samples and with different kinds of texture formats, with no luck. For some reason when changing the Radius, nothing changes. Does anyone have any suggestions? What could be going wrong?

    Read the article

  • When is my View too smart?

    - by Kyle Burns
    In this posting, I will discuss the motivation behind keeping View code as thin as possible when using patterns such as MVC, MVVM, and MVP.  Once the motivation is identified, I will examine some ways to determine whether a View contains logic that belongs in another part of the application.  While the concepts that I will discuss are applicable to most any pattern which favors a thin View, any concrete examples that I present will center on ASP.NET MVC. Design patterns that include a Model, a View, and other components such as a Controller, ViewModel, or Presenter are not new to application development.  These patterns have, in fact, been around since the early days of building applications with graphical interfaces.  The reason that these patterns emerged is simple – the code running closest to the user tends to be littered with logic and library calls that center around implementation details of showing and manipulating user interface widgets and when this type of code is interspersed with application domain logic it becomes difficult to understand and much more difficult to adequately test.  By removing domain logic from the View, we ensure that the View has a single responsibility of drawing the screen which, in turn, makes our application easier to understand and maintain. I was recently asked to take a look at an ASP.NET MVC View because the developer reviewing it thought that it possibly had too much going on in the view.  I looked at the .CSHTML file and the first thing that occurred to me was that it began with 40 lines of code declaring member variables and performing the necessary calculations to populate these variables, which were later either output directly to the page or used to control some conditional rendering action (such as adding a class name to an HTML element or not rendering another element at all).  This exhibited both of what I consider the primary heuristics (or code smells) indicating that the View is too smart: Member variables – in general, variables in View code are an indication that the Model to which the View is being bound is not sufficient for the needs of the View and that the View has had to augment that Model.  Notable exceptions to this guideline include variables used to hold information specifically related to rendering (such as a dynamically determined CSS class name or the depth within a recursive structure for indentation purposes) and variables which are used to facilitate looping through collections while binding. Arithmetic – as with member variables, the presence of arithmetic operators within View code are an indication that the Model servicing the View is insufficient for its needs.  For example, if the Model represents a line item in a sales order, it might seem perfectly natural to “normalize” the Model by storing the quantity and unit price in the Model and multiply these within the View to show the line total.  While this does seem natural, it introduces a business rule to the View code and makes it impossible to test that the rounding of the result meets the requirement of the business without executing the View.  Within View code, arithmetic should only be used for activities such as incrementing loop counters and calculating element widths. In addition to the two characteristics of a “Smart View” that I’ve discussed already, this View also exhibited another heuristic that commonly indicates to me the need to refactor a View and make it a bit less smart.  That characteristic is the existence of Boolean logic that either does not work directly with properties of the Model or works with too many properties of the Model.  Consider the following code and consider how logic that does not work directly with properties of the Model is just another form of the “member variable” heuristic covered earlier: @if(DateTime.Now.Hour < 12) {     <div>Good Morning!</div> } else {     <div>Greetings</div> } This code performs business logic to determine whether it is morning.  A possible refactoring would be to add an IsMorning property to the Model, but in this particular case there is enough similarity between the branches that the entire branching structure could be collapsed by adding a Greeting property to the Model and using it similarly to the following: <div>@Model.Greeting</div> Now let’s look at some complex logic around multiple Model properties: @if (ModelPageNumber + Model.NumbersToDisplay == Model.PageCount         || (Model.PageCount != Model.CurrentPage             && !Model.DisplayValues.Contains(Model.PageCount))) {     <div>There's more to see!</div> } In this scenario, not only is the View code difficult to read (you shouldn’t have to play “human compiler” to determine the purpose of the code), but it also complex enough to be at risk for logical errors that cannot be detected without executing the View.  Conditional logic that requires more than a single logical operator should be looked at more closely to determine whether the condition should be evaluated elsewhere and exposed as a single property of the Model.  Moving the logic above outside of the View and exposing a new Model property would simplify the View code to: @if(Model.HasMoreToSee) {     <div>There’s more to see!</div> } In this posting I have briefly discussed some of the more prominent heuristics that indicate a need to push code from the View into other pieces of the application.  You should now be able to recognize these symptoms when building or maintaining Views (or the Models that support them) in your applications.

    Read the article

  • Code refactoring with Visual Studio 2010 Part-4

    - by Jalpesh P. Vadgama
    I have been writing few post with code refactoring features in Visual Studio 2010. This post also will be part of series and this post will be last of the series. In this post I am going explain two features 1) Encapsulate Field and 2) Extract Interface. Let’s explore both features in details. Encapsulate Field: This is a nice code refactoring feature provides by Visual Studio 2010. With help of this feature we can create properties from the existing private field of the class. Let’s take a simple example of Customer Class. In that I there are two private field called firstName and lastName. Below is the code for the class. public class Customer { private string firstName; private string lastName; public string Address { get; set; } public string City { get; set; } } Now lets encapsulate first field firstName with Encapsulate feature. So first select that field and goto refactor menu in Visual Studio 2010 and click on Encapsulate Field. Once you click that a dialog box will appear like following. Now once you click OK a preview dialog box will open as we have selected preview reference changes. I think its a good options to check that option to preview code that is being changed by IDE itself. Dialog will look like following. Once you click apply it create a new property called FirstName. Same way I have done for the lastName and now my customer class code look like following. public class Customer { private string firstName; public string FirstName { get { return firstName; } set { firstName = value; } } private string lastName; public string LastName { get { return lastName; } set { lastName = value; } } public string Address { get; set; } public string City { get; set; } } So you can see that its very easy to create properties with existing fields and you don’t have to change anything there in code it will change all the stuff itself. Extract Interface: When you are writing software prototype and You don’t know the future implementation of that then its a good practice to use interface there. I am going to explain here that How we can extract interface from the existing code without writing a single line of code with the help of code refactoring feature of Visual Studio 2010. For that I have create a Simple Repository class called CustomerRepository with three methods like following. public class CustomerRespository { public void Add() { // Some code to add customer } public void Update() { //some code to update customer } public void Delete() { //some code delete customer } } In above class there are three method Add,Update and Delete where we are going to implement some code for each one. Now I want to create a interface which I can use for my other entities in project. So let’s create a interface from the above class with the help of Visual Studio 2010. So first select class and goto refactor menu and click Extract Interface. It will open up dialog box like following. Here I have selected all the method for interface and Once I click OK then it will create a new file called ICustomerRespository where it has created a interface. Just like following. Here is a code for that interface. using System; namespace CodeRefractoring { interface ICustomerRespository { void Add(); void Delete(); void Update(); } } Now let's see the code for the our class. It will also changed like following to implement the interface. public class CustomerRespository : ICustomerRespository { public void Add() { // Some code to add customer } public void Update() { //some code to update customer } public void Delete() { //some code delete customer } } Isn't that great we have created a interface and implemented it without writing a single line of code. Hope you liked it. Stay tuned for more.. Till that Happy Programming.

    Read the article

  • Windows in StreamInsight: Hopping vs. Snapshot

    - by Roman Schindlauer
    Three weeks ago, we explained the basic concept of windows in StreamInsight: defining sets of events that serve as arguments for set-based operations, like aggregations. Today, we want to discuss the so-called Hopping Windows and compare them with Snapshot Windows. We will compare these two, because they can serve similar purposes with different behaviors; we will discuss the remaining window type, Count Windows, another time. Hopping (and its syntactic-sugar-sister Tumbling) windows are probably the most straightforward windowing concept in StreamInsight. A hopping window is defined by its length, and the offset from one window to the next. They are aligned with some absolute point on the timeline (which can also be given as a parameter to the window) and create sets of events. The diagram below shows an example of a hopping window with length of 1h and hop size (the offset) of 15 minutes, hence creating overlapping windows:   Two aspects in this diagram are important: Since this window is overlapping, an event can fall into more than one windows. If an (interval) event spans a window boundary, its lifetime will be clipped to the window, before it is passed to the set-based operation. That’s the default and currently only available window input policy. (This should only concern you if you are using a time-sensitive user-defined aggregate or operator.) The set-based operation will be applied to each of these sets, yielding a result. This result is: A single scalar value in case of built-in or user-defined aggregates. A subset of the input payloads, in case of the TopK operator. Arbitrary events, when using a user-defined operator. The timestamps of the result are almost always the ones of the windows. Only the user-defined  operator can create new events with timestamps. (However, even these event lifetimes are subject to the window’s output policy, which is currently always to clip to the window end.) Let’s assume we were calculating the sum over some payload field: var result = from window in source.HoppingWindow( TimeSpan.FromHours(1), TimeSpan.FromMinutes(15), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { avg = window.Avg(e => e.Value) }; Now each window is reflected by one result event:   As you can see, the window definition defines the output frequency. No matter how many or few events we got from the input, this hopping window will produce one result every 15 minutes – except for those windows that do not contain any events at all, because StreamInsight window operations are empty-preserving (more about that another time). The “forced” output for every window can become a performance issue if you have a real-time query with many events in a wide group & apply – let me explain: imagine you have a lot of events that you group by and then aggregate within each group – classical streaming pattern. The hopping window produces a result in each group at exactly the same point in time for all groups, since the window boundaries are aligned with the timeline, not with the event timestamps. This means that the query output will become very bursty, delivering the results of all the groups at the same point in time. This becomes especially obvious if the events are long-lasting, spanning multiple windows each, so that the produced result events do not change their value very often. In such a case, a snapshot window can remedy. Snapshot windows are more difficult to explain than hopping windows: they represent those periods in time, when no event changes occur. In other words, if you mark all event start and and times on your timeline, then you are looking at all snapshot window boundaries:   If your events are never overlapping, the snapshot window will not make much sense. It is commonly used together with timestamp modification, which make it a very powerful tool. Or as Allan Mitchell expressed in in a recent tweet: “I used to look at SnapshotWindow() with disdain. Now she is my mistress, the one I turn to in times of trouble and need”. Let’s look at a simple example: I want to compute the average of some value in my events over the last minute. I don’t want this output be produced at fixed intervals, but at soon as it changes (that’s the true event-driven spirit!). The snapshot window will include all currently active event at each point in time, hence we need to extend our original events’ lifetimes into the future: Applying the Snapshot window on these events, it will appear to be “looking back into the past”: If you look at the result produced in this diagram, you can easily prove that, at each point in time, the current event value represents the average of all original input event within the last minute. Here is the LINQ representation of that query, applying the lifetime extension before the snapshot window: var result = from window in source .AlterEventDuration(e => TimeSpan.FromMinutes(1)) .SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { avg = window.Avg(e => e.Value) }; With more complex modifications of the event lifetimes you can achieve many more query patterns. For instance “running totals” by keeping the event start times, but snapping their end times to some fixed time, like the end of the day. Each snapshot then “sees” all events that have happened in the respective time period so far. Regards, The StreamInsight Team

    Read the article

  • Rebuilding CoasterBuzz, Part IV: Dependency injection, it's what's for breakfast

    - by Jeff
    (Repost from my personal blog.) This is another post in a series about rebuilding one of my Web sites, which has been around for 12 years. I hope to relaunch soon. More: Part I: Evolution, and death to WCF Part II: Hot data objects Part III: The architecture using the "Web stack of love" If anything generally good for the craft has come out of the rise of ASP.NET MVC, it's that people are more likely to use dependency injection, and loosely couple the pieces parts of their applications. A lot of the emphasis on coding this way has been to facilitate unit testing, and that's awesome. Unit testing makes me feel a lot less like a hack, and a lot more confident in what I'm doing. Dependency injection is pretty straight forward. It says, "Given an instance of this class, I need instances of other classes, defined not by their concrete implementations, but their interfaces." Probably the first place a developer exercises this in when having a class talk to some kind of data repository. For a very simple example, pretend the FooService has to get some Foo. It looks like this: public class FooService {    public FooService(IFooRepository fooRepo)    {       _fooRepo = fooRepo;    }    private readonly IFooRepository _fooRepo;    public Foo GetMeFoo()    {       return _fooRepo.FooFromDatabase();    } } When we need the FooService, we ask the dependency container to get it for us. It says, "You'll need an IFooRepository in that, so let me see what that's mapped to, and put it in there for you." Why is this good for you? It's good because your FooService doesn't know or care about how you get some foo. You can stub out what the methods and properties on a fake IFooRepository might return, and test just the FooService. I don't want to get too far into unit testing, but it's the most commonly cited reason to use DI containers in MVC. What I wanted to mention is how there's another benefit in a project like mine, where I have to glue together a bunch of stuff. For example, when I have someone sign up for a new account on CoasterBuzz, I'm actually using POP Forums' new account mailer, which composes a bunch of text that includes a link to verify your account. The thing is, I want to use custom text and some other logic that's specific to CoasterBuzz. To accomplish this, I make a new class that inherits from the forum's NewAccountMailer, and override some stuff. Easy enough. Then I use Ninject, the DI container I'm using, to unbind the forum's implementation, and substitute my own. Ninject uses something called a NinjectModule to bind interfaces to concrete implementations. The forum has its own module, and then the CoasterBuzz module is loaded second. The CB module has two lines of code to swap out the mailer implementation: Unbind<PopForums.Email.INewAccountMailer>(); Bind<PopForums.Email.INewAccountMailer>().To<CbNewAccountMailer>(); Piece of cake! Now, when code asks the DI container for an INewAccountMailer, it gets my custom implementation instead. This is a lot easier to deal with than some of the alternatives. I could do some copy-paste, but then I'm not using well-tested code from the forum. I could write stuff from scratch, but then I'm throwing away a bunch of logic I've already written (in this case, stuff around e-mail, e-mail settings, mail delivery failures). There are other places where the DI container comes in handy. For example, CoasterBuzz does a number of custom things with user profiles, and special content for paid members. It uses the forum as the core piece to managing users, so I can ask the container to get me instances of classes that do user lookups, for example, and have zero care about how the forum handles database calls, configuration, etc. What a great world to live in, compared to ten years ago. Sure, the primary interest in DI is around the "separation of concerns" and facilitating unit testing, but as your library grows and you use more open source, it starts to be the glue that pulls everything together.

    Read the article

  • Silverlight Reporting Application Part 3.5 - Prism Background and WCF RIA [Series Intermission]

    Taking a step back before I dive into the details and full-on coding fun, I wanted to once again respond to a comment on my last post to clear up some things in regards to how I'm setting up my project and some of the choices I've made. Aka, thanks Ben. :) Prism Project Setup For starters, I'm not the ideal use case for a Prism application. In most cases where you've got a one-man team, Prism can be overkill as it is more intended for large teams who are geographically dispersed or in applications that have a larger scale than my Recruiting application in which you'll greatly benefit from modularity, delayed loading of xaps, etc. What Prism offers, though, is a manner for handling UI, commands, and events with the idea that, through a modular approach in which no parts really need to know about one another, I can update this application bit by bit as hiring needs change or requirements differ between offices without having to worry that changing something in the Jobs module will break something in, say, the Scheduling module. All that being said, here's a look at how our project breakdown for Recruit (MVVM/Prism implementation) looks: This could be a little misleading though, as each of those modules is actually another project in the overall Recruit solution. As far as what the projects actually are, that looks a bit like this: Recruiting Solution Recruit (Shell up there) - Main Silverlight Application .Web - Default .Web application to host the Silverlight app Infrastructure - Silverlight Class Library Project Modules - Silverlight Class Library Projects Infrastructure &Modules The Infrastructure project is probably something you'll see to some degree in any composite application. In this application, it is going to contain custom commands (you'll see the joy of these in a post or two down the road), events, helper classes, and any custom classes I need to share between different modules. Think of this as a handy little crossroad between any parts of your application. Modules on the other hand are the bread and butter of this application. Besides the shell, which holds the UI skeleton, and the infrastructure, which holds all those shared goodies, the modules are self-contained bundles of functionality to handle different concerns. In my scenario, I need a way to look up and edit Jobs, Applicants, and Schedule interviews, a Notification module to handle telling the user when different things are happening (i.e., loading from database), and a Menu to control interaction and moving between different views. All modules are going to follow the following pattern: The module class will inherit from IModule and handle initialization and loading the correct view into the correct region, whereas the Views and ViewModels folders will contain paired Silverlight user controls and ViewModel class backings. WCF RIA Services Since we've got all the projects in a single solution, we did not have to go the route of creating a WCR RIA Services Class Library. Every module has it's WCF RIA link back to the main .Web project, so the single Linq-2-SQL (yes, I said Linq-2-SQL, but I'll soon be switching to OpenAccess due to the new visual designer) context I'm using there works nicely with the scope of my project. If I were going for completely separating this project out and doing different, dynamically loaded elements, I'd probably go for the separate class library. Hope that clears that up. In the future though, I will be using that in a project that I've got in the "when I've got enough time to work on this" pipeline, so we'll get into that eventually- and hopefully when WCF RIA is in full release! Why Not use Silverlight Navigation/Business Template? The short answer- I'm a creature of habit, and having used Silverlight for a few years now, I'm used to doing lots of things manually. :) Plus, starting with a blank slate of a project I'm able to set up things exactly as I want them to be. In this case, rather than the navigation frame we would see in one of the templates, the MainRegion/ContentControl is working as our main navigation window. In many cases I will use theSilverlight navigation template to start things off, however in this case I did not need those features so I opted out of using that. Next time when I actually hit post #4, we're going to get into the modules and starting to get functionality into this application. Next week is also release week for the Q1 2010 release, so be sure to check out our annualWebinar Week (I might be biased, but Wednesday is my favorite out of the group). Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Computer Networks UNISA - Chap 8 &ndash; Wireless Networking

    - by MarkPearl
    After reading this section you should be able to Explain how nodes exchange wireless signals Identify potential obstacles to successful transmission and their repercussions, such as interference and reflection Understand WLAN architecture Specify the characteristics of popular WLAN transmission methods including 802.11 a/b/g/n Install and configure wireless access points and their clients Describe wireless MAN and WAN technologies, including 802.16 and satellite communications The Wireless Spectrum All wireless signals are carried through the air by electromagnetic waves. The wireless spectrum is a continuum of the electromagnetic waves used for data and voice communication. The wireless spectrum falls between 9KHZ and 300 GHZ. Characteristics of Wireless Transmission Antennas Each type of wireless service requires an antenna specifically designed for that service. The service’s specification determine the antenna’s power output, frequency, and radiation pattern. A directional antenna issues wireless signals along a single direction. An omnidirectional antenna issues and receives wireless signals with equal strength and clarity in all directions The geographical area that an antenna or wireless system can reach is known as its range Signal Propagation LOS (line of sight) uses the least amount of energy and results in the reception of the clearest possible signal. When there is an obstacle in the way, the signal may… pass through the object or be obsrobed by the object or may be subject to reflection, diffraction or scattering. Reflection – waves encounter an object and bounces off it. Diffraction – signal splits into secondary waves when it encounters an obstruction Scattering – is the diffusion or the reflection in multiple different directions of a signal Signal Degradation Fading occurs as a signal hits various objects. Because of fading, the strength of the signal that reaches the receiver is lower than the transmitted signal strength. The further a signal moves from its source, the weaker it gets (this is called attenuation) Signals are also affected by noise – the electromagnetic interference) Interference can distort and weaken a wireless signal in the same way that noise distorts and weakens a wired signal. Frequency Ranges Older wireless devices used the 2.4 GHZ band to send and receive signals. This had 11 communication channels that are unlicensed. Newer wireless devices can also use the 5 GHZ band which has 24 unlicensed bands Narrowband, Broadband, and Spread Spectrum Signals Narrowband – a transmitter concentrates the signal energy at a single frequency or in a very small range of frequencies Broadband – uses a relatively wide band of the wireless spectrum and offers higher throughputs than narrowband technologies The use of multiple frequencies to transmit a signal is known as spread-spectrum technology. In other words a signal never stays continuously within one frequency range during its transmission. One specific implementation of spread spectrum is FHSS (frequency hoping spread spectrum). Another type is known as DSS (direct sequence spread spectrum) Fixed vs. Mobile Each type of wireless communication falls into one of two categories Fixed – the location of the transmitted and receiver do not move (results in energy saved because weaker signal strength is possible with directional antennas) Mobile – the location can change WLAN (Wireless LAN) Architecture There are two main types of arrangements Adhoc – data is sent directly between devices – good for small local devices Infrastructure mode – a wireless access point is placed centrally, that all devices connect with 802.11 WLANs The most popular wireless standards used on contemporary LANs are those developed by IEEE’s 802.11 committee. Over the years several distinct standards related to wireless networking have been released. Four of the best known standards are also referred to as Wi-Fi. They are…. 802.11b 802.11a 802.11g 802.11n These four standards share many characteristics. i.e. All 4 use half duplex signalling Follow the same access method Access Method 802.11 standards specify the use of CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) to access a shared medium. Using CSMA/CA before a station begins to send data on an 802.11 network, it checks for existing wireless transmissions. If the source node detects no transmission activity on the network, it waits a brief period of time and then sends its transmission. If the source does detect activity, it waits a brief period of time before checking again. The destination node receives the transmission and, after verifying its accuracy, issues an acknowledgement (ACT) packet to the source. If the source receives the ACK it assumes the transmission was successful, – if it does not receive an ACK it assumes the transmission failed and sends it again. Association Two types of scanning… Active – station transmits a special frame, known as a prove, on all available channels within its frequency range. When an access point finds the probe frame, it issues a probe response. Passive – wireless station listens on all channels within its frequency range for a special signal, known as a beacon frame, issued from an access point – the beacon frame contains information necessary to connect to the point. Re-association occurs when a mobile user moves out of one access point’s range and into the range of another. Frames Read page 378 – 381 about frames and specific 802.11 protocols Bluetooth Networks Sony Ericson originally invented the Bluetooth technology in the early 1990s. In 1998 other manufacturers joined Ericsson in the Special Interest Group (SIG) whose aim was to refine and standardize the technology. Bluetooth was designed to be used on small networks composed of personal communications devices. It has become popular wireless technology for communicating among cellular telephones, phone headsets, etc. Wireless WANs and Internet Access Refer to pages 396 – 402 of the textbook for details.

    Read the article

  • How customers view and interact with a company

    The Harvard Business Review article written by Rayport and Jaworski is aptly titled “Best Face Forward” because it sheds light on how customers view and interact with a company. In the past most business interaction between customers was performed in a face to face meeting where one party would present an item for sale and then the other would decide whether to purchase the item. In addition, if there was a problem with a purchased item then they would bring the item back to the person who sold the item for resolution. One of my earliest examples of witnessing this was when I was around 6 or 7 years old and I was allowed to spend the summer in Tennessee with my Grandparents. My Grandfather had just written a book about the local history of his town and was selling them to his friends and local bookstores. I still remember he offered to pay me a small commission for every book I helped him sell because I was carrying the books around for him. Every sale he made was face to face with his customers which allowed him to share his excitement for the book with everyone. In today’s modern world there is less and less human interaction as the use of computers and other technologies allow us to communicate within seconds even though both parties may be across the globe or just next door. That being said, customers view a company through multiple access points called faces that represent the ability to interact without actually seeing a human face. As a software engineer this is a good and a bad thing because direct human interaction and technology based interaction have both good and bad attributes based on the customer. How organizations coordinate business and IT functions, to provide quality service varies based on each individual business and the goals and directives put in place by its management. According to Rayport and Jaworski, the type of interaction used through a particular access point may lend itself to be people-dominate, machine-dominate, or a combination of both. The method by which a company communicates information through an access point is a strategic choice that relates costs and customer outcomes. To simplify this, the choice is based on what can give the customer the best experience interacting with the company when the cost of the interaction is also a factor. I personally see examples of this every day at work. The company website is machine-dominate with people updating and maintaining information, our groups department is people dominate because most of the customer interaction is done at the customers location and is backed up by machine based data sources, and our sales/member service department is a hybrid because employees work in tandem with machines in order for them to assist customers with signing up or any other issue they may have. The positive and negative aspects of human and machine interfaces are a key aspect in deciding which interface to use when allowing customers to access a company or a combination of the two. Rayport and Jaworski also used MIT professor Erik Brynjolfsson preliminary catalog of human and machine strengths. He stated that humans outperform machines in judgment, pattern recognition, exception processing, insight, and creativity. I have found this to be true based on the example of how sales and member service reps at my company handle a multitude of questions and various situations with a lot of unknown variables. A machine interface could never effectively be able to handle these scenarios because there are too many variables to consider and would not have the built-in logic to process each customer’s claims and needs. In addition, he also stated that machines outperform humans in collecting, storing, transmitting and routine processing. An example of this would be my employer’s website. Customers can simply go online and purchase a product without even talking to a sales or member services representative. The information is then stored in a database so that the customer can always go back and review there order, and access their selected services. A human, no matter how smart they are would never be able to keep track of hundreds of thousands of customers let alone know what they purchased or how much they paid. In today’s technology driven economy every company must offer their customers multiple methods of accessibly in order to survive. The more of an opportunity a company has to create a positive experience for their customers, in my opinion, they more likely the customer will return to that company again. I have noticed this with my personal shopping habits and experiences. References Rayport, J., & Jaworski, B. (2004). Best Face Forward. Harvard Business Review, 82(12), 47-58. Retrieved from Business Source Complete database.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sherry LaMonica
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • Documentation Changes in Solaris 11.1

    - by alanc
    One of the first places you can see Solaris 11.1 changes are in the docs, which have now been posted in the Solaris 11.1 Library on docs.oracle.com. I spent a good deal of time reviewing documentation for this release, and thought some would be interesting to blog about, but didn't review all the changes (not by a long shot), and am not going to cover all the changes here, so there's plenty left for you to discover on your own. Just comparing the Solaris 11.1 Library list of docs against the Solaris 11 list will show a lot of reorganization and refactoring of the doc set, especially in the system administration guides. Hopefully the new break down will make it easier to get straight to the sections you need when a task is at hand. Packaging System Unfortunately, the excellent in-depth guide for how to build packages for the new Image Packaging System (IPS) in Solaris 11 wasn't done in time to make the initial Solaris 11 doc set. An interim version was published shortly after release, in PDF form on the OTN IPS page. For Solaris 11.1 it was included in the doc set, as Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1, so should be easier to find, and easier to share links to specific pages the HTML version. Beyond just how to build a package, it includes details on how Solaris is packaged, and how package updates work, which may be useful to all system administrators who deal with Solaris 11 upgrades & installations. The Adding and Updating Oracle Solaris 11.1 Software Packages was also extended, including new sections on Relaxing Version Constraints Specified by Incorporations and Locking Packages to a Specified Version that may be of interest to those who want to keep the Solaris 11 versions of certain packages when they upgrade, such as the couple of packages that had functionality removed by an (unusual for an update release) End of Feature process in the 11.1 release. Also added in this release is a document containing the lists of all the packages in each of the major package groups in Solaris 11.1 (solaris-desktop, solaris-large-server, and solaris-small-server). While you can simply get the contents of those groups from the package repository, either via the web interface or the pkg command line, the documentation puts them in handy tables for easier side-by-side comparison, or viewing the lists before you've installed the system to pick which one you want to initially install. X Window System We've not had good X11 coverage in the online Solaris docs in a while, mostly relying on the man pages, and upstream X.Org docs. In this release, we've integrated some X coverage into the Solaris 11.1 Desktop Adminstrator's Guide, including sections on installing fonts for fontconfig or legacy X11 clients, X server configuration, and setting up remote access via X11 or VNC. Of course we continue to work on improving the docs, including a lot of contributions to the upstream docs all OS'es share (more about that another time). Security One of the things Oracle likes to do for its products is to publish security guides for administrators & developers to know how to build systems that meet their security needs. For Solaris, we started this with Solaris 11, providing a guide for sysadmins to find where the security relevant configuration options were documented. The Solaris 11.1 Security Guidelines extend this to cover new security features, such as Address Space Layout Randomization (ASLR) and Read-Only Zones, as well as adding additional guidelines for existing features, such as how to limit the size of tmpfs filesystems, to avoid users driving the system into swap thrashing situations. For developers, the corresponding document is the Developer's Guide to Oracle Solaris 11 Security, which has been the source for years for documentation of security-relevant Solaris API's such as PAM, GSS-API, and the Solaris Cryptographic Framework. For Solaris 11.1, a new appendix was added to start providing Secure Coding Guidelines for Developers, leveraging the CERT Secure Coding Standards and OWASP guidelines to provide the base recommendations for common programming languages and their standard API's. Solaris specific secure programming guidance was added via links to other documentation in the product doc set. In parallel, we updated the Solaris C Libary Functions security considerations list with details of Solaris 11 enhancements such as FD_CLOEXEC flags, additional *at() functions, and new stdio functions such as asprintf() and getline(). A number of code examples throughout the Solaris 11.1 doc set were updated to follow these recommendations, changing unbounded strcpy() calls to strlcpy(), sprintf() to snprintf(), etc. so that developers following our examples start out with safer code. The Writing Device Drivers guide even had the appendix updated to list which of these utility functions, like snprintf() and strlcpy(), are now available via the Kernel DDI. Little Things Of course all the big new features got documented, and some major efforts were put into refactoring and renovation, but there were also a lot of smaller things that got fixed as well in the nearly a year between the Solaris 11 and 11.1 doc releases - again too many to list here, but a random sampling of the ones I know about & found interesting or useful: The Privileges section of the DTrace Guide now gives users a pointer to find out how to set up DTrace privileges for non-global zones and what limitations are in place there. A new section on Recommended iSCSI Configuration Practices was added to the iSCSI configuration section when it moved into the SAN Configuration and Multipathing administration guide. The Managing System Power Services section contains an expanded explanation of the various tunables for power management in Solaris 11.1. The sample dcmd sources in /usr/demo/mdb were updated to include ::help output, so that developers like myself who follow the examples don't forget to include it (until a helpful code reviewer pointed it out while reviewing the mdb module changes for Xorg 1.12). The README file in that directory was updated to show the correct paths for installing both kernel & userspace modules, including the 64-bit variants.

    Read the article

< Previous Page | 369 370 371 372 373 374 375 376 377 378 379 380  | Next Page >