Search Results

Search found 30941 results on 1238 pages for 'background process'.

Page 382/1238 | < Previous Page | 378 379 380 381 382 383 384 385 386 387 388 389  | Next Page >

  • More than one JPanel in a Frame / having a brackground Image and another Layer with Components on the top

    - by user1905203
    I've got a JFrame with a JPanel in which there is a JLabel with an ImageIcon(). Everything's working perfectly, problem is i now want to add another JPanel with all the other stuff like buttons and so on to the JFrame. But it still shows the background Image on top and nothing with the second JPanel. Can someone help me? Here is an extract of my code: JFrame window = new JFrame("Http Download"); /* * Background Section */ JPanel panel1 = new JPanel(); JLabel lbl1 = new JLabel(); /* * Component Section */ JPanel panel2 = new JPanel(); JLabel lbl2 = new JLabel(); /* * Dimension Section */ Dimension windowSize = new Dimension(800, 600); Dimension screen = Toolkit.getDefaultToolkit().getScreenSize(); public HTTPDownloadGUI() { window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); panel1.setLayout(null); panel1.setSize(windowSize); panel1.setOpaque(false); panel2.setLayout(null); panel2.setSize(windowSize); panel2.setOpaque(false); lbl1.setSize(windowSize); lbl1.setLocation(0, 0); lbl1.setIcon(new ImageIcon(getClass().getResource("bg1.png"))); panel1.add(lbl1); lbl2.setBounds(0, 0, 100, 100); //lbl2.setIcon(new ImageIcon(getClass().getResource("bg2.png"))); lbl2.setBackground(Color.GREEN); panel2.add(lbl2); panel1.add(panel2); window.add(panel1); int X = (screen.width / 2) - (windowSize.width / 2); int Y = (screen.height / 2) - (windowSize.height / 2); window.setBounds(X,Y , windowSize.width, windowSize.height); window.setVisible(true); }

    Read the article

  • Unordered list appears higher than div

    - by LordArmadillo
    I am trying to create a simple page, which I normally can without any trouble. However, the unordered list appears higher up the page than the div. I do know a solution for this, however I cannot remember it. The page goes like this: <style> ul.menu { list-style-type: none; margin:150; margin-bottom:30px; padding:0; display: block; width: 708px; margin-left: auto; margin-right: auto; } li.menu { float:left; display: block; width: 118px; } a.menu:link,a.menu:visited { color:black; display:block; border:1px solid black; background-color:#FFFF00; width:118px; text-align:center; text-decoration:none; font-family:"Courier New", Courier, monospace } a.menu:hover { background-color:#FFBB11; } </style> <div id="head"> My images here & such</div> <ul class="menu"> <li class="menu"> <a class="menu">Main</a> </li> </ul> Normally I welcome suggestions to change my code, but I have a deadline today! So, quick & simple help would be appreciated! Thanks! LordArmadillo

    Read the article

  • check if foler exists in the root jquery

    - by Dimal Chandrasiri
    I'm trying to load an image to a div background using the following file structure in the root. WebContent -- | zharaimages -- | [ItemID] -- | Image.jpg This is done by jQuery and the file structure is inside the root. The ItemID folder is dynamic and I have to check whether the path exists using jQuery and if the path is not valid, I should go to a default path to fetch the default image. How can I check the path is valid using jQuery. I'm hoping to this can be done without an ajax call. Can any one help me on a tutorial or an API I can use for this! UPDATE The files are on the server. The concept I have is that I have 100s of item elements & I want to load an image for each item element. The images are saved in the server ( a local host ) and the folder hierarchy is divided using the item ID as shown. What I want to do is check whether the image file exists before appending it to the background of the item element div. Is this possible. This is a web application developed using spring.

    Read the article

  • How do you have jquery slide up and down on hover without distorting shape?

    - by anita
    How do you have an object slide up as if it were hidden behind something, rather than bending out. example In the jsfiddle demo, you can see the circle bends flat as it slides, but I'd like it to slide out as if it were hidden behind something. (I unfortunately can't just put an image or div with the same background color over the circle and have the circle underneath slide upward.) html <div class="button">Hover</div> <div class="box"> Sliding down! </div> jquery $('.box').hide(); $('.button').hover( function() { $('.box').slideToggle('slow'); } ); update: You guys had really good answers! But I found one of the solutions: http://jsfiddle.net/7fNbM/36/ I decided to just wrap the .button div and .box div in a container, and give the container a specific height, specific width, and overflow of hidden. This way I wouldn't have to cover the image in the background and it provides the effect I was looking for.

    Read the article

  • Calling a method from another view in objective-c. (iphone sdk).

    - by MarcZero
    Hello. I am currently creating a multi-view game on the iPhone platform. I have my main view start to play some background music upon loading. I then go to another view and start the game. I am trying to get the background music from the original view to stop once I start the game. I am having trouble getting the stop playing music message to my original view. Here is the relevant info: The main view where the sound is played from is just a subView of the programViewController class called *viewController. The heading is in the programAppDelegate class. The sound is done using the AVAudioPlayer class and plays fine when the program starts up and when I navigate to other subviews that are added on by going through the menu system. In the view that I want to start the game, I attempt to call the instance of the class to turn of the player but anytime I use this format of code: [viewController #######]; It gives a build error of "viewController undeclared" no matter what I put after the "viewController" in the message.I have attempted to import the programAppDelegate.h file but it still gives the same error. I realize this might be a simple misunderstanding of the objective-c language but I cannot find any info on this issue. I am a recent convert from Java so I am trying to wrap my head around everything. Thank you for your time!

    Read the article

  • Why should I install Python packages into `~/.local`?

    - by Matthew Rankin
    Background I don't develop using OS X's system provided Python versions (on OS X 10.6 that's Python 2.5.4 and 2.6.1). I don't install anything in the site-packages directory for the OS provided versions of Python. (The only exception is Mercurial installed from a binary package, which installs two packages in the Python 2.6.1 site-packages directory.) I installed three versions of Python, all using the Mac OS X installer disk image: Python 2.6.6 Python 2.7 Python 3.1.2 I don't like polluting the site-packages directory for my Python installations. So I only install the following five base packages in the site-packages directory. For the actual method/commands used to install these, see SO Question 4324558. setuptools/ez_setup distribute pip virtualenv virtualenvwrapper All other packages are installed in virtualenvs. I am the only user of this MacBook. Questions Given the above background, why should I install the five base packages in ~/.local? Since I'm installing these base packages into the site-packages directories of Python distributions that I've installed, I'm isolated from the OS X's Python distributions. Using this method, should I be concerned about Glyph's comment that other things could potentially break (see his comment below)? Again, I'm only interested in where to install those five base packages. Related Questions/Info I'm asking because of Glyph's comment to my answer to SO question 4314376, which stated: NO. NEVER EVER do sudo python setup.py install whatever. Write a ~/.pydistutils.cfg that puts your pip installation into ~/.local or something. Especially files named ez_setup.py tend to suck down newer versions of things like setuptools and easy_install, which can potentially break other things on your operating system. Previously, I asked What's the proper way to install pip, virtualenv, and distribute for Python?. However, no one answered the "why" of using ~/.local.

    Read the article

  • Fake location for the device (custom)

    - by AtomRiot
    I know there are a few apps out there to fake a devices location but specifically what i want to do is use a location grabbed from a url. What direction should I look for setting the location on the device. The scenario i have is a jailbroken Wi-Fi iPad tethered to a nexus one. The nexus one would host a background service that when a request is recieved, it would respond with gps data of its current location. The jailbroken ipad would have a background service that either updated the location on a time interval, or on a per request basis (depending on how i have to implement it) by submitting a request to the tethered nexus one service. That data would then be set on the ipad and an application requesting location would get the service data. The goal is to recreate the location faker app's functionality with the exception of the spoofed location comes from the nexus ones gps via the service but i have not yet found out how to set the location data for the device. I can ofcourse implement this in a per app basis but it would be awesome to have any app be able to use it.

    Read the article

  • null reference problems with c#

    - by alex
    Hi: In one of my window form, I created an instance of a class to do some works in the background. I wanted to capture the debug messages in that class and displayed in the textbox in the window form. Here is what I did: class A //window form class { public void startBackGroundTask() { B backGroundTask = new B(this); } public void updateTextBox(string data) { if (data != null) { if (this.Textbox.InvokeRequired) { appendUIDelegate updateDelegate = new appendUIDelegate(updateUI); try { this.Invoke(updateDelegate, data); } catch (Exception e) { Console.WriteLine(e.Message); } } else { updateUI(data); } } } private void updateUI(string data) { if (this.Textbox.InvokeRequired) { this.Textbox.Invoke(new appendUIDelegate(this.updateUI), data); } else { //update the text box this.Textbox.AppendText(data); this.Textbox.AppendText(Environment.NewLine); } } private delegate void appendUIDelegate(string data); } class B // background task { A curUI; public b( A UI) { curUI = UI; } private void test() { //do some works here then log the debug message to UI. curUI.updateTextBox("message); } } I keep getting a null reference exception after this.Invoke(updateDelegate, data); is called. I know passing "this" as a parameter is strange. But I want to send the debug message to my window form. Please help. Thanks

    Read the article

  • Issue in alternate Row color using each() method of JQuery

    - by user1323981
    I have a table as under <table > <tr> <th scope="col">EmpId</th><th scope="col">EmpName</th> </tr> <tr> <td>1</td><td>ABC</td> </tr> <tr> <td>2</td><td>DEF</td> </tr> </table> I want to set the alternate row color of only the "td" elements of the table and not "th" by using only each() function. I have tried with <style type="text/css"> tr.even { background-color: green; } tr.odd { background-color: yellow; } </style> $(document).ready(function () { $('table > tbody').each(function () { $('tr:odd', this).addClass('odd').removeClass('even'); $('tr:even', this).addClass('even').removeClass('odd'); }); }); Though this works but it accepts also "th" element. How to avoid that? Please help Thanks

    Read the article

  • on click submit button move itsplace

    - by Mayur
    Hi All, I m Using submit button for my form its work fine in all browser except ie7 when an user click on it it moved please suggest me what to do .confirm-button-submit { width : 79px; font : bold 12px sans-serif;; color : #000; background : url("../images/confirm-btn.png") 0 -33px no-repeat; text-decoration : none; margin-top :0px; text-align:center; border:0px; cursor : pointer; height:32px; padding : 8px 0px 12px 0px; } .confirm-button-submit:hover { width : 79px; font : bold 12px sans-serif;; color : #fff; background : url("../images/confirm-btn.png") 0 0 no-repeat; text-decoration : none; margin-top :0px; text-align:center; border:0px; cursor : pointer; height:32px; padding : 8px 0px 12px 0px; } i used this css please tell me what to do code: <input type="button" value="Show" name="commit" onclick="range_validation(this)" class="confirm-button-submit"/>`

    Read the article

  • Timed selector never performed

    - by sudo rm -rf
    I've added an observer for my method: [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(closeViewAfterUpdating) name:@"labelUpdatedShouldReturn" object:nil]; Then my relevant methods: -(void)closeViewAfterUpdating; { NSLog(@"Part 1 called"); [self performSelector:@selector(closeViewAfterUpdating2) withObject:nil afterDelay:2.0]; } -(void)closeViewAfterUpdating2; { NSLog(@"Part 2 called"); [self dismissModalViewControllerAnimated:YES]; } The only reason why I've split this method into two parts is so that I can have a delay before the method is fired. The problem is, the second method is never called. My NSLog output shows Part 1 called, but it never fires part 2. Any ideas? EDIT: I'm calling the notification from a background thread, does that make a difference by any chance? Here's how I'm creating my background thread: [NSThread detachNewThreadSelector:@selector(getWeather) toTarget:self withObject:nil]; and in getWeather I have: [[NSNotificationCenter defaultCenter] postNotificationName:@"updateZipLabel" object:textfield.text]; Also, calling: [self performSelector:@selector(closeViewAfterUpdating2) withObject:nil]; does work. EDITx2: I fixed it. Just needed to post the notification in my main thread and it worked just fine.

    Read the article

  • CSS Style Firefox/Safari/Chrome

    - by patrick
    hi, i have a problem with css differences between browsers. i have a simple input textfield an a submit button. the should be arranged. with webkit (safari/webkit) everything looks fine but firefox doesnt do it. does anyone have an idea whats wrong? i have written a little test html page: <html> <head> <style type="text/css"> #input { background: none repeat scroll 0 0 white; border-color: #DCDCDC; border-style: solid; border-width: 1px 0 1px 1px; font: 13px "Lucida Grande",Arial,Sans-serif; margin: 0; padding: 5px 5px 5px 15px; width: 220px; outline-width: 0; height: 30px; } #submit { background: none repeat scroll 0 0 white; border: 1px solid #DCDCDC; font: 13px "Lucida Grande",Arial,Sans-serif; margin: 0; outline-width: 0; height: 30px; padding: 5px 10px; } </style> </head> <body> <input id="input" type="text" value="" /><input id="submit" type="button" value="Add" /> </body> </html>

    Read the article

  • Dropdown menu not showing when using position: absolute;

    - by Xiy
    I've just turned my website into a responsive layout and along the way I've somehow managed to make my dropdown menus not work. When hovering over 'Drop-downs' they don't display unless I'm using position: relative. They worked before using position: absolute - but it seems they only work with position relative now. When using relative it uses the width which messes up the navigation bar. Using relative: http://d.pr/i/tp5R Using absolute: http://d.pr/i/j7r1 CSS for my sub-menu div.left_first_header ul.sub-menu { width: 125px; top: 14px; z-index: 2; height: 100%; position: absolute; -webkit-border-radius: 0px 0px 4px 4px; -moz-border-radius: 0px 0px 4px 4px; background: url(images/drop_down_bg.jpg); padding-left: 15px; padding-right: 15px; background-repeat: repeat; } jQuery for the drop down functionality jQuery(document).ready(function ($) { jQuery("ul.dropdown li").hover(function() { $('ul:first',this).css('visibility', 'visible'); }, function() { jQuery(this).removeClass("hover"); jQuery('ul:first',this).css('visibility', 'hidden'); }); }); My website http://wpvault.com/kahlam/ Considering it's 4am I've probably made a really stupid simple mistake. I apologise if I've missed anything.

    Read the article

  • Objective-measures of the expressiveness of programming languages [closed]

    - by Casebash
    I am very interested in the expressiveness of different languages. Everyone who has programmed in multiple languages knows that sometimes a language allows you to express concepts which you can't express in other languages. You can have all kinds of subjective discussion about this, but naturally it would be better to have an objective measure. There do actually exist objective measures. One is Turing-Completeness, which means that a language is capable of generating any output that could be generated by following a sequential set of steps. There are also other lesser levels of expressiveness such as Finite State Automata. Now, except for domain specific languages, pretty much all modern languages are Turing complete. It is therefore natural to ask the following question: Can we can define any other formal measures of expressiveness which are greater than Turing completeness? Now of course we can't define this by considering the output that a program can generate, as Turing machines can already produce the same output that any other program can. But there are definitely different levels in what concepts can be expressed - surely no-one would argue that assembly language is as powerful as a modern object oriented language like Python. You could use your assembly to write a Python interpreter, so clearly any accurate objective measure would have to exclude this possibility. This also causes a problem with trying to define the expressiveness using the minimum number of symbols. How exactly to do so is not clear and indeed appears extremely difficult, but we can't assume that just because we don't know how to solve a problem, that nobody know how to. It is also doesn't really make sense to demand a definition of expressiveness before answering the question - after all the whole point of this question is to obtain such a definition. I think that my explanation will be clear enough for anyone with a strong theoretical background in computer science to understand what I am looking for. If you do have such a background and you disagree, please comment why, but if you don't thats probably why you don't understand the question.

    Read the article

  • How do I size a second div to be 100% height underneath a fixed image?

    - by mk
    I'm using semi-transparent PNGs (due to the designer's overlapping of elements) and trying to achieve a layout that represents the design while still working well on the web. Thus I have simple HTML: <div id="right"> <div id="welcome"></div> <div id="welcomeRepeatingBottom"></div> </div> And I'm trying to use CSS as follows: #right { height: 100%; position: absolute; right: 0px; top: 0px; width: 430px; } #welcome { background-image: url("welcome.png"); height: 614px; width: 430px; position: absolute; top: 0px; left: 0px; } #welcomeRepeatingBottom { background: url("welcomeBottom.png") repeat-y; height: 100%; left: 0px; position: absolute; top: 614px; width: 430px; } The problem is...the #welcomeRepeatingBottom div can't overlap the #welcome div because of the transparency. What I really want is the #welcomeRepeatingBottom div to be height: 100% - 614px, but of course you can't do that. Am I missing something here or do I need to manipulate these values with JavaScript/JQuery?

    Read the article

  • why is $0 set to -bash?

    - by James Shimer
    First login process name seems to be set to "-bash", but if I subshell then it becomes "bash". for example: root@nowere:~# echo $0 -bash root@nowere:~# bash root@nowere:~# echo $0 bash -bash is causing some scripts to fail, such as . /usr/share/debconf/confmodule exec /usr/share/debconf/frontend -bash Can't exec "-bash": No such file or directory at /usr/share/perl/5.14/IPC/Open3.pm line 186. open2: exec of -bash failed at /usr/share/perl5/Debconf/ConfModule.pm line 59 Anyone know the reason $0 is set to -bash?

    Read the article

  • Converting a Visual Studio 2003 Web Project to a Visual Studio 2008 Web Application Project

    - by navaneeth
    This walkthrough describes how to convert a Visual Studio .NET 2002 or Visual Studio .NET 2003 Web project to a Visual Studio 2008 Web application project. The Visual Studio 2008 Web application project model is like the Visual Studio 2005 Web application project model. Therefore, the conversion processes are similar. For more information about Web application projects, see ASP.NET Web Application Projects. You can also convert from a Visual Studio .NET Web project to a Visual Studio 2008 Web site project. However, conversion to a Web application project is the approach that is supported, and gives you the convenience of tools to help with the conversion. For example, when you convert to a Visual Studio 2008 Web application project, you can use the Visual Studio Conversion Wizard to automate part of the process. For information about how to convert a Visual Studio .NET Web project to a Visual Studio 2008 Web site, see Common Web Project Conversion Issues and Solutions. There are two parts involved in converting a Visual Studio 2002 or 2003 Web project to a Visual Studio 2008 Web application project. The parts are as follows: Converting the project. You can use the Visual Studio Conversion Wizard for the initial conversion of the project and Web.config files. You can later use the Convert To Web Application command to update the project's files and structure. Upgrading the .NET Framework version of the project. You must upgrade the project's .NET Framework version to either .NET Framework 2.0 SP1 or to .NET Framework 3.5. This .NET Framework version upgrade is required because Visual Studio 2008 cannot target earlier versions of the .NET Framework. You can perform this upgrade during the project conversion, by using the Conversion Wizard. Alternatively, you can upgrade the .NET Framework version after you convert the project.   NoteYou can change a project's .NET Framework version manually. To do so, in Visual Studio open the property pages for the project, click the Application tab, and then select a new version from the Target Framework list. This walkthrough illustrates the following tasks: Opening the Visual Studio .NET project in Visual Studio 2008 and creating a backup of the project files. Upgrading the .NET Framework version that the project targets. Converting the project file and the Web.config file. Converting ASP.NET code files. Testing the converted project. Prerequisites    To complete this walkthrough, you will need: Visual Studio 2008. A Web site project that was created in Visual Studio .NET version 2002 or 2003 that compiles and runs without errors. Converting the Project and Upgrading the .NET Framework Version    To begin, you open the project in Visual Studio 2008, which starts the conversion. It offers you an opportunity to back up the project before converting it. NoteIt is strongly recommended that you back up the project. The conversion works on the original project files, which cannot be recovered if the conversion is not successful.To convert the project and back up the files In Visual Studio 2008, in the File menu, click Open and then click Project. The Open Project dialog box is displayed. Browse to the folder that contains the project or solution file for the Visual Studio .NET project, select the file, and then click Open. NoteMake sure that you open the project by using the Open Project command. If you use the Open Web Site command, the project will be converted to the Web site project format.The Conversion Wizard opens and prompts you to create a backup before converting the project. To create the backup, click Yes. Click Browse, select the folder in which the backup should be created, and then click Next. Click Finish. The backup starts. NoteThere might be significant delays as the Conversion Wizard copies files, with no updates or progress indicated. Wait until the process finishes before you continue.When the conversion finishes, the wizard prompts you to upgrade the targeted version of the .NET Framework for the project. To upgrade to the .NET Framework 3.5, click Yes. To upgrade the project to target the .NET Framework 2.0 SP1, click No. It is recommended that you leave the check box selected that asks whether you want to upgrade all Webs in the solution. If you upgrade to .NET Framework 3.5, the project's Web.config file is modified at the same time as the project file. When the upgrade and conversion have finished, a message is displayed that indicates that you have completed the first step in converting your project. Click OK. The wizard displays status information about the conversion. Click Close. Testing the Converted Project    After the conversion has finished, you can test the project to make sure that it runs. This will also help you identify code in the project that must be updated. To verify that the project runs If you know about changes that are required for the code to run with the new version of the .NET Framework, make those changes. In the Build menu, click Build. Any missing references or other compilation issues in the project are displayed in the Error List window. The most likely issues are missing assembly references or issues with dynamically generated types. In Solution Explorer, right-click the Web page that will be used to launch the application, and then click Set as Start Page. On the Debug menu, click Start Debugging. If debugging is not enabled, the Debugging Not Enabled dialog box is displayed. Select the option to add a Web.config file that has debugging enabled, and then click OK. Verify that the converted project runs as expected. Do not continue with the conversion process until all build and run-time errors are resolved. Converting ASP.NET Code Files    ASP.NET Web page files and user-control files in Visual Studio 2008 that use the code-behind model have an associated designer file. The files that you just converted will have an associated code-behind file, but no designer file. Therefore, the next step is to generate designer files. NoteOnly ASP.NET Web pages and user controls that have their code in a separate code file require a separate designer file. For pages that have inline code and no associated code file, no designer file will be generated.To convert ASP.NET code files In Solution Explorer, right-click the project node, and then click Convert To Web Application. The files are converted. Verify that the converted code files have a code file and a designer file. Build and run the project to verify the results of the conversion.

    Read the article

  • Passing parameters between Silverlight and ASP.NET – Part 1

    - by mohanbrij
    While working with Silverlight applications, we may face some scenarios where we may need to embed Silverlight as a component, like for e.g in Sharepoint Webpars or simple we can have the same with ASP.NET. The biggest challenge comes when we have to pass the parameters from ASP.NET to Silverlight components or back from Silverlight to ASP.NET. We have lots of ways we can do this, like using InitParams, QueryStrings, using HTML objects in Silverlight, etc. All these different techniques have some advantages or disadvantages or limitations. Lets see one by one why we should choose one and what are the ways to achieve the same. 1. InitParams: Lets start with InitParams, Start your Visual Studio 2010 IDE, and Create a Silverlight Application, give any name. Now go to the ASP.NET WebProject which is used to Host the Silverlight XAP component. You will find lots of different tags are used by Silverlight object as <params> tags. To use InitParams, Silverlight provides us with a tag called InitParams which we can use to pass parameters to Silverlight object from ASP.NET. 1: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 2: <param name="source" value="ClientBin/SilverlightApp.xap"/> 3: <param name="onError" value="onSilverlightError" /> 4: <param name="background" value="white" /> 5: <param name="minRuntimeVersion" value="4.0.50826.0" /> 6: <param name="initparams" id="initParams" runat="server" value=""/> 7: <param name="autoUpgrade" value="true" /> 8: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 9: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 10: </a> 11: </object> Here in the code above I have included a initParam as a param tag (line 6), now in the page load I will add a line 1: initParams.Attributes.Add("value", "key1=Brij, key2=Mohan"); This basically add a value parameter inside the initParam. So thats all we need in our ASP.NET side, now coming to the Silverlight Code open the code behind of App.xaml and add the following lines of code. 1: private string firstKey, secondKey; 2: private void Application_Startup(object sender, StartupEventArgs e) 3: { 4: if (e.InitParams.ContainsKey("key1")) 5: this.firstKey = e.InitParams["key1"]; 6: if (e.InitParams.ContainsKey("key2")) 7: this.secondKey = e.InitParams["key2"]; 8: this.RootVisual = new MainPage(firstKey, secondKey); 9: } This code fetch the init params and pass it to our MainPage.xaml constructor, in the MainPage.xaml we can use these variables according to our requirement, here in this example I am simply displaying the variables in a Message Box. 1: public MainPage(string param1, string param2) 2: { 3: InitializeComponent(); 4: MessageBox.Show("Welcome, " + param1 + " " + param2); 5: } This will give you a sample output as Limitations: Depending on the browsers you have some limitation on the overall string length of the parameters you can pass. To get more details on this limitation, you can refer to this link :http://www.boutell.com/newfaq/misc/urllength.html 2. QueryStrings To show this example I am taking the scenario where we have a default.aspx page and we are going to the SIlverlightTestPage.aspx, and we have to work with the parameters which was passed by default.aspx in the SilverlightTestPage.aspx Silverlight Component. So first I will add a new page in my application which contains a button with ID =btnNext, and on click of the button I will redirect my page to my SilverlightTestAppPage.aspx with the required query strings. Code of Default.aspx 1: protected void btnNext_Click(object sender, EventArgs e) 2: { 3: Response.Redirect("~/SilverlightAppTestPage.aspx?FName=Brij" + "&LName=Mohan"); 4: } Code of MainPage.xaml.cs 1: public partial class MainPage : UserControl 2: { 3: public MainPage() 4: { 5: InitializeComponent(); 6: this.Loaded += new RoutedEventHandler(MainPage_Loaded); 7: } 8: 9: void MainPage_Loaded(object sender, RoutedEventArgs e) 10: { 11: IDictionary<string, string> qString = HtmlPage.Document.QueryString; 12: string firstName = string.Empty; 13: string lastName = string.Empty; 14: foreach (KeyValuePair<string, string> keyValuePair in qString) 15: { 16: string key = keyValuePair.Key; 17: string value = keyValuePair.Value; 18: if (key == "FName") 19: firstName = value; 20: else if (key == "LName") 21: lastName = value; 22: } 23: MessageBox.Show("Welcome, " + firstName + " " + lastName); 24: } 25: } Set the Startup page as Default.aspx, now run the application. This will give you the following output: Since here also you are using the Query Strings to pass your parameters, so you are depending on the browser capabilities of the length of the query strings it can pass. Here also you can refer the limitation which I have mentioned in my previous example for the length of parameters you can use.   3. Using HtmlPage.Document Silverlight to ASP.NET <—> ASP.NET to Silverlight: To show this I setup a sample Silverlight Application with Buttons Get Data and Set Data with the Data Text Box. In ASP.NET page I kep a TextBox to Show how the values passed to and From Silverlight to ASP.NET reflects back. My page with Silverlight control looks like this. When I Say Get Data it pulls the data from ASP.NET to Silverlight Control Text Box, and When I say Set data it basically Set the Value from Silverlight Control TextBox to ASP.NET TextBox. Now let see the code how it is doing. This is my ASP.NET Source Code. Here I have just created a TextBox named : txtData 1: <body> 2: <form id="form1" runat="server" style="height:100%"> 3: <div id="silverlightControlHost"> 4: ASP.NET TextBox: <input type="text" runat="server" id="txtData" value="Some Data" /> 5: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 6: <param name="source" value="ClientBin/SilverlightApplication1.xap"/> 7: <param name="onError" value="onSilverlightError" /> 8: <param name="background" value="white" /> 9: <param name="minRuntimeVersion" value="4.0.50826.0" /> 10: <param name="autoUpgrade" value="true" /> 11: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 12: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 13: </a> 14: </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe> 15: </div> 16: </form> 17: </body> My actual logic for getting and setting the data lies in my Silverlight Control, this is my XAML code with TextBox and Buttons. 1: <Grid x:Name="LayoutRoot" Background="White" Height="100" Width="450" VerticalAlignment="Top"> 2: <Grid.ColumnDefinitions> 3: <ColumnDefinition Width="110" /> 4: <ColumnDefinition Width="110" /> 5: <ColumnDefinition Width="110" /> 6: <ColumnDefinition Width="110" /> 7: </Grid.ColumnDefinitions> 8: <TextBlock Text="Silverlight Text Box: " Grid.Column="0" VerticalAlignment="Center"></TextBlock> 9: <TextBox x:Name="DataText" Width="100" Grid.Column="1" Height="20"></TextBox> 10: <Button x:Name="GetData" Width="100" Click="GetData_Click" Grid.Column="2" Height="30" Content="Get Data"></Button> 11: <Button x:Name="SetData" Width="100" Click="SetData_Click" Grid.Column="3" Height="30" Content="Set Data"></Button> 12: </Grid> Now we have to write few lines of Button Events for Get Data and Set Data which basically make use of Windows.System.Browser namespace. 1: private void GetData_Click(object sender, RoutedEventArgs e) 2: { 3: DataText.Text = HtmlPage.Document.GetElementById("txtData").GetProperty("value").ToString(); 4: } 5:  6: private void SetData_Click(object sender, RoutedEventArgs e) 7: { 8: HtmlPage.Document.GetElementById("txtData").SetProperty("value", DataText.Text); 9: } That’s it so when we run this application my Form will look like this. 4. Using Object Serialization. This is a useful when we want to pass Objects of Data from our ASP.NET application to Silverlight Controls and back. This technique basically uses the above technique I mentioned in Pint 3 above. Since this itself is a length topic so details of this I am going to cover in Part 2 of this Post with Sample Code Example very soon.

    Read the article

  • EFMVC Migrated to .NET 4.5, Visual Studio 2012, ASP.NET MVC 4 and EF 5 Code First

    - by shiju
    I have just migrated my EFMVC app from .NET 4.0 and ASP.NET MVC 4 RC to .NET 4.5, ASP.NET MVC 4 RTM and Entity Framework 5 Code First. In this release, the EFMVC solution is built with Visual Studio 2012 RTM. The migration process was very smooth and did not made any major changes other than adding simple unit tests with NUnit and Moq. I will add more unit tests on later and will also modify the existing solution. Source Code You can download the source code from http://efmvc.codeplex.com/

    Read the article

  • Agile SOA Governance: SO-Aware and Visual Studio Integration

    - by gsusx
    One of the major limitations of traditional SOA governance platforms is the lack of integration as part of the development process. Tools like HP-Systinet or SOA Software are designed to operate by models on which the architects dictate the governance procedures and policies and the rest of the team members follow along. Consequently, those procedures are frequently rejected by developers and testers given that they can’t incorporate it as part of their daily activities. Having SOA governance products...(read more)

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • [OT] : Windows Activation, en masse

    - by AaronBertrand
    This weekend I discovered a minor issue in one of my virtual environments. I had built out 100 VMs based on a Hyper-V template, but I forgot to activate the original source before creating the template, so all of the machines were suddenly out of compliance. While easy enough on a one- or two-machine basis to just log into the machine and activate manually, there was no way I was even going to dream of repeating that process on 100 machines. My First Reaction : PowerShell Whenever I do anything with...(read more)

    Read the article

  • The Importance of a Security Assessment - by Michael Terra, Oracle

    - by Darin Pendergraft
    Today's Blog was written by Michael Terra, who was the Subject Matter Expert for the recently announced Oracle Online Security Assessment. You can take the Online Assessment here: Take the Online Assessment Over the past decade, IT Security has become a recognized and respected Business discipline.  Several factors have contributed to IT Security becoming a core business and organizational enabler including, but not limited to, increased external threats and increased regulatory pressure. Security is also viewed as a key enabler for strategic corporate activities such as mergers and acquisitions.Now, the challenge for senior security professionals is to develop an ongoing dialogue within their organizations about the importance of information security and how it can impact their organization's strategic objectives/mission. The importance of conducting regular “Security Assessments” across the IT and physical infrastructure has become increasingly important. Security standards and frameworks, such as the international standard ISO 27001, are increasingly being adopted by organizations and their business partners as proof of their security posture and “Security Assessments” are a great way to ensure a continued alignment to these frameworks.Oracle offers a number of different security assessment covering a broad range of technologies. Some of these are short engagements conducted for free with our strategic customers and partners. Others are longer term paid engagements delivered by Oracle Consulting Services or one of our partners. The goal of a security assessment, (also known as a security audit or security review), is to ensure that necessary security controls are integrated into the design and implementation of a project, application or technology.  A properly completed security assessment should provide documentation outlining any security gaps that exist in an infrastructure and the associated risks for those gaps. With that knowledge, an organization can choose to either mitigate, transfer, avoid or accept the risk. One example of an Oracle offering is a Security Readiness Assessment:The Oracle Security Readiness Assessment is a practical security architecture review focused on aligning an organization’s enterprise security architecture to their business principals and strategic objectives. The service will establish a multi-phase security architecture roadmap focused on supporting new and existing business initiatives.Offering OverviewThe Security Readiness Assessment will: Define an organization’s current security posture and provide a roadmap to a desired future state architecture by mapping  security solutions to business goals Incorporate commonly accepted security architecture concepts to streamline an organization’s security vision from strategy to implementation Define the people, process and technology implications of the desired future state architecture The objective is to deliver cohesive, best practice security architectures spanning multiple domains that are unique and specific to the context of your organization. Offering DetailsThe Oracle Security Readiness Assessment is a multi-stage process with a dedicated Oracle Security team supporting your organization.  During the course of this free engagement, the team will focus on the following: Review your current business operating model and supporting IT security structures and processes Partner with your organization to establish a future state security architecture leveraging Oracle’s reference architectures, capability maps, and best practices Provide guidance and recommendations on governance practices for the rollout and adoption of your future state security architecture Create an initial business case for the adoption of the future state security architecture If you are interested in finding out more, ask your Sales Consultant or Account Manager for details.

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 3

    - by SQLOS Team
    In parts 1 and 2 of this series we looked at the basics of Hyper-V Dynamic Memory and SQL Server memory management. In this part Serdar looks at configuration guidelines for SQL Server memory management. Part 3: Configuration Guidelines for Hyper-V Dynamic Memory and SQL Server Now that we understand SQL Server Memory Management and Hyper-V Dynamic Memory basics, let’s take a look at general configuration guidelines in order to utilize benefits of Hyper-V Dynamic Memory in your SQL Server VMs. Requirements Host Operating System Requirements Hyper-V Dynamic Memory feature is introduced with Windows Server 2008 R2 SP1. Therefore in order to use Dynamic Memory for your virtual machines, you need to have Windows Server 2008 R2 SP1 or Microsoft Hyper-V Server 2008 R2 SP1 in your Hyper-V host. Guest Operating System Requirements In addition to this Dynamic Memory is only supported in Standard, Web, Enterprise and Datacenter editions of windows running inside VMs. Make sure that your VM is running one of these editions. For additional requirements on each operating system see “Dynamic Memory Configuration Guidelines” here. SQL Server Requirements All versions of SQL Server support Hyper-V Dynamic Memory. However, only certain editions of SQL Server are aware of dynamically changing system memory. To have a truly dynamic environment for your SQL Server VMs make sure that you are running one of the SQL Server editions listed below: ·         SQL Server 2005 Enterprise ·         SQL Server 2008 Enterprise / Datacenter Editions ·         SQL Server 2008 R2 Enterprise / Datacenter Editions Configuration guidelines for other versions of SQL Server are covered below in the FAQ section. Guidelines for configuring Dynamic Memory Parameters Here is how to configure Dynamic Memory for your SQL VMs in a nutshell: Hyper-V Dynamic Memory Parameter Recommendation Startup RAM 1 GB + SQL Min Server Memory Maximum RAM > SQL Max Server Memory Memory Buffer % 5 Memory Weight Based on performance needs   Startup RAM In order to ensure that your SQL Server VMs can start correctly, ensure that Startup RAM is higher than configured SQL Min Server Memory for your VMs. Otherwise SQL Server service will need to do paging in order to start since it will not be able to see enough memory during startup. Also note that Startup Memory will always be reserved for your VMs. This will guarantee a certain level of performance for your SQL Servers, however setting this too high will limit the consolidation benefits you’ll get out of your virtualization environment. Maximum RAM This one is obvious. If you’ve configured SQL Max Server Memory for your SQL Server, make sure that Dynamic Memory Maximum RAM configuration is higher than this value. Otherwise your SQL Server will not grow to memory values higher than the value configured for Dynamic Memory. Memory Buffer % Memory buffer configuration is used to provision file cache to virtual machines in order to improve performance. Due to the fact that SQL Server is managing its own buffer pool, Memory Buffer setting should be configured to the lowest value possible, 5%. Configuring a higher memory buffer will prevent low resource notifications from Windows Memory Manager and it will prevent reclaiming memory from SQL Server VMs. Memory Weight Memory weight configuration defines the importance of memory to a VM. Configure higher values for the VMs that have higher performance requirements. VMs with higher memory weight will have more memory under high memory pressure conditions on your host. Questions and Answers Q1 – Which SQL Server memory model is best for Dynamic Memory? The best SQL Server model for Dynamic Memory is “Locked Page Memory Model”. This memory model ensures that SQL Server memory is never paged out and it’s also adaptive to dynamically changing memory in the system. This will be extremely useful when Dynamic Memory is attempting to remove memory from SQL Server VMs ensuring no SQL Server memory is paged out. You can find instructions on configuring “Locked Page Memory Model” for your SQL Servers here. Q2 – What about other SQL Server Editions, how should I configure Dynamic Memory for them? Other editions of SQL Server do not adapt to dynamically changing environments. They will determine how much memory they should allocate during startup and don’t change this value afterwards. Therefore make sure that you configure a higher startup memory for your VM because that will be all the memory that SQL Server utilize Tune Maximum Memory and Memory Buffer based on the other workloads running on the system. If there are no other workloads consider using Static Memory for these editions. Q3 – What if I have multiple SQL Server instances in a VM? Having multiple SQL Server instances in a VM is not a general recommendation for predictable performance, manageability and isolation. In order to achieve a predictable behavior make sure that you configure SQL Min Server Memory and SQL Max Server Memory for each instance in the VM. And make sure that: ·         Dynamic Memory Startup Memory is greater than the sum of SQL Min Server Memory values for the instances in the VM ·         Dynamic Memory Maximum Memory is greater than the sum of SQL Max Server Memory values for the instances in the VM Q4 – I’m using Large Page Memory Model for my SQL Server. Can I still use Dynamic Memory? The short answer is no. SQL Server does not dynamically change its memory size when configured with Large Page Memory Model. In virtualized environments Hyper-V provides large page support by default. Most of the time, Large Page Memory Model doesn’t bring any benefits to a SQL Server if it’s running in virtualized environments. Q5 – How do I monitor SQL performance when I’m trying Dynamic Memory on my VMs? Use the performance counters below to monitor memory performance for SQL Server: Process - Working Set: This counter is available in the VM via process performance counters. It represents the actual amount of physical memory being used by SQL Server process in the VM. SQL Server – Buffer Cache Hit Ratio: This counter is available in the VM via SQL Server counters. This represents the paging being done by SQL Server. A rate of 90% or higher is desirable. Conclusion These blog posts are a quick start to a story that will be developing more in the near future. We’re still continuing our testing and investigations to provide more detailed configuration guidelines with example performance numbers with a white paper in the upcoming months. Now it’s time to give SQL Server and Hyper-V Dynamic Memory a try. Use this guidelines to kick-start your environment. See what you think about it and let us know of your experiences. - Serdar Sutay Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

< Previous Page | 378 379 380 381 382 383 384 385 386 387 388 389  | Next Page >