Search Results

Search found 16050 results on 642 pages for 'linq to objects'.

Page 4/642 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How to do a "where in values" in LINQ-to-Entities

    - by Ty
    Does anybody know how to apply a "where in values" type condition using LINQ-to-Entities? I've tried the following but it doesn't work: var values = new[] { "String1", "String2" }; // some string values var foo = model.entitySet.Where(e = values.Contains(e.Name)); I believe this works in LINQ-to-SQL though? Any thoughts?

    Read the article

  • How to ignore blank elements in linq query

    - by Maestro1024
    How to ignore blank elements in linq query I have a linq query var usersInDatabase = from user in licenseUserTable where user.FirstName == first_name && user.LastName == last_name select user; But if I get here and first_name or last_name is blank then I want to still evaluate the other data item.

    Read the article

  • Linq to SQL Repository ~theory~ - Generic but now uses Linq to Objects?

    - by Matt Tolliday
    The project I am currently working on used Linq to SQL as an ORM data access technology. Its an MVC3 Web app. The problem I faced was primarily due to the inability to mock (for testing) the DataContext which gets autogenerated by the DBML designer. So to solve this issue (after much reading) I refactored the repository system which was in place - single repository with seperate and duplicated access methods for each table which ended up with something like 300 methods only 10 of which were unique - into a single repository with generic methods taking the table and returning more generic types to the upper reaches of the application. My question revolves more around the design I've used to get thus far and the differences I'm noticing in the structure of the app. 1) Having refactored the code from the dark ages which used classic Linq to SQL queries: public Billing GetBilling(int id) { var result = ( from bil in _bicDc.Billings where bil.BillingId == id select bil).SingleOrDefault(); return (result); } it now looks like: public T GetRecordWhere<T>(Expression<Func<T, bool>> predicate) where T : class { T result; try { result = _dataContext.GetTable<T>().Where(predicate).SingleOrDefault(); } catch (Exception ex) { throw ex; } return result; } and is used by the controller with a query along the lines of: _repository.GetRecordWhere<Billing>(x => x.BillingId == 1); which is fine, and precisely what I wanted to achieve. ...however.... I'm also having to do the following to get precisely the result set i require in the controller class (the highest point of the app in essence)... viewModel.RecentRequests = _model.GetAllRecordsWhere<Billing>(x => x.BillingId == 1) .Where(x => x.BillingId == Convert.ToInt32(BillingType.Submitted)) .OrderByDescending(x => x.DateCreated). Take(5).ToList(); This - as far as my understanding is correct - is now using Linq to Objects rather than the Linq to SQL queries I was previously? Is this okay practise? It feels wrong to me but I dont know why. Probably because the logic of the queries is in the very highest tier of the app, rather than the lowest, but... I defer to you good people for advice. One of the issues I considered was bringing the entire table into memory but I understand that using the Iqeryable return type the where clause is taken to the database and evaluated there. Thus returning only the resultset i require... i may be wrong. And if you've made it this far, well done. Thank you, and if you have any advice it is very much appreciated!!

    Read the article

  • Linq Query with aggregate function

    - by Billy Logan
    Hello everyone, I am trying to figure out how to go about writing a linq query to perform an aggregate like the sql query below: select d.ID, d.FIRST_NAME, d.LAST_NAME, count(s.id) as design_count from tbldesigner d inner join TBLDESIGN s on d.ID = s.DESIGNER_ID where s.COMPLETED = 1 and d.ACTIVE = 1 group by d.ID, d.FIRST_NAME, d.LAST_NAME Having COUNT(s.id) > 0 If this is even possible with a linq query could somebody please provide me with an example. Thanks in Advance, Billy

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • Using LINQ to SQL in ASP.NET MVC2 project

    - by mazhar
    Well I am new to this ORM stuff. We have to create a large project. I read about LINQ to SQL. will it be appropriate to use it in the project of high risk. i found no problem with it personally but the thing is that there will be no going back once started.So i need some feedback from the ORM gurus here at the MSDN. Will entity framework will be better? (I am in doubt about LINK to SQL because I have read and heard negative feedback here and there) I will be using MVC2 as the framework. So please give the feedback about LINQ to SQL in this regard. Q2) Also I am a fan of stored procedure as they are precomputed and fasten up the thing and I have never worked without them.I know that LINQ to SQL support stored procedures but will it be feasible to give up stored procedure seeing the beautiful data access layer generated with little effort as we are also in a need of rapid development. Q3) If some changes to some fields required in the database in LINK to SQL how will the changes be accommodated in the data access layer.

    Read the article

  • Linq, Left Join and Dates...

    - by BitFiddler
    So my situation is that I have a linq-to-sql model that does not allow dates to be null in one of my tables. This is intended, because the database does not allow nulls in that field. My problem, is that when I try to write a Linq query with this model, I cannot do a left join with that table anymore because the date is not a 'nullable' field and so I can't compare it to "Nothing". Example: There is a Movie table, {ID,MovieTitle}, and a Showings table, {ID,MovieID,ShowingTime,Location} Now I am trying to write a statement that will return all those movies that have no showings. In T.SQL this would look like: Select m.* From Movies m Left Join Showings s On m.ID = s.MovieID Where s.ShowingTime is Null Now in this situation I could test for Null on the 'Location' field but this is not what I have in reality (just a simplified example). All I have are non-null dates. I am trying to write in Linq: From m In dbContext.Movies _ Group Join s In Showings on m.ID Equals s.MovieID into MovieShowings = Group _ From ms In MovieShowings.DefaultIfEmpty _ Where ms.ShowingTime is Nothing _ Select ms However I am getting an error saying 'Is' operator does not accept operands of type 'Date'. Operands must be reference or nullable types. Is there any way around this? The model is correct, there should never be a null in the Showings:ShowTime table. But if you do a left join, and there are no show times for a particular movie, then ShowTime SHOULD be Nothing for that movie... Thanks everyone for your help.

    Read the article

  • Linq - how does it work??

    - by clarkeyboy
    Hey, I have just been looking into Linq with ASP.Net. It is very neat indeed. I was just wondering - how do all the classes get populated? I mean in ASP.Net, suppose you have a Linq file called Catalogue, and you then use a For loop to loop through Catalogue.Products and print each Product name. How do the details get stored? Does it just go through the Products table on page load and create another instance of class Product for each row, effectively copying an entire table into an array of class Product? If so, I think I have created a system very much like this, in the sense that there is a SiteContent module with an instance of each Manager class - for example there is UserManager, ProductManager, SettingManager and alike. UserManager contains an instance of the User class for each row in the Users table. They also contain methods such as Create, Update and Remove. These Managers and their "Items" are created on every page load. This just makes it nice and easy to access users, products, settings etc in every page as far as I, the developer, am concerned. Any any subsequent pages I need to create, I just need to reference SiteContent.UserManager to access a list of users, rather than executing a query from within that page (ie this method separates out data access from the workings of the page, in the same way as using code behind separates out the workings of the page from how the page is layed out). However the problem is that this technique seems rather slow. I mean it is effectively creating a database on every page load, taking data from another database. I have taken measures such as preventing, for example, the ProductManager from being created if it is not referenced on page load. Therefore it does not load data into storage when it is not needed. My question is basically whether my technique does the exact same thing as Linq, in the sense of duplicating data from tables into properties of classes.. Thanks in advance for any advice or answers about this. Regards, Richard Clarke

    Read the article

  • LEFT OUTER JOIN in Linq - How to Force

    - by dodegaard
    I have a LEFT OUTER OUTER join in LINQ that is combining with the outer join condition and not providing the desired results. It is basically limiting my LEFT side result with this combination. Here is the LINQ and resulting SQL. What I'd like is for "AND ([t2].[EligEnd] = @p0" in the LINQ query to not bew part of the join condition but rather a subquery to filter results BEFORE the join. Thanks in advance (samples pulled from LINQPad) - Doug (from l in Users join mr in (from mri in vwMETRemotes where met.EligEnd == Convert.ToDateTime("2009-10-31") select mri) on l.Mahcpid equals mr.Mahcpid into lo from g in lo.DefaultIfEmpty() orderby l.LastName, l.FirstName where l.LastName.StartsWith("smith") && l.DeletedDate == null select g) Here is the resulting SQL -- Region Parameters DECLARE @p0 DateTime = '2009-10-31 00:00:00.000' DECLARE @p1 NVarChar(6) = 'smith%' -- EndRegion SELECT [t2].[test], [t2].[MAHCPID] AS [Mahcpid], [t2].[FirstName], [t2].[LastName], [t2].[Gender], [t2].[Address1], [t2].[Address2], [t2].[City], [t2].[State] AS [State], [t2].[ZipCode], [t2].[Email], [t2].[EligStart], [t2].[EligEnd], [t2].[Dependent], [t2].[DateOfBirth], [t2].[ID], [t2].[MiddleInit], [t2].[Age], [t2].[SSN] AS [Ssn], [t2].[County], [t2].[HomePhone], [t2].[EmpGroupID], [t2].[PopulationIdentifier] FROM [dbo].[User] AS [t0] LEFT OUTER JOIN ( SELECT 1 AS [test], [t1].[MAHCPID], [t1].[FirstName], [t1].[LastName], [t1].[Gender], [t1].[Address1], [t1].[Address2], [t1].[City], [t1].[State], [t1].[ZipCode], [t1].[Email], [t1].[EligStart], [t1].[EligEnd], [t1].[Dependent], [t1].[DateOfBirth], [t1].[ID], [t1].[MiddleInit], [t1].[Age], [t1].[SSN], [t1].[County], [t1].[HomePhone], [t1].[EmpGroupID], [t1].[PopulationIdentifier] FROM [dbo].[vwMETRemote] AS [t1] ) AS [t2] ON ([t0].[MAHCPID] = [t2].[MAHCPID]) AND ([t2].[EligEnd] = @p0) WHERE ([t0].[LastName] LIKE @p1) AND ([t0].[DeletedDate] IS NULL) ORDER BY [t0].[LastName], [t0].[FirstName]

    Read the article

  • LINQ compiled query DataBind issue

    - by Brian
    Hello All, I have a pretty extensive reporting page that uses LINQ. There is one main function that returns an IQueryable object. I then further filter / aggregate the returned query depending on the report the user needs. I changed this function to a compiled query, it worked great, and the speed increase was astonishing. The only problem comes when i want to databind the results. I am databinding to a standard asp.net GridView and it works fine, no problems. I am also databinding to an asp.net chart control, this is where my page is throwing an error. this works well: GridView gv = new GridView(); gv.DataSource = gridSource; But this does not: Series s1 = new Series("Series One"); s1.Points.DataBindXY(gridSource, "Month", gridSource, "Success"); The error i receive is this: System.NotSupportedException Specified method is not supported When i look into my gridSource var at run time i see this using a typical linq query: SELECT [t33].[value2] AS [Year], [t33].[value22] AS [Month], [t33].[value3] AS [Calls]...... I see this after i change the query to compiled: {System.Linq.OrderedEnumerable<<>f__AnonymousType15<string,int,int,int,int,int,int,int>,string>} This is obviously the reason why the databindxy is no longer working, but i am not sure how to get around it. Any help would be appreciated! Thanks

    Read the article

  • LINQ-to-SQL IN/Contains() for Nullable<T>

    - by Craig Walker
    I want to generate this SQL statement in LINQ: select * from Foo where Value in ( 1, 2, 3 ) The tricky bit seems to be that Value is a column that allows nulls. The equivalent LINQ code would seem to be: IEnumerable<Foo> foos = MyDataContext.Foos; IEnumerable<int> values = GetMyValues(); var myFoos = from foo in foos where values.Contains(foo.Value) select foo; This, of course, doesn't compile, since foo.Value is an int? and values is typed to int. I've tried this: IEnumerable<Foo> foos = MyDataContext.Foos; IEnumerable<int> values = GetMyValues(); IEnumerable<int?> nullables = values.Select( value => new Nullable<int>(value)); var myFoos = from foo in foos where nullables.Contains(foo.Value) select foo; ...and this: IEnumerable<Foo> foos = MyDataContext.Foos; IEnumerable<int> values = GetMyValues(); var myFoos = from foo in foos where values.Contains(foo.Value.Value) select foo; Both of these versions give me the results I expect, but they do not generate the SQL I want. It appears that they're generating full-table results and then doing the Contains() filtering in-memory (ie: in plain LINQ, without -to-SQL); there's no IN clause in the DataContext log. Is there a way to generate a SQL IN for Nullable types?

    Read the article

  • Does NHibernate LINQ support ToLower() in Where() clauses?

    - by Daniel T.
    I have an entity and its mapping: public class Test { public virtual int Id { get; set; } public virtual string Name { get; set; } public virtual string Description { get; set; } } public class TestMap : EntityMap<Test> { public TestMap() { Id(x => x.Id); Map(x => x.Name); Map(x => x.Description); } } I'm trying to run a query on it (to grab it out of the database): var keyword = "test" // this is coming in from the user keyword = keyword.ToLower(); // convert it to all lower-case var results = session.Linq<Test> .Where(x => x.Name.ToLower().Contains(keyword)); results.Count(); // execute the query However, whenever I run this query, I get the following exception: Index was out of range. Must be non-negative and less than the size of the collection. Parameter name: index Am I right when I say that, currently, Linq to NHibernate does not support ToLower()? And if so, is there an alternative that allows me to search for a string in the middle of another string that Linq to NHibernate is compatible with? For example, if the user searches for kap, I need it to match Kapiolani, Makapuu, and Lapkap.

    Read the article

  • Is there a way to use Linq projections with extension methods

    - by Acoustic
    I'm trying to use AutoMapper and a repository pattern along with a fluent interface, and running into difficulty with the Linq projection. For what it's worth, this code works fine when simply using in-memory objects. When using a database provider, however, it breaks when constructing the query graph. I've tried both SubSonic and Linq to SQL with the same result. Thanks for your ideas. Here's an extension method used in all scenarios - It's the source of the problem since everything works fine without using extension methods public static IQueryable<MyUser> ByName(this IQueryable<MyUser> users, string firstName) { return from u in users where u.FirstName == firstName select u; } Here's the in-memory code that works fine var userlist = new List<User> {new User{FirstName = "Test", LastName = "User"}}; Mapper.CreateMap<User, MyUser>(); var result = (from u in userlist select Mapper.Map<User, MyUser>(u)) .AsQueryable() .ByName("Test"); foreach (var x in result) { Console.WriteLine(x.FirstName); } Here's the same thing using a SubSonic (or Linq to SQL or whatever) that fails. This is what I'd like to make work somehow with extension methods... Mapper.CreateMap<User, MyUser>(); var result = from u in new DataClasses1DataContext().Users select Mapper.Map<User, MyUser>(u); var final = result.ByName("Test"); foreach(var x in final) // Fails here when the query graph built. { Console.WriteLine(x.FirstName); } The goal here is to avoid having to manually map the generated "User" object to the "MyUser" domain object- in other words, I'm trying to find a way to use AutoMapper so I don't have this kind of mapping code everywhere a database read operation is needed: var result = from u in new DataClasses1DataContext().Users select new MyUser // Can this be avoided with AutoMapper AND extension methods? { FirstName = v.FirstName, LastName = v.LastName };

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Linq to XML - update/alter the nodes of an XML Document

    - by knox
    Hello! If got 2 Questions: 1. I've sarted working around with Linq to XML and i'm wondering if it is possible to change a XML document via Linq. I mean, is there someting like XDocument xmlDoc = XDocument.Load("sample.xml"); update item in xmlDoc.Descendants("item") where (int)item .Attribute("id") == id ... 2. I already know how to create and add a new XMLElement by simply using xmlDoc.Element("items").Add(new XElement(......); but how can i remove a single entry. XML sample data: <items> <item id="1" name="sample1" info="sample1 info" web="" /> <item id="2" name="sample2" info="sample2 info" web="" /> </itmes>

    Read the article

  • LINQ To SQL exception: Local sequence cannot be used in LINQ to SQL implementation of query operator

    - by pcampbell
    Consider this LINQ To SQL query. It's intention is to take a string[] of search terms and apply the terms to a bunch of different fields on the SQL table: string[] searchTerms = new string[] {"hello","world","foo"}; List<Cust> = db.Custs.Where(c => searchTerms.Any(st => st.Equals(c.Email)) || searchTerms.Any(st => st.Equals(c.FirstName)) || searchTerms.Any(st => st.Equals(c.LastName)) || searchTerms.Any(st => st.Equals(c.City)) || searchTerms.Any(st => st.Equals(c.Postal)) || searchTerms.Any(st => st.Equals(c.Phone)) || searchTerms.Any(st => c.AddressLine1.Contains(st)) ) .ToList(); An exception is raised: Local sequence cannot be used in LINQ to SQL implementation of query operators except the Contains() operator Question: Why is this exception raised, and how can the query be rewritten to avoid this exception?

    Read the article

  • Check username and password in LINQ query

    - by b0x0rz
    this linq query var users = from u in context.Users where u.UserEMailAdresses.Any(e1 => e1.EMailAddress == userEMail) && u.UserPasswords.Any(e2 => e2.PasswordSaltedHash == passwordSaltedHash) select u; return users.Count(); returns: 1 even when there is nothing in password table. how come? what i am trying to do is get the values of email and passwordHash from two separate tables (UserEMailAddresses and UserPasswords) linked via foreign keys to the third table (Users). it should be simple - checking if email and password mach from form to database. but it is not working for me. i get 1 (for count) even when there are NO entries in the UserPasswords table. is the linq query above completely wrong, or...?

    Read the article

  • Entity LINQ on many-to-many got error "LINQ to Entities does not recognize the method 'Boolean Conta

    - by user300992
    I have 2 tables (Users and Roles) they are mapped as Many-to-Many in relational db. When I imported to Entity Data Content, they are still staying as the same relationship. Since they are mapped as Many-To-Many in Entity, I can access Users.RoleCollection or Roles.UserCollection However, when I execute this LINQ query, I got "LINQ to Entities does not recognize the method 'Boolean Contains... method, and this method cannot be translated into a store expression." var result (from a in Users from b in Roles where a.RoleCollection.Contains(b) select a); I think I must did something wrong... please help.

    Read the article

  • help converting sql to linq expression with count

    - by Philip
    I am trying to convert the following SQL into a LINQ expression SELECT COUNT(ID) AS Count, MyCode FROM dbo.Archive WHERE DateSent=@DateStartMonth AND DateSent<=@DateEndMonth GROUP BY MyCode and I have been trying to follow this webpage as an example http://stackoverflow.com/questions/606124/converting-sql-containing-top-count-group-and-order-to-linq-2-entities I got this so far but I am stuck on understanding the new part var res=(from p in db.Archives where (p.DateSent>= dateStartMonth) && (p.DateSent< dateToday) group p by p.MyCode into g select new { ??????MyCode = g.something?, MonthlyCount= g.Count() }); Thanks in advance for helping greatly appreciated Philip

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >