Search Results

Search found 3920 results on 157 pages for 'advanced'.

Page 4/157 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Review: 6 Advanced OpenOffice.org Extensions

    The open source OpenOffice productivity suite is a cross-platform powerhouse, and you can can add additional functionality by installing extensions. Eric Geier offers six OpenOffice extensions for analyzing readability, special text effects, advanced math functions, and more.

    Read the article

  • 6 Advanced OpenOffice.org Extensions

    <b>Linux Planet:</b> "The open source OpenOffice productivity suite is a cross-platform powerhouse, and you can can add additional functionality by installing extensions. Eric Geier offers six OpenOffice extensions for analyzing readability, special text effects, advanced math functions, and more."

    Read the article

  • Pull Request Changes, Multi-Selection in Advanced View, and Advertisement Changes

    [Do you tweet? Follow us on Twitter @matthawley and @adacole_msft] We deployed a new version of the CodePlex website today. Pull Request Changes In this release, we have begun to re-focus on Pull Requests to ensure a productive experience between the project users and developers. We feel we made significant progress in this area for this release and look forward to using your feedback to drive future iterations. One of the biggest hurdles people have indicated is the inability to see what a pull request includes without pulling the source down from a Mercurial client. With today’s changes, any user has the ability to view a pull request, the changesets / changes included, and perform an inline diff of the file. When a pull request is made, the CodePlex website will query for all outgoing changes from the fork to the main repository for a point-in-time comparison. Because of this point-in-time comparison… All existing pull requests created prior to this release will not have changesets associated with them. If new commits are pushed to the fork while a pull request is active, they will not appear associated with the pull request. The pull request will need to be re-submitted for them to appear. Once a pull request is created, you can “View the Pull Request” which takes you to a page that looks like As you may notice, we now display a lot more detailed information regarding that pull request including who it was requested by and when, the associated changesets, the description, who it’s assigned to (we’ll come back to this) and the listing of summarized file changes. What you’ll also notice, is that each modified file has the ability to view a diff of all changes made. When you click “(view diff)” for a file, an inline diff experience appears. This new experience allows you to quickly navigate through all of the modified files as well as viewing the various change blocks for each file. You’ll also notice as you browse through each file’s changes, we update the URL to include the file path so you can quickly send a direct link to a pull request’s file. Clicking “(close diff)” will bring you back to the original pull request view. View this pull request live on WikiPlex. Pull Request Review Assignment Another new feature we added for pull requests is the ability for project members to assign pull requests for review. Any project member has the ability to assign (and re-assign if needed) a pull request to a project member. Once the assignment has been made, that project member will be notified via email of the assignment. Once they complete the review of the pull request, they can either accept or deny it similarly to the previous process. Multi-Selection in Advanced View Filters One of the more recent requests we have heard from users is the ability multi-select advanced view filters for work items. We are happy to announce this is now possible. Simply control-click the multiple options for each filter item and your work item query will be refined as such. Should you happen to unselect all options for a given filter, it will automatically reset to the default option for that filter. Furthermore, the “Direct Link” URL will be updated to include the multi-selected options for each filter. Note: The “Direct Link” feature was released in our previous deployment, just never written about. It allows you to capture the current state of your query and send it to other individuals. Advertisement Changes Very recently, the advertiser (The Lounge) we partnered to provide advertising revenue for projects, or donated to charity, was acquired by Lake Quincy Media. There has been no change in the advertising platform offering, and all projects have been converted over to using the new infrastructure. Project owners should note the new contact information for getting paid. The CodePlex team values your feedback, and is frequently monitoring Twitter, our Discussions and Issue Tracker for new features or problems. If you’ve not visited the Issue Tracker recently, please take a few moments to log an idea or vote for the features you would most like to see implemented on CodePlex.

    Read the article

  • Sharp HealthCare Reduces Storage Requirements by 50% with Oracle Advanced Compression

    - by [email protected]
    Sharp HealthCare is an award-winning integrated regional health care delivery system based in San Diego, California, with 2,600 physicians and more than 14,000 employees. Sharp HealthCare's data warehouse forms a vital part of the information system's infrastructure and is used to separate business intelligence reporting from time-critical health care transactional systems. Faced with tremendous data growth, Sharp HealthCare decided to replace their existing Microsoft products with a solution based on Oracle Database 11g and to implement Oracle Advanced Compression. Join us to hear directly from the primary DBA for the Data Warehouse Application Team, Kim Nguyen, how the new environment significantly reduced Sharp HealthCare's storage requirements and improved query performance.

    Read the article

  • Oracle saves with Oracle Database 11g and Advanced Compression

    - by jenny.gelhausen
    Oracle Corporation runs a centralized eBusiness Suite system on Oracle Database 11g for all its employees around the globe. This clustered Global Single Instance (GSI) has scaled seamlessly with many acquisitions over the years, doubling the number of employees since 2001 and supporting around 100,000 employees today, 24 hours a day, 7 days a week around the world. In this podcast, you'll hear from Raji Mani, IT Director for Oracle's PDIT Group, on how Oracle Database 11g and Advanced Compression is helping to save big on storage costs. var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • Advanced Search Stored procedure

    - by Ray Eatmon
    So I am working on an MVC ASP.NET web application which centers around lots of data and data manipulation. PROBLEM OVERVIEW: We have an advanced search with 25 different filter criteria. I am using a stored procedure for this search. The stored procedure takes in parameters, filter for specific objects, and calculates return data from those objects. It queries large tables 14 millions records on some table, filtering and temp tables helped alleviate some of the bottle necks for those queries. ISSUE: The stored procedure used to take 1 min to run, which creates a timeout returning 0 results to the browser. I rewrote the procedure and got it down to 21 secs so the timeout does not occur. This ONLY occurs this slow the FIRST time the search is run, after that it takes like 5 secs. I am wondering should I take a different approach to this problem, should I worry about this type of performance issue if it does not timeout?

    Read the article

  • Create Advanced Panoramas with Microsoft Image Composite Editor

    - by Matthew Guay
    Do you enjoy making panoramas with your pictures, but want more features than tools like Live Photo Gallery offer?  Here’s how you can create amazing panoramas for free with the Microsoft Image Composite Editor. Yesterday we took a look at creating panoramic photos in Windows Live Photo Gallery. Today we take a look at a free tool from Microsoft that will give you more advanced features to create your own masterpiece. Getting Started Download Microsoft Image Composite Editor from Microsoft Research (link below), and install as normal.  Note that there are separate version for 32 & 64-bit editions of Windows, so make sure to download the correct one for your computer. Once it’s installed, you can proceed to create awesome panoramas and extremely large image combinations with it.  Microsoft Image Composite Editor integrates with Live Photo Gallery, so you can create more advanced panoramic pictures directly.  Select the pictures you want to combine, click Extras in the menu bar, and select Create Image Composite. You can also create a photo stitch directly from Explorer.  Select the pictures you want to combine, right-click, and select Stitch Images… Or, simply launch the Image Composite Editor itself and drag your pictures into its editor.  Either way you start a image composition, the program will automatically analyze and combine your images.  This application is optimized for multiple cores, and we found it much faster than other panorama tools such as Live Photo Gallery. Within seconds, you’ll see your panorama in the top preview pane. From the bottom of the window, you can choose a different camera motion which will change how the program stitches the pictures together.  You can also quickly crop the picture to the size you want, or use Automatic Crop to have the program select the maximum area with a continuous picture.   Here’s how our panorama looked when we switched the Camera Motion to Planar Motion 2. But, the real tweaking comes in when you adjust the panorama’s projection and orientation.  Click the box button at the top to change these settings. The panorama is now overlaid with a grid, and you can drag the corners and edges of the panorama to change its shape. Or, from the Projection button at the top, you can choose different projection modes. Here we’ve chosen Cylinder (Vertical), which entirely removed the warp on the walls in the image.  You can pan around the image, and get the part you find most important in the center.  Click the Apply button on the top when you’re finished making changes, or click Revert if you want to switch to the default view settings. Once you’ve finished your masterpiece, you can export it easily to common photo formats from the Export panel on the bottom.  You can choose to scale the image or set it to a maximum width and height as well.  Click Export to disk to save the photo to your computer, or select Publish to Photosynth to post your panorama online. Alternately, from the File menu you can choose to save the panorama as .spj file.  This preserves all of your settings in the Image Composite Editor so you can edit it more in the future if you wish.   Conclusion Whether you’re trying to capture the inside of a building or a tall tree, the extra tools in Microsoft Image Composite Editor let you make nicer panoramas than you ever thought possible.  We found the final results surprisingly accurate to the real buildings and objects, especially after tweaking the projection modes.  This tool can be both fun and useful, so give it a try and let us know what you’ve found it useful for. Works with 32 & 64-bit versions of XP, Vista, and Windows 7 Link Download Microsoft Image Composite Editor Similar Articles Productive Geek Tips Change or Set the Greasemonkey Script Editor in FirefoxNew Vista Syntax for Opening Control Panel Items from the Command-lineTune Your ClearType Font Settings in Windows VistaChange the Default Editor From Nano on Ubuntu LinuxMake MSE Create a Restore Point Before Cleaning Malware TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Get a free copy of WinUtilities Pro 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor

    Read the article

  • Learning Python from Beginner to Advanced level

    - by Christofer Bogaso
    I have some problems in my hand and would like to resolve them by myself (rather than hiring some professional, obviously due to cash problem!): build a really good website (planning to set-up my own start-up). build some good software (preferrably with exe installation files) on many mathematical and statistical techniques. To accomplish those tasks, is it worth to learn Python in advance level? I have advanced programming experiences with R and Matlab and VBA (and some sort of C), however not anything on Python. Be very grateful if experts put some guidance here. Thanks for your time.

    Read the article

  • Joomla and Google Analytics advanced options in tracking code

    - by miako
    I want to insert google analytics tracking code in my joomla site. so i registered in the official site of google and saw there is an advanced tab with three more options than standard. Do i have to check "i want to track dynamic pages" and "i want to track php pages"? Do these options provide me better results or they are necessary for a dynamic site based on php like joomla? Does anyone know the process of installing? because i didn't manage to make it work by following this Also where do i place the tracking code? Because of some bugs some say it is better just after the tag <body> whereas other say just before the tag </body>. Thank you

    Read the article

  • How to implement friction in a physics engine based on "Advanced Character Physics"

    - by paldepind
    I have implemented a physics engine based on the concepts in the classic text Advanced Character Physics by Thomas Jakobsen. Friction is only discussed very briefly in the article and Jakobsen himself notes how "other and better friction models than this could and should be implemented." Generally how could one implement a believable friction model on top of the concepts from the mentioned article? And how could the found friction be translated into rotation on a circle? I do not want this question to be about my specific implementation but about how to combine Jakobsens ideas with a great friction system more generally. But here is a live demo showing the current state of my engine which does not handle friction in any way: http://jsfiddle.net/Z7ECB/embedded/result/ Below is a picture showing and example on how collision detection could work in an engine based in the paper. In the Verlet integration the current and previous position is always stored. Based on these a new position is calculated. In every frame I calculate the distance between the circles and the lines. If this distance is less than a circles radius a collision has occurred and the circle is projected perpendicular out of the offending line according to the size of the overlap (offset on the picture). Velocity is implicit due to Verlet integration so changing position also changes the velocity. What I need to do know is to somehow determine the amount of friction on the circle and move it backwards parallel to the line in order to reduce its speed.

    Read the article

  • Announcing: Oracle Enterprise Manager 12c Delivers Advanced Self-Service Automation for Oracle Database 12c Multitenant

    - by Scott McNeil
    New Self-Service Driven Provisioning of Pluggable Databases Today Oracle announced new capabilities that support managing the full lifecycle of pluggable database as a service in Oracle Enterprise Manager 12c Release 3 (12.1.0.3). This latest release builds on the existing capabilities to provide advanced automation for deploying database as a service using Oracle Database 12c Multitenant option. It takes it one step further by offering pluggable database as a service through Oracle Enterprise Manager 12c self-service portal providing customers with fast provisioning of database cloud services with minimal time and effort. This is a significant addition to Oracle Enterprise Manager 12c’s existing portfolio of cloud services that includes infrastructure as a service, database as a service, testing as a service, and Java platform as a service. The solution provides a self-service mechanism to provision pluggable databases allowing users to request and access database(s) on-demand. The self-service operations are also enabled through REST APIs allowing customers to integrate with third-party automation systems or their custom enterprise portals. Benefits Self-service provisioning allows rapid access to pluggable database as a service for hosting or certifying applications on Oracle Database 12c Self-service driven migration to pluggable database as a service in order to migrate a pre-Oracle Database 12c database to a pluggable database as a service model and test the consolidation strategy Single service catalog for all approved pluggable database as a service configurations which helps customers achieve standardization while catering to all applications and users in the enterprise Resource guarantee via database resource manager (and IORM on Oracle Exadata) that enables deployment of mixed workloads in a shared environment Quota, role based access, and policy based management that enforces governance and reduces administrative overhead Chargeback or showback which improves metering and accountability for services consumed by each pluggable database Comprehensive REST APIs that support integration with ticketing or change management systems, and or with other self-service portals Minimal administrative and maintenance overhead through self-managing automation that allows for intelligent placement of pluggable databases To understand how pluggable database as a service works, watch this quick demo: Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • Mal kurz erklärt: Advanced Security Option (ASO)

    - by Anne Manke
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Heinz-Wilhelm Fabry 12.00 Normal 0 false false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Heinz-Wilhelm Fabry 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} WER? Kunden, die die Oracle Datenbank Enterprise Edition einsetzen und deren Sicherheitsabteilungen bzw. Fachabteilungen die Daten- und/oder Netzwerkverschlüsselung fordern und / oder die personenbezogene Daten in Oracle Datenbanken speichern und / oder die den Zugang zu Datenbanksystemen von der Eingabe Benutzername/Passwort auf Smartcards oder Kerberos umstellen wollen. Heinz-Wilhelm Fabry 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} WAS? Durch das Aktivieren der Option Advanced Security können folgende Anforderungen leicht erfüllt werden: Einzelne Tabellenspalten gezielt verschlüsselt ablegen, wenn beispielsweise der Payment Card Industry Data Security Standard (PCI DSS) oder der Europäischen Datenschutzrichtlinie eine Verschlüsselung bestimmter Daten nahelegen Sichere Datenablage – Verschlüsselung aller Anwendungsdaten Keine spürbare Performance-Veränderung Datensicherungen sind automatisch verschlüsselt - Datendiebstahl aus Backups wird verhindert Verschlüsselung der Netzwerkübertragung – Sniffer-Tools können keine lesbaren Daten abgreifen Aktuelle Verschlüsselungsalgorithmen werden genutzt (AES256, 3DES168, u.a.) Heinz-Wilhelm Fabry 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} WIE? Die Oracle Advanced Security Option ist ein wichtiger Baustein einer ganzheitlichen Sicherheitsarchitektur. Mit ihr lässt sich das Risiko eines Datenmissbrauchs erheblich reduzieren und implementiert ebenfalls den Schutz vor Nicht-DB-Benutzer, wie „root unter Unix“. Somit kann „root“ nicht mehr unerlaubterweise die Datenbank-Files lesen . ASO deckt den kompletten physikalischen Stack ab. Von der Kommunikation zwischen dem Client und der Datenbank, über das verschlüsselte Ablegen der Daten ins Dateisystem bis hin zur Aufbewahrung der Daten in einem Backupsystem. Heinz-Wilhelm Fabry 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Das BVA (Bundesverwaltungsamt) bietet seinen Kunden mit dem neuen Personalverwaltungssystem EPOS 2.0 mehr Sicherheit durch Oracle Sicherheitstechnologien an. Heinz-Wilhelm Fabry 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Und sonst so? Verschlüsselung des Netzwerkverkehrs Wie beeinflusst die Netzwerkverschlüsselung die Performance? Unsere Kunden bestätigen ständig, dass sie besonders in modernen Mehr-Schichten-Architekturen Anwender kaum Performance-Einbußen feststellen. Falls genauere Daten zur Performance benötigt werden, sind realitätsnahe, kundenspezifische Tests unerlässlich. Verschlüsselung von Anwendungsdaten (Transparent Data Encryption-TDE ) Muss ich meine Anwendungen umschreiben, damit sie TDE nutzen können? NEIN. TDE ist völlig transparent für Ihre Anwendungen. Kann ich nicht auch durch meine Applikation die Daten verschlüsseln? Ja - die Applikationsdaten werden dadurch allerdings nur in LOBs oder Textfeldern gespeichert. Und das hat gravierende Nachteile: Es existieren zum Beispiel keine Datums- /Zahlenfelder. Daraus folgt, dass auf diesen Daten kein sinnvolles Berichtsverfahren funktioniert. Auch können Applikationen nicht mit den Daten arbeiten, die von einer anderen Applikation verschlüsselt wurden. Der wichtigste Aspekt gegen die Verschlüsselung innerhalb einer Applikation ist allerdings die Performanz. Da keine Indizes auf die durch eine Applikation verschlüsselten Daten erstellt werden können, wird die Datenbank bei jedem Zugriff ein Full-Table-Scan durchführen, also jeden Satz der betroffenen Tabelle lesen. Dadurch steigt der Ressourcenbedarf möglicherweise enorm und daraus resultieren wiederum möglicherweise höhere Lizenzkosten. Mit ASO verschlüsselte Daten können von der Oracle DB Firewall gelesen und ausgewertet werden. Warum sollte ich TDE nutzen statt einer kompletten Festplattenverschlüsselung? TDE bietet einen weitergehenden Schutz. Denn TDE schützt auch vor Systemadministratoren, die zwar keinen Zugriff auf die Datenbank, aber auf der Betriebssystemebene Zugriff auf die Datenbankdateien haben. Ausserdem bleiben einmal verschlüsselte Daten verschlüsselt, egal wo diese hinkopiert werden. Dies ist bei einer Festplattenverschlüssung nicht der Fall. Welche Verschlüsselungsalgorithmen stehen zur Verfügung? AES (256-, 192-, 128-bit key) 3DES (3-key)

    Read the article

  • Upcoming: Oracle Advanced Benefits Advisor Webcasts Announced

    - by user793553
    Oracle support is pleased to announce a new webcast covering the Open Enrollment functionality in Oracle Advanced Benefits.  The webcast is repeated on three different dates, in order to make attendance easier, whatever timezone you operate in. These one-hour sessions are recommended for technical and functional users who will be having an Open Enrollment cycle in the next 12 months.  The session will review the best proactive practices recommended by Oracle Support regardless of when your Open Enrollment takes place.  It will review planning, patching, data corruption and critical checklists. TOPICS WILL INCLUDE: Planning Ahead for Open Enrollment testing Required Patches Test performance Avoid major patching/updates Data corruption issues A short, live demonstration (only if applicable) and question and answer period will be included.  Below is the schedule for the webcasts.  The same can be found in the MyOracleSupport Document Advisor Webcast Current Schedule Doc ID 740966.1 Please follow the links to register for your chosen session. Webcast Topic and Description Registration Details Date and Time Best Benefits Practices for Open Enrollment Session 3   Doc ID 1489318.1 October 17, 2012 at 16:00 US EST Best Benefits Practices for Open Enrollment Session 4   Doc ID 1489319.1 October 31, 2012 at 16:00 US EST Product Enhancements in R12.1.3 RUP 5 Session 2   Doc ID 1489320.1 November 07, 2012 at 16:00 US EST

    Read the article

  • Advanced PHP book [closed]

    - by Aaditi Sharma
    I've gone and stumbled across a lot of recommendations for PHP books, including on SO, however could not find a reasonable & convincible answer for this. Is there a really good advanced book for PHP. Background: I've done almost 8 months in PHP. I know the basics. I go through php.net very often. I've played around with Codeigniter, amongst other frameworks. I've been doing JavaScript for almost 2 years, and specifically thank Douglas Crockford for this, I completely changed the way I code JavaScript. I spend a lot of time travelling, and would love to read a book about PHP, that includes the awesome parts and even when something doesn't quite work in PHP. (As a note a lot of previous answers on SO and programmers give varied results.) I have to place an order through a library which has it's limitations. One book that some of experienced PHP programmers could recommend would be helpful. I have gone through http://stackoverflow.com/questions/1711/what-is-the-single-most-influential-book-every-programmer-should-read and http://stackoverflow.com/questions/194812/list-of-freely-available-programming-books, which do NOT have books related to PHP.

    Read the article

  • Address Regulatory Mandates for Data Encryption Without Changing Your Applications

    - by Troy Kitch
    The Payment Card Industry Data Security Standard, US state-level data breach laws, and numerous data privacy regulations worldwide all call for data encryption to protect personally identifiable information (PII). However encrypting PII data in applications requires costly and complex application changes. Fortunately, since this data typically resides in the application database, using Oracle Advanced Security, PII can be encrypted transparently by the Oracle database without any application changes. In this ISACA webinar, learn how Oracle Advanced Security offers complete encryption for data at rest, in transit, and on backups, along with built-in key management to help organizations meet regulatory requirements and save money. You will also hear from TransUnion Interactive, the consumer subsidiary of TransUnion, a global leader in credit and information management, which maintains credit histories on an estimated 500 million consumers across the globe, about how they addressed PCI DSS encryption requirements using Oracle Database 11g with Oracle Advanced Security. Register to watch the webinar now.

    Read the article

  • Payback Is The Coupon King

    - by Troy Kitch
    PAYBACK GmbH operates the largest marketing and couponing platforms in the world—with more than 50 million subscribers in Germany, Poland, India, Italy, and Mexico.  The Security Challenge Payback handles millions of requests for customer loyalty coupons and card-related transactions per day under tight latency constraints—with up to 1,000 attributes or more for each PAYBACK subscriber. Among the many challenges they solved using Oracle, they had to ensure that storage of sensitive data complied with the company’s stringent privacy standards aimed at protecting customer and purchase information from unintended disclosure. Oracle Advanced Security The company deployed Oracle Advanced Security to achieve reliable, cost-effective data protection for back-up files and gain the ability to transparently encrypt data transfers. By using Oracle Advanced Security, organizations can comply with privacy and regulatory mandates that require encrypting and redacting (display masking) application data, such as credit cards, social security numbers, or personally identifiable information (PII). Learn more about how PAYBACK uses Oracle.

    Read the article

  • Why SQL Developer Rocks for the Advanced User Too

    - by thatjeffsmith
    While SQL Developer may be ‘perfect for Oracle beginners,’ that doesn’t preclude advanced and intermediate users from getting their fair share of toys! I’ve been working with Oracle since the 7.3.4 days, and I think it’s pretty safe to say that the WAY an ‘old timer’ uses a tool like SQL Developer is radically different than the ‘beginner.’ If you’ve been reluctant to use SQL Developer because it’s a GUI, give me a few minutes to try to convince you it’s worth a second (or third) look. 1. Help when you want it, and only when you want it One of the biggest gripes any user has with a piece of software is when said software can’t get out of it’s own way. When you’re typing in a word processor, sometimes you can do without the grammar and spelling checks, the offer to auto-complete your words, and all of the additional mark-up. This drives folks to programs like Notepad++ and vi. You can disable the code insight feature so you can type unmolested by SQL Developer’s attempt to auto-complete your object names. Now, if you happen to come across a long or hard to spell object name, you can still invoke the feature on demand using Ctrl+Spacebar Code Editor – Completion Insight – Enable Completion Auto-Popup (Keyword being Auto) 2. Automatic File Tracking SQL*Minus is nice. Vi is cool. Notepad++ has a lot of features I like. But not too many editors offer automatic logging of changes to your files without having to setup a source control system. I was doing some work on my login.sql. I’m not doing anything crazy, but seeing what I had done in previous iterations was helpful. Now imagine how nice it would be to have this available for your l,000+ line scripts! Track your scripts as they change, no setup required! 3. Extend the Functionality Know SQL and XML? Wish SQL Developer did JUST a little bit more? Build your own extensions. You can have custom context menus and object pages in just a few minutes. This is an example of lazy developers writing code that write code. 4. Get Your Money’s Worth You’ve licensed Enterprise Edition. You got your Diagnostic and Tuning packs. Now start using them! Not everyone has access to Enterprise Manager, especially developers. But that doesn’t mean they don’t need help with troubleshooting and optimizing poorly performing SQL statements. ASH, AWR, Real-Time SQL Monitoring and the SQL Tuning Advisor are built into the Reports and Worksheet. Yes you could make the package calls, but that’s a whole lot of typing, and I’d rather just get to the results. 5. Profile, Debug, & Unit Testing PLSQL An Interactive Development Environment (IDE) built by the same folks that own the programming language (Hello – Oracle PLSQL!) should be complete. It should ‘hug’ the developer and empower them to churn out programs that work, run fast, and are easy to maintain. Write it, test it, debug it, and tune it. When you’re running your programs and you just want to see the data that’s returned, that shouldn’t require any special settings or workaround to make it happen either. Magic! And a whole lot more… I could go on and talk about the support for things like DataPump, RMAN, and DBMS_SCHEDULER, but you’re experts and you’re plenty busy. If you think SQL Developer is falling short somewhere, I want you to let us know about it.

    Read the article

  • Unable to make properly work the Ralink rt3090 wifi card on my Lenovo B575 with Kubuntu 12.04 64bit

    - by Sebastien
    I look and tried many solution from many thread but I still unable to make this wifi card work properly (very slow, unable to connect to some wifi spot, etc.). I tried to compile the driver from the ralink website but it doesn't work. Tried to blacklist many mod, withou any result. So here are some command results, hope their help you help me: lspci sebastien@sebastien-portable:~$ lspci 00:00.0 Host bridge: Advanced Micro Devices [AMD] Family 14h Processor Root Complex 00:01.0 VGA compatible controller: Advanced Micro Devices [AMD] nee ATI Wrestler [Radeon HD 6310] 00:01.1 Audio device: Advanced Micro Devices [AMD] nee ATI Wrestler HDMI Audio [Radeon HD 6250/6310] 00:11.0 SATA controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 SATA Controller [AHCI mode] 00:12.0 USB controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 USB OHCI0 Controller 00:12.2 USB controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 USB EHCI Controller 00:13.0 USB controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 USB OHCI0 Controller 00:13.2 USB controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 USB EHCI Controller 00:14.0 SMBus: Advanced Micro Devices [AMD] nee ATI SBx00 SMBus Controller (rev 42) 00:14.2 Audio device: Advanced Micro Devices [AMD] nee ATI SBx00 Azalia (Intel HDA) (rev 40) 00:14.3 ISA bridge: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 LPC host controller (rev 40) 00:14.4 PCI bridge: Advanced Micro Devices [AMD] nee ATI SBx00 PCI to PCI Bridge (rev 40) 00:14.5 USB controller: Advanced Micro Devices [AMD] nee ATI SB7x0/SB8x0/SB9x0 USB OHCI2 Controller 00:15.0 PCI bridge: Advanced Micro Devices [AMD] nee ATI SB700/SB800/SB900 PCI to PCI bridge (PCIE port 0) 00:15.2 PCI bridge: Advanced Micro Devices [AMD] nee ATI SB900 PCI to PCI bridge (PCIE port 2) 00:18.0 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 0 (rev 43) 00:18.1 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 1 00:18.2 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 2 00:18.3 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 3 00:18.4 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 4 00:18.5 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 6 00:18.6 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 5 00:18.7 Host bridge: Advanced Micro Devices [AMD] Family 12h/14h Processor Function 7 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) 03:00.0 Network controller: Ralink corp. RT3090 Wireless 802.11n 1T/1R PCIe lsmod sebastien@sebastien-portable:~$ lsmod Module Size Used by rt2800pci 18715 0 arc4 12529 2 rt2800lib 58925 1 rt2800pci crc_ccitt 12667 1 rt2800lib rt2x00pci 14577 1 rt2800pci rt2x00lib 55301 3 rt2800pci,rt2800lib,rt2x00pci mac80211 506816 3 rt2800lib,rt2x00pci,rt2x00lib cfg80211 205544 2 rt2x00lib,mac80211 eeprom_93cx6 12725 1 rt2800pci rt2860sta 864748 0 snd_hda_codec_conexant 62128 1 snd_hda_codec_hdmi 32474 1 uvcvideo 72627 0 rts5139 351143 0 snd_hda_intel 33773 4 videodev 98259 1 uvcvideo snd_hda_codec 127706 3 snd_hda_codec_conexant,snd_hda_codec_hdmi,snd_hda_intel snd_hwdep 13668 1 snd_hda_codec psmouse 87692 0 v4l2_compat_ioctl32 17128 1 videodev serio_raw 13211 0 k10temp 13166 0 snd_pcm 97188 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec sp5100_tco 13791 0 i2c_piix4 13301 0 snd_seq_midi 13324 0 snd_rawmidi 30748 1 snd_seq_midi ideapad_laptop 18234 0 sparse_keymap 13890 1 ideapad_laptop rfcomm 47604 0 joydev 17693 0 snd_seq_midi_event 14899 1 snd_seq_midi bnep 18281 2 bluetooth 180104 10 rfcomm,bnep parport_pc 32866 0 ppdev 17113 0 snd_seq 61896 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq snd 78855 18 snd_hda_codec_conexant,snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device soundcore 15091 1 snd mac_hid 13253 0 snd_page_alloc 18529 2 snd_hda_intel,snd_pcm lp 17799 0 parport 46562 3 parport_pc,ppdev,lp usbhid 47199 0 hid 99559 1 usbhid r8169 62099 0 radeon 804372 4 video 19596 0 wmi 19256 0 ttm 76949 1 radeon drm_kms_helper 46978 1 radeon drm 242038 6 radeon,ttm,drm_kms_helper i2c_algo_bit 13423 1 radeon iwconfig sebastien@sebastien-portable:~$ iwconfig lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"4CE6763F0E0A" Mode:Managed Frequency:2.452 GHz Access Point: 4C:E6:76:3F:0E:0A Bit Rate=54 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=70/70 Signal level=-39 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:100 Missed beacon:0 eth0 no wireless extensions.

    Read the article

  • Advanced Record-Level Business Intelligence with Inner Queries

    - by gt0084e1
    While business intelligence is generally applied at an aggregate level to large data sets, it's often useful to provide a more streamlined insight into an individual records or to be able to sort and rank them. For instance, a salesperson looking at a specific customer could benefit from basic stats on that account. A marketer trying to define an ideal customer could pull the top entries and look for insights or patterns. Inner queries let you do sophisticated analysis without the overhead of traditional BI or OLAP technologies like Analysis Services. Example - Order History Constancy Let's assume that management has realized that the best thing for our business is to have customers ordering every month. We'll need to identify and rank customers based on how consistently they buy and when their last purchase was so sales & marketing can respond accordingly. Our current application may not be able to provide this and adding an OLAP server like SSAS may be overkill for our needs. Luckily, SQL Server provides the ability to do relatively sophisticated analytics via inner queries. Here's the kind of output we'd like to see. Creating the Queries Before you create a view, you need to create the SQL query that does the calculations. Here we are calculating the total number of orders as well as the number of months since the last order. These fields might be very useful to sort by but may not be available in the app. This approach provides a very streamlined and high performance method of delivering actionable information without radically changing the application. It's also works very well with self-service reporting tools like Izenda. SELECT CustomerID,CompanyName, ( SELECT COUNT(OrderID) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID ) As Orders, DATEDIFF(mm, ( SELECT Max(OrderDate) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID) ,getdate() ) AS MonthsSinceLastOrder FROM Customers Creating Views To turn this or any query into a view, just put CREATE VIEW AS before it. If you want to change it use the statement ALTER VIEW AS. Creating Computed Columns If you'd prefer not to create a view, inner queries can also be applied by using computed columns. Place you SQL in the (Formula) field of the Computed Column Specification or check out this article here. Advanced Scoring and Ranking One of the best uses for this approach is to score leads based on multiple fields. For instance, you may be in a business where customers that don't order every month require more persistent follow up. You could devise a simple formula that shows the continuity of an account. If they ordered every month since their first order, they would be at 100 indicating that they have been ordering 100% of the time. Here's the query that would calculate that. It uses a few SQL tricks to make this happen. We are extracting the count of unique months and then dividing by the months since initial order. This query will give you the following information which can be used to help sales and marketing now where to focus. You could sort by this percentage to know where to start calling or to find patterns describing your best customers. Number of orders First Order Date Last Order Date Percentage of months order was placed since last order. SELECT CustomerID, (SELECT COUNT(OrderID) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID) As Orders, (SELECT Max(OrderDate) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID) AS LastOrder, (SELECT Min(OrderDate) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID) AS FirstOrder, DATEDIFF(mm,(SELECT Min(OrderDate) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID),getdate()) AS MonthsSinceFirstOrder, 100*(SELECT COUNT(DISTINCT 100*DATEPART(yy,OrderDate) + DATEPART(mm,OrderDate)) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID) / DATEDIFF(mm,(SELECT Min(OrderDate) FROM Orders WHERE Orders.CustomerID = Customers.CustomerID),getdate()) As OrderPercent FROM Customers

    Read the article

  • Advanced Continuous Delivery to Azure from TFS, Part 1: Good Enough Is Not Great

    - by jasont
    The folks over on the TFS / Visual Studio team have been working hard at releasing a steady stream of new features for their new hosted Team Foundation Service in the cloud. One of the most significant features released was simple continuous delivery of your solution into your Azure deployments. The original announcement from Brian Harry can be found here. Team Foundation Service is a great platform for .Net developers who are used to working with TFS on-premises. I’ve been using it since it became available at the //BUILD conference in 2011, and when I recently came to work at Stackify, it was one of the first changes I made. Managing work items is much easier than the tool we were using previously, although there are some limitations (more on that in another blog post). However, when continuous deployment was made available, it blew my mind. It was the killer feature I didn’t know I needed. Not to say that I wasn’t previously an advocate for continuous delivery; just that it was always a pain to set up and configure. Having it hosted - and a one-click setup – well, that’s just the best thing since sliced bread. It made perfect sense: my source code is in the cloud, and my deployment is in the cloud. Great! I can queue up a build from my iPad or phone and just let it go! I quickly tore through the quick setup and saw it all work… sort of. This will be the first in a three part series on how to take the building block of Team Foundation Service continuous delivery and build a CD model that will actually work for any team deploying something more advanced than a “Hello World” example. Part 1: Good Enough Is Not Great Part 2: A Model That Works: Branching and Multiple Deployment Environments Part 3: Other Considerations: SQL, Custom Tasks, Etc Good Enough Is Not Great There. I’ve said it. I certainly hope no one on the TFS team is offended, but it’s the truth. Let’s take a look under the hood and understand how it works, and then why it’s not enough to handle real world CD as-is. How it works. (note that I’ve skipped a couple of steps; I already have my accounts set up and something deployed to Azure) The first step is to establish some oAuth magic between your Azure management portal and your TFS Instance. You do this via the management portal. Once it’s done, you have a new build process template in your TFS instance. (Image lifted from the documentation) From here, you’ll get the usual prompts for security, allowing access, etc. But you’ll also get to pick which Solution in your source control to build. Here’s what the bulk of the build definition looks like. All I’ve had to do is add in the solution to build (notice that mine is from a specific branch – Release – more on that later) and I’ve changed the configuration. I trigger the build, and voila! I have an Azure deployment a few minutes later. The beauty of this is that it’s all in the cloud and I’m not waiting for my machine to compile and upload the package. (I also had to enable the build definition first – by default it is created in disabled state, probably a good thing since it will trigger on every.single.checkin by default.) I get to see a history of deployments from the Azure portal, and can link into TFS to see the associated changesets and work items. You’ll notice also that this build definition also automatically put my code in the Staging slot of my Azure deployment – more on this soon. For now, I can VIP swap and be in production. (P.S. I hate VIP swap and “production” and “staging” in Azure. More on that later too.) That’s it. That’s the default out-of-box experience. Easy, right? But it’s full of room for improvement, so let’s get into that….   The Problems Nothing is perfect (except my code – it’s always perfect), and neither is Continuous Deployment without a bit of work to help it fit your dev team’s process. So what are the issues? Issue 1: Staging vs QA vs Prod vs whatever other environments your team may have. This, for me, is the big hairy one. Remember how this automatically deployed to staging rather than prod for us? There are a couple of issues with this model: If I want to deliver to prod, it requires intervention on my part after deployment (via a VIP swap). If I truly want to promote between environments (i.e. Nightly Build –> Stable QA –> Production) I likely have configuration changes between each environment such as database connection strings and this process (and the VIP swap) doesn’t account for this. Yet. Issue 2: Branching and delivering on every check-in. As I mentioned above, I have set this up to target a specific branch – Release – of my code. For the purposes of this example, I have adopted the “basic” branching strategy as defined by the ALM Rangers. This basically establishes a “Main” trunk where you branch off Dev and Release branches. Granted, the Release branch is usually the only thing you will deploy to production, but you certainly don’t want to roll to production automatically when you merge to the Release branch and check-in (unless you like the thrill of it, and in that case, I like your style, cowboy….). Rather, you have nightly build and QA environments, or if you’ve adopted the feature-branch model you have environments for those. Those are the environments you want to continuously deploy to. But that takes us back to Issue 1: we currently have a 1:1 solution to Azure deployment target. Issue 3: SQL and other custom tasks. Let’s be honest and address the elephant in the room: I need to get some sleep because I see an elephant in the room. But seriously, I can’t think of an application I have touched in the last 10 years that doesn’t need to consider SQL changes when deploying code and upgrading an environment. Microsoft seems perfectly content to ignore this elephant for now: yes, they’ve added Data Tier Applications. But let’s be honest with ourselves again: no one really uses it, and it’s not suitable for anything more complex than a Hello World sample project database. Why? Because it doesn’t fit well into a great source control story. Developers make stored procedure and table changes all day long while coding complex applications, and if someone forgets to go update the DACPAC before the automated deployment, you have a broken build until it’s completed. Developers – not just DBAs – also like to work with SQL in SQL tools, not in Visual Studio. I’m really picking on SQL because that’s generally the biggest concern that I hear. But we need to account for any custom tasks as well in the build process.   The Solutions… ? We’ve taken a look at how this all works, and addressed the shortcomings. In my next post (which I promise will be very, very soon), I will detail how I’ve overcome these shortcomings and used this foundation to create a mature, flexible model for deploying my app – any version, any time, to any environment.

    Read the article

  • Microsoft SQL Server 2008 R2 Administration Cookbook - Book and eBook expected June 2011. Pre-order now!

    - by ssqa.net
    Over 85 practical recipes for administering a high-performance SQL Server 2008 R2 system. Book and eBook expected June 2011 . Pre-order now! Multi-format orders get free access on PacktLib , This practical cookbook will show you the advanced administration techniques for managing and administering a scalable and high-performance SQL Server 2008 R2 system. It contains over 85 practical, task-based, and immediately useable recipes covering a wide range of advanced administration techniques for administering...(read more)

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >