Search Results

Search found 43200 results on 1728 pages for 'large object pattern'.

Page 388/1728 | < Previous Page | 384 385 386 387 388 389 390 391 392 393 394 395  | Next Page >

  • Can unit tests verify software requirements?

    - by Peter Smith
    I have often heard unit tests help programmers build confidence in their software. But is it enough for verifying that software requirements are met? I am losing confidence that software is working just because the unit tests pass. We have experienced some failures in production deployment due to an untested\unverified execution path. These failures are sometimes quite large, impact business operations and often requires an immediate fix. The failure is very rarely traced back to a failing unit test. We have large unit test bodies that have reasonable line coverage but almost all of these focus on individual classes and not on their interactions. Manual testing seems to be ineffective because the software being worked on is typically large with many execution paths and many integration points with other software. It is very painful to manually test all of the functionality and it never seems to flush out all the bugs. Are we doing unit testing wrong when it seems we still are failing to verify the software correctly before deployment? Or do most shops have another layer of automated testing in addition to unit tests?

    Read the article

  • State of the art Culling and Batching techniques in rendering

    - by Kristian Skarseth
    I'm currently working with upgrading and restructuring an OpenGL render engine. The engine is used for visualising large scenes of architectural data (buildings with interior), and the amount of objects can become rather large. As is the case with any building, there is a lot of occluded objects within walls, and you naturally only see the objects that are in the same room as you, or the exterior if you are on the outside. This leaves a large number of objects that should be occluded through occlusion culling and frustum culling. At the same time there is a lot of repetative geometry that can be batched in renderbatches, and also a lot of objects that can be rendered with instanced rendering. The way I see it, it can be difficult to combine renderbatching and culling in an optimal fashion. If you batch too many objects in the same VBO it's difficult to cull the objects on the CPU in order to skip rendering that batch. At the same time if you skip the culling on the cpu, a lot of objects will be processed by the GPU while they are not visible. If you skip batching copletely in order to more easily cull on the CPU, there will be an unwanted high amount of render calls. I have done some research into existing techniques and theories as to how these problems are solved in modern graphics, but I have not been able to find any concrete solution. An idea a colleague and me came up with was restricting batches to objects relatively close to eachother e.g all chairs in a room or within a radius of n meeters. This could be simplified and optimized through use of oct-trees. Does anyone have any pointers to techniques used for scene managment, culling, batching etc in state of the art modern graphics engines?

    Read the article

  • Splitting up a Rails/Ruby app onto multiple servers

    - by craig.kaminsky
    We recently moved a large application to two machines, both running the same codebase. I. Machine A Web server for public facing application Receives web hook call backs from our ESP Handles a few large, list-processing jobs (uploaded spreadsheets with data) II. Machine B Manages a massive set of (background) jobs but, primarily, focuses on building and assembling newsletters Runs all integration with our NetSuite platform Runs all system maintenance (read: DB) jobs To me, having these two apps running the same codebase (a large, monolithic Rails application) seems 'wrong'. I am wondering if anyone has advice on how to better break up the code for these two apps. While they both need the same DB and, ultimately, the same model code, Machine B has no need for Controllers and Views and it feels wasteful running a full-stack Rails app for its tasks. A couple things came to mind but I'm not sure if I'm trying to solve a problem that doesn't exist: Break the models out into a sub-module on git and include into both apps Build out the Mahcine B app in plain Ruby or a lighter framework like Sinatra (where I could use ActiveRecord with Sinatra in combo with a sub-module for the model folder). I'm new to this scenario and appreciate any and all feedback or direction! Thank you.

    Read the article

  • Releasing an open source project without getting embarrassed

    - by Hopeful
    I've been working by myself on a fairly large open source project for quite a while and it's nearing the point where I'd like to release it. However, I'm self-taught and I don't really know anyone who could adequately review my project. A few years ago, I had released a small bit of code which pretty much got ripped apart (in a critical sense) on the forum where I released it. Even though the code worked, the criticism was accurate but brutal. It prompted me to begin searching for best practices for everything and in the end I feel that it made me a much better developer. I've gone over everything in my project so many times trying to make it perfect that I've lost count. I believe in my project and think it has the potential to help a lot of people and I feel like I've done some cool things in interesting ways with it. Still, because I'm self-taught, I can't help but wonder what gaps exist in my self-education. The way my code was ripped apart last time isn't something I'd like to repeat. I think my two biggest fears with releasing my project that I've poured countless hours into are being absolutely embarrassed because I missed some patently obvious things because of my self-education or, worse, releasing it to the sound of crickets. Is there anyone who has been in a similar situation? I'm not afraid of constructive criticism, so long as it is constructive and not just a rant on how I screwed up. I know there is a code review site on StackExchange, but it's not really set up for large projects and I didn't feel like the community there is large enough yet to get good feedback if I were to post parts of my project piecemeal (I tried with one file). What can I do to give my project at least some measure of success without getting embarrassed or devestated in the process?

    Read the article

  • Making a 2D game with responsive resolution

    - by alexandervrs
    I am making a 2D game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD PNG sprites/backgrounds which are a power of 2, so they scale nicely. No vectors. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • Don't Miss the Social Engagement Center -- See How Social Cloud Tools Can Work for You

    - by Oracle OpenWorld Blog Team
    Are you ready to get social at Oracle OpenWorld? Stop by the Oracle Social Engagement Center in Moscone South Upper Lobby (near the South Meetup location) and see Oracle Cloud Social Services in action. Ask Oracle's social experts how they're using next-generation enterprise social tools to deliver extreme engagement. Watch in near real-time as Oracle reaches out to inform, inspire, and engage global communities. We're showing: -     Collective Intellect for specific data sets on 2 large screens-     Vitrue analytics and Vitrue publishing on 2 large screens-     Relative Twitter activity across the hash tags #OOW, #OOW12, #openworld, #oracle, and accounts @oracle, and @openworld on 1 large screenPlus we have 5 computers where we're actively working with the Collective Intellect and Vitrue technologies, so you can how they function. So come visit the Social Engagement Center to learn how Oracle is using and engaging with these tools.  And don't forget the Social Plaza @ OpenWorld event on Tuesday from noon - 8:00 p.m. Join us for food, drink, the afternoon keynote, and some cool libations on a hot afternoon.

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • Language Niches and Niche Libraries

    - by Roman A. Taycher
    "Everyone Knows" ... ... that c is widely used for low level programs in large part because operating system/device apis are usually in c. ... that Java is widely used for enterprise applications in large part because of enterprise libraries and ide support. ... that ruby is widely used for webapps thanks in large part because of rails and its library ecosytem But lets go into to details what are the specific niches and subniches. Especially with respect to libraries. Where might you embed lua for application scripting versus python. Where would you use Java vs C#. Which languages do different scientists use? Also which languages have libraries for these subniches? Things like bioperl/scipy/Incanter. Please no flamewars about how nice each language or environment is. This is where they used. Also no complaints about marketing/PHBs. (Manually migrated) I asked this question again after it was closed on stackoverflow.com

    Read the article

  • MapReduce

    - by kaleidoscope
    MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of  intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the paper. Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of partitioning the input data,  scheduling the program's execution across a set of machines, handling machine failures, and managing the required inter-machine communication. This allows programmers without any experience with parallel and distributed systems to easily utilize the resources of a large distributed system. Example: A process to count the appearances of each different word in a set of documents void map(String name, String document):   // name: document name   // document: document contents   for each word w in document:     EmitIntermediate(w, 1); void reduce(String word, Iterator partialCounts):   // word: a word   // partialCounts: a list of aggregated partial counts   int result = 0;   for each pc in partialCounts:     result += ParseInt(pc);   Emit(result); Here, each document is split in words, and each word is counted initially with a "1" value by the Map function, using the word as the result key. The framework puts together all the pairs with the same key and feeds them to the same call to Reduce, thus this function just needs to sum all of its input values to find the total appearances of that word.   Sarang, K

    Read the article

  • Making a game with responsive resolution

    - by alexandervrs
    I am making a game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD sprites/backgrounds which are a power of 2, so they scale nicely. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • How to improve Minecraft-esque voxel world performance?

    - by SomeXnaChump
    After playing Minecraft I marveled a bit at its large worlds but at the same time I found them extremely slow to navigate, even with a quad core and meaty graphics card. Now I assume Minecraft is fairly slow because: A) It's written in Java, and as most of the spatial partitioning and memory management activities happen in there, it would naturally be slower than a native C++ version. B) It doesn't partition its world very well. I could be wrong on both assumptions; however it got me thinking about the best way to manage large voxel worlds. As it is a true 3D world, where a block can exist in any part of the world, it is basically a big 3D array [x][y][z], where each block in the world has a type (i.e BlockType.Empty = 0, BlockType.Dirt = 1 etc.) Now, I am assuming to make this sort of world perform well you would need to: A) Use a tree of some variety (oct/kd/bsp) to split all the cubes out; it seems like an oct/kd would be the better option as you can just partition on a per cube level not a per triangle level. B) Use some algorithm to work out which blocks can currently be seen, as blocks closer to the user could obfuscate the blocks behind, making it pointless to render them. C) Keep the block object themselves lightweight, so it is quick to add and remove them from the trees. I guess there is no right answer to this, but I would be interested to see peoples' opinions on the subject. How would you improve performance in a large voxel-based world?

    Read the article

  • Using a Vertex Buffer and DrawUserIndexedPrimitives?

    - by MattMcg
    Let's say I have a large but static world and only a single moving object on said world. To increase performance I wish to use a vertex and index buffer for the static part of the world. I set them up and they work fine however if I throw in another draw call to DrawUserIndexedPrimitives (to draw my one single moving object) after the call to DrawIndexedPrimitives, it will error out saying a valid vertex buffer must be set. I can only assume the DrawUserIndexedPrimitive call destroyed/replaced the vertex buffer I set. In order to get around this I must call device.SetVertexBuffer(vertexBuffer) every frame. Something tells me that isn't correct as that kind of defeats the point of a buffer? To shed some light, the large vertex buffer is the final merged mesh of many repeated cubes (think Minecraft) which I manually create to reduce the amount of vertices/indexes needed (for example two connected cubes become one cuboid, the connecting faces are cut out), and also the amount of matrix translations (as it would suck to do one per cube). The moving objects would be other items in the world which are dynamic and not fixed to the block grid, so things like the NPCs who move constantly. How do I go about handling the large static world but also allowing objects to freely move about?

    Read the article

  • Functions that only call other functions. Is this a good practice?

    - by Eric C.
    I'm currently working on a set of reports that have many different sections (all requiring different formatting), and I'm trying to figure out the best way to structure my code. Similar reports we've done in the past end up having very large (200+ line) functions that do all of the data manipulation and formatting for the report, such that the workflow looks something like this: DataTable reportTable = new DataTable(); void RunReport() { reportTable = DataClass.getReportData(); largeReportProcessingFunction(); outputReportToUser(); } I would like to be able to break these large functions up into smaller chunks, but I'm afraid that I'll just end up having dozens of non-reusable functions, and a similar "do everything here" function whose only job is to call all these smaller functions, like so: void largeReportProcessingFunction() { processSection1HeaderData(); calculateSection1HeaderAverages(); formatSection1HeaderDisplay(); processSection1SummaryTableData(); calculateSection1SummaryTableTotalRow(); formatSection1SummaryTableDisplay(); processSection1FooterData(); getSection1FooterSummaryTotals(); formatSection1FooterDisplay(); processSection2HeaderData(); calculateSection1HeaderAverages(); formatSection1HeaderDisplay(); calculateSection1HeaderAverages(); ... } Or, if we go one step further: void largeReportProcessingFunction() { callAllSection1Functions(); callAllSection2Functions(); callAllSection3Functions(); ... } Is this really a better solution? From an organizational point of view I suppose it is (i.e. everything is much more organized than it might otherwise be), but as far as code readability I'm not sure (potentially large chains of functions that only call other functions). Thoughts?

    Read the article

  • Provide A Scrolling "Camera" View Over A 2D Game Map

    - by BitCrash
    I'm in the process of attempting to create a 2D MMO type game with Kryonet and some basic sprites, mostly for my own learning. I have the back end set up great (By my standards) and I'm moving on to actually getting some things drawn onto the map. I cannot for the life of me figure out a solid way to have a "Camera" follow a player around a large area. The view pane for the game is 640 x 480 pixels, and each tile is 32x32 pixels (Thats 20 tiles wide and 15 high for the viewpane) I have tried a couple things to do this, but they did not seem to work out so well. I had a JScrollPane with 9 "Viewpane"-sized canvases in it, and tried to have the JScrollPane move in accordance with the player. The issue came when I reached the end of the JScrollPane. I tried to "Flip" canvases, sending the canvas currrently drawing the player to the middle of the 9 and load the corresponding maps onto the other ones. It was slow and worked poorly. I'm looking for any advice or previous experience with this; any ideas? Thank you! Edit and Clarification: I did not mean to mention Kryonet, I was merely providing peripheral information in case there was something that would help which I could not foresee. Instead of having an array of 9 canvases, why not just have one large canvas loading a large map every once in a while? I'm willing to have "load times" where as with the canvas array I would have none (in theory) to give the user a smooth experience. I could just change the size and location of the map with a modified setBounds() call on the canvas in a layered pane (layered because I have hidden swing items, like inventories and stuff) I'll try it out and post here how it goes for people asking the same question.

    Read the article

  • Loading any MVC page fails with the error "An item with the same key has already been added."

    - by MajorRefactoring
    I am having an intermittent issue that is appearing on one server only, and is causing all MVC pages to fail to load with the error "An item with the same key has already been added." Restarting the application pool fixes the issue, but until then, loading any mvc page throws the following exception: Event code: 3005 Event message: An unhandled exception has occurred. Event time: 10/11/2012 08:09:24 Event time (UTC): 10/11/2012 08:09:24 Event ID: d76264aedc4241d4bce9247692510466 Event sequence: 6407 Event occurrence: 30 Event detail code: 0 Application information: Application domain: /LM/W3SVC/21/ROOT-2-129969647741292058 Trust level: Full Application Virtual Path: / Application Path: d:\websites\SiteAndAppPoolName\ Machine name: UKSERVER Process information: Process ID: 6156 Process name: w3wp.exe Account name: IIS APPPOOL\SiteAndAppPoolName Exception information: Exception type: ArgumentException Exception message: An item with the same key has already been added. Server stack trace: at System.Collections.Generic.Dictionary`2.Insert(TKey key, TValue value, Boolean add) at System.Linq.Enumerable.ToDictionary[TSource,TKey,TElement](IEnumerable`1 source, Func`2 keySelector, Func`2 elementSelector, IEqualityComparer`1 comparer) at System.Web.WebPages.Scope.WebConfigScopeDictionary.<>c__DisplayClass4.<.ctor>b__0() at System.Lazy`1.CreateValue() Exception rethrown at [0]: at System.Lazy`1.get_Value() at System.Web.WebPages.Scope.WebConfigScopeDictionary.TryGetValue(Object key, Object& value) at System.Web.Mvc.ViewContext.ScopeGet[TValue](IDictionary`2 scope, String name, TValue defaultValue) at System.Web.Mvc.ViewContext.ScopeCache.Get(IDictionary`2 scope, HttpContextBase httpContext) at System.Web.Mvc.ViewContext.GetClientValidationEnabled(IDictionary`2 scope, HttpContextBase httpContext) at System.Web.Mvc.Html.FormExtensions.FormHelper(HtmlHelper htmlHelper, String formAction, FormMethod method, IDictionary`2 htmlAttributes) at System.Web.Mvc.Html.FormExtensions.BeginForm(HtmlHelper htmlHelper, String actionName, String controllerName) at ASP._Page_Views_Dashboard_Functions_BookingQuickLookup_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Functions\BookingQuickLookup.cshtml:line 3 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.Html.PartialExtensions.Partial(HtmlHelper htmlHelper, String partialViewName, Object model, ViewDataDictionary viewData) at ASP._Page_Views_Dashboard_Functions_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Functions.cshtml:line 5 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.Html.RenderPartialExtensions.RenderPartial(HtmlHelper htmlHelper, String partialViewName, Object model) at ASP._Page_Views_Dashboard_Index_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Index.cshtml:line 9 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) at System.Web.Mvc.ControllerActionInvoker.<>c__DisplayClass1c.<InvokeActionResultWithFilters>b__19() at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList`1 filters, ActionResult actionResult) at System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) at System.Web.Mvc.Controller.ExecuteCore() at System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) at System.Web.Mvc.MvcHandler.<>c__DisplayClass6.<>c__DisplayClassb.<BeginProcessRequest>b__5() at System.Web.Mvc.Async.AsyncResultWrapper.<>c__DisplayClass1.<MakeVoidDelegate>b__0() at System.Web.Mvc.MvcHandler.<>c__DisplayClasse.<EndProcessRequest>b__d() at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) Request information: Request URL: http://SiteAndAppPoolName.spawtz.com/Dashboard Request path: /Dashboard User host address: 86.164.135.41 User: Is authenticated: False Authentication Type: Thread account name: IIS APPPOOL\SiteAndAppPoolName Thread information: Thread ID: 17 Thread account name: IIS APPPOOL\SiteAndAppPoolName Is impersonating: False Stack trace: at System.Lazy`1.get_Value() at System.Web.WebPages.Scope.WebConfigScopeDictionary.TryGetValue(Object key, Object& value) at System.Web.Mvc.ViewContext.ScopeGet[TValue](IDictionary`2 scope, String name, TValue defaultValue) at System.Web.Mvc.ViewContext.ScopeCache.Get(IDictionary`2 scope, HttpContextBase httpContext) at System.Web.Mvc.ViewContext.GetClientValidationEnabled(IDictionary`2 scope, HttpContextBase httpContext) at System.Web.Mvc.Html.FormExtensions.FormHelper(HtmlHelper htmlHelper, String formAction, FormMethod method, IDictionary`2 htmlAttributes) at System.Web.Mvc.Html.FormExtensions.BeginForm(HtmlHelper htmlHelper, String actionName, String controllerName) at ASP._Page_Views_Dashboard_Functions_BookingQuickLookup_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Functions\BookingQuickLookup.cshtml:line 3 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.Html.PartialExtensions.Partial(HtmlHelper htmlHelper, String partialViewName, Object model, ViewDataDictionary viewData) at ASP._Page_Views_Dashboard_Functions_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Functions.cshtml:line 5 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.Html.RenderPartialExtensions.RenderPartial(HtmlHelper htmlHelper, String partialViewName, Object model) at ASP._Page_Views_Dashboard_Index_cshtml.Execute() in d:\Websites\SiteAndAppPoolName\Views\Dashboard\Index.cshtml:line 9 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) at System.Web.Mvc.ControllerActionInvoker.<>c__DisplayClass1c.<InvokeActionResultWithFilters>b__19() at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList`1 filters, ActionResult actionResult) at System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) at System.Web.Mvc.Controller.ExecuteCore() at System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) at System.Web.Mvc.MvcHandler.<>c__DisplayClass6.<>c__DisplayClassb.<BeginProcessRequest>b__5() at System.Web.Mvc.Async.AsyncResultWrapper.<>c__DisplayClass1.<MakeVoidDelegate>b__0() at System.Web.Mvc.MvcHandler.<>c__DisplayClasse.<EndProcessRequest>b__d() at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) Custom event details: As mentioned, it's every MVC action that throws this error until the app pool is restarted, and the error seems to be occurring in System.Web.WebPages.Scope.WebConfigScopeDictionary.TryGetValue(Object key, Object& value) Has anyone seen this issue before? It's only happening on this server, on any of the app pools on the server (not confined to this one) and an app pool restart sorts it. Any help much appreciated. Cheers, Matthew

    Read the article

  • xsd validation againts xsd generated class level validation

    - by Miral
    In my project I have very big XSD file which i use to validate some XML request and response to a 3rd party. For the above scenario I can have 2 approaches 1) Create XML and then validate against give XSD 2) Create classes from XSD with the help of XSD gen tool, add xtra bit of attirbutes and use them for validation. Validation in the second way will work somewhat in this manner, a) convert xml request/response into object with XML Serialization b) validate the object with custom attributes set on each property, i.e. Pass the object to a method which will validate the object by iterating through properties and its custom attributes set on the each property, and this will return a boolean value if the object validates and that determines whether the xml request is valid or not? Now the concern which approach is good in terms of performance and anything else???

    Read the article

  • Tales from the Trenches – Building a Real-World Silverlight Line of Business Application

    - by dwahlin
    There's rarely a boring day working in the world of software development. Part of the fun associated with being a developer is that change is guaranteed and the more you learn about a particular technology the more you realize there's always a different or better way to perform a task. I've had the opportunity to work on several different real-world Silverlight Line of Business (LOB) applications over the past few years and wanted to put together a list of some of the key things I've learned as well as key problems I've encountered and resolved. There are several different topics I could cover related to "lessons learned" (some of them were more painful than others) but I'll keep it to 5 items for this post and cover additional lessons learned in the future. The topics discussed were put together for a TechEd talk: Pick a Pattern and Stick To It Data Binding and Nested Controls Notify Users of Successes (and failures) Get an Agent – A Service Agent Extend Existing Controls The first topic covered relates to architecture best practices and how the MVVM pattern can save you time in the long run. When I was first introduced to MVVM I thought it was a lot of work for very little payoff. I've since learned (the hard way in some cases) that my initial impressions were dead wrong and that my criticisms of the pattern were generally caused by doing things the wrong way. In addition to MVVM pros the slides and sample app below also jump into data binding tricks in nested control scenarios and discuss how animations and media can be used to enhance LOB applications in subtle ways. Finally, a discussion of creating a re-usable service agent to interact with backend services is discussed as well as how existing controls make good candidates for customization. I tried to keep the samples simple while still covering the topics as much as possible so if you’re new to Silverlight you should definitely be able to follow along with a little study and practice. I’d recommend starting with the SilverlightDemos.View project, moving to the SilverlightDemos.ViewModels project and then going to the SilverlightDemos.ServiceAgents project. All of the backend “Model” code can be found in the SilverlightDemos.Web project. Custom controls used in the app can be found in the SivlerlightDemos.Controls project.   Sample Code and Slides

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • SelectionChanged event binding in Silverlight+MVVM-Light

    - by Budda
    The handler of the "SelectionChanged" event of the ComboBox control has the following signature: void SelectionChangedMethod(object sender, SelectionChangedEventArgs e) How to bind to that property under Silverlight 4 and MVVM-Light to the corresponding method of the ViewModel object? As far as I know, I need to do something like this: public void Changed(Object obj, SelectionChangedEventArgs e) { // .... implement logic here } RelayCommand<Object, SelectionChangedEventArgs> _command; public ICommand ObjectSelectionChanged { get { if (_command == null) { _command = new RelayCommand<Object, SelectionChangedEventArgs>(Changed); } return _command; } } The problem is that RelayCommand class in the MVVM-Light framework doesn't support 2 generic parameters... Is there any solution or workaround for this case? How bind control event to the method with 2 parameters?

    Read the article

  • Usabe of Python 3 super()

    - by deamon
    I wonder when to use what flavour of Python 3 super(). Help on class super in module builtins: class super(object) | super() -> same as super(__class__, <first argument>) | super(type) -> unbound super object | super(type, obj) -> bound super object; requires isinstance(obj, type) | super(type, type2) -> bound super object; requires issubclass(type2, type) Until now I've used super() only without arguments and it worked as expected (by a Java developer). Questions: What does "bound" mean in this context? What is the difference between bound and unbound super object? When to use super(type, obj) and when super(type, type2)? Would it be better to name the super class like in Mother.__init__(...)?

    Read the article

  • Usage of Python 3 super()

    - by deamon
    I wonder when to use what flavour of Python 3 super(). Help on class super in module builtins: class super(object) | super() -> same as super(__class__, <first argument>) | super(type) -> unbound super object | super(type, obj) -> bound super object; requires isinstance(obj, type) | super(type, type2) -> bound super object; requires issubclass(type2, type) Until now I've used super() only without arguments and it worked as expected (by a Java developer). Questions: What does "bound" mean in this context? What is the difference between bound and unbound super object? When to use super(type, obj) and when super(type, type2)? Would it be better to name the super class like in Mother.__init__(...)?

    Read the article

  • How to internally rewrite a page when requested from specific HTTP_HOST

    - by Andy
    Hi all, I have a Drupal site, site.com, and our client has a campaign that they're promoting for which they've bought a new domain name, campaign.com. I'd like it so that a request for campaign.com internally rewrites to a particular page of the Drupal site. Note Drupal uses an .htaccess file in the document root. The normal Drupal rewrite is # Rewrite URLs of the form 'x' to the form 'index.php?q=x'. RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_URI} !=/favicon.ico RewriteRule ^(.*)$ index.php?q=$1 [L,QSA] I added the following before the normal rewrite. # Custom URLS (eg. microsites) go here RewriteCond %{HTTP_HOST} =campaign.com RewriteCond %{REQUEST_URI} =/ RewriteRule ^ index.php?q=node/22 [L] Unfortunately it doesn't work, it just shows the homepage. Turning on the rewrite log I get this. 1. [rid#2da8ea8/initial] (3) [perdir D:/wamp/www/] strip per-dir prefix: D:/wamp/www/ - 2. [rid#2da8ea8/initial] (3) [perdir D:/wamp/www/] applying pattern '^' to uri '' 3. [rid#2da8ea8/initial] (2) [perdir D:/wamp/www/] rewrite '' - 'index.php?q=node/22' 4. [rid#2da8ea8/initial] (3) split uri=index.php?q=node/22 - uri=index.php, args=q=node/22 5. [rid#2da8ea8/initial] (3) [perdir D:/wamp/www/] add per-dir prefix: index.php - D:/wamp/www/index.php 6. [rid#2da8ea8/initial] (2) [perdir D:/wamp/www/] strip document_root prefix: D:/wamp/www/index.php - /index.php 7. [rid#2da8ea8/initial] (1) [perdir D:/wamp/www/] internal redirect with /index.php [INTERNAL REDIRECT] 8. [rid#2da7770/initial/redir#1] (3) [perdir D:/wamp/www/] strip per-dir prefix: D:/wamp/www/index.php - index.php 9. [rid#2da7770/initial/redir#1] (3) [perdir D:/wamp/www/] applying pattern '^' to uri 'index.php' 10.[rid#2da7770/initial/redir#1] (3) [perdir D:/wamp/www/] strip per-dir prefix: D:/wamp/www/index.php - index.php 11.[rid#2da7770/initial/redir#1] (3) [perdir D:/wamp/www/] applying pattern '^(.*)$' to uri 'index.php' 12.[rid#2da7770/initial/redir#1] (1) [perdir D:/wamp/www/] pass through D:/wamp/www/index.php I'm not used to mod_rewrite, so I might be missing something, but comparing the logs from a call to http://site.com/node/3 and from http://campaign.com/ I can't see any meaningful difference. Specifically uri and args on line 4 seem correct, the internal redirect on line 7 seems right, and the pass through on line 12 seems right (because the file index.php exists). But for some reason it seems the query string's been discarded/ignored around the time of the internal redirect. I'm completely stumped. Also, if anyone could provide a reference on understanding the rewrite log, that might help. It'd be great if there's a way to track the query string through the internal redirect. FWIW I'm using WampServer 2.1 with Apache 2.2.17.

    Read the article

  • Parsing HTML using HtmlParser

    - by Blankman
    My html has 20 or so rows of the following HTML pattern. So the below is considered a single instance of the pattern. Each instance of this pattern represents a product. Again the below is a single instance, it spans multiple rows in the HTML table. <table> .. <!-- product starts here, this html comment is not in the real html --> <tr> <td rowspan="5" class="product" valign="top"><nobr> ????????????</td> </tr> <tr> <td class="title" ??????????>?????????</td> <td class="title" ??????????>?????????</td> <td class="title" ??????????>?????????</td> <td class="title" ??????????>?????????</td> <td class="title" ??????????>?????????</td> <td class="title" ??????????>?????????</td> </tr> <tr> <td class="data" ?????? </td> <td class="data" ?????? </td> <td class="data" ?????? </td> <td class="data" ?????? </td> <td class="data" ?????? </td> <td class="data" ?????? </td> </tr> </tr> <tr> <td colspan="5" ????????</td> </tr> <tr> <td colspan="6" width="100%">&nbsp;<hr></td> </tr> <!-- product ends here, this html comment is not in the real html --> <!-- above pattern repeats multiple times in the HTML --> .. <table> I am trying to use HtmlParser for this. Parser rowParser = new Parser(); rowParser.setInputHtml(page.getHtml()); // page object represents a html page rowParser.setEncoding("UTF-8"); NodeFilter productRowFilter = new AndFilter( new TagNameFilter("tr"), new HasChildFilter( new AndFilter( new TagNameFilter("td"), new HasAttributeFilter("class", "product"))) The above filter doesn't work, just showing you what I have so far. I need to somehow combine these filters, and use the last td to mark the end of the pattern i.e. the td with the colspan=6 and width=100% with child element hr. I have been struggling with this, and have resorted to Regex'ing but was told numerous times to NOT use regex for html parsing, so here I am! Your help is much appreciated!

    Read the article

  • GNOME panel crash

    - by josh
    when trying to log in using gnome-classic on ubuntu 11.10 gnome-panel crashes. I can still see the desktop and i can open applications via terminal but when i try to run gnome-panel using "gnome-panel" or "gnome-panel --replace" it crashes with this error: (gnome-panel:9694): Gtk-CRITICAL **: gtk_style_context_get: assertion `priv->widget_path != NULL' failed (gnome-panel:9694): Gtk-CRITICAL **: gtk_style_context_get: assertion `priv->widget_path != NULL' failed (gnome-panel:9694): GLib-GObject-WARNING **: invalid uninstantiatable type `(null)' in cast to `PanelWidget' gnome-panel: /build/buildd/cairo-1.10.2/src/cairo-pattern.c:764: cairo_pattern_reference: Assertion `((*&(&pattern->ref_count)->ref_count) > 0)' failed. Aborted

    Read the article

< Previous Page | 384 385 386 387 388 389 390 391 392 393 394 395  | Next Page >