Search Results

Search found 32114 results on 1285 pages for 'general development'.

Page 414/1285 | < Previous Page | 410 411 412 413 414 415 416 417 418 419 420 421  | Next Page >

  • Rotation of bitmap using a frame by frame animation

    - by pengume
    Hey every one I know this has probably been asked a ton of times but I just wanted to clarify if I am approaching this correctly, since I ran into some problems rotating a bitmap. So basically I have one large bitmap that has four frames drawn on it and I only draw one at a time by looping through the bitmap by increments to animate walking. I can get the bitmap to rotate correctly when it is not moving but once the animation starts it starts to cut off alot of the image and sometimes becomes very fuzzy. I have tried public void draw(Canvas canvas,int pointerX, int pointerY) { Matrix m; if (setRotation){ // canvas.save(); m = new Matrix(); m.reset(); // spriteWidth and spriteHeight are for just the current frame showed m.setTranslate(spriteWidth / 2, spriteHeight / 2); //get and set rotation for ninja based off of joystick m.preRotate((float) GameControls.getRotation()); //create the rotated bitmap flipedSprite = Bitmap.createBitmap(bitmap , 0, 0,bitmap.getWidth(),bitmap.getHeight() , m, true); //set new bitmap to rotated ninja setBitmap(flipedSprite); // canvas.restore(); Log.d("Ninja View", "angle of rotation= " +(float) GameControls.getRotation()); setRotation = false; } And then the Draw Method here // create the destination rectangle for the ninjas current animation frame // pointerX and pointerY are from the joystick moving the ninja around destRect = new Rect(pointerX, pointerY, pointerX + spriteWidth, pointerY + spriteHeight); canvas.drawBitmap(bitmap, getSourceRect(), destRect, null); The animation is four frames long and gets incremented by 66 (the size of one of the frames on the bitmap) for every frame and then back to 0 at the end of the loop.

    Read the article

  • How to stop a tap event from propagating in a XNA / Silverlight game

    - by Mech0z
    I have a game with Silverlight / XNA game where text and buttons are created in Silverlight while 3d is done in XNA. The Silverlight controls are drawn ontop of the 3D and I dont want a click on a button to interact with the 3D underneath So I have private void ButtonPlaceBrick_Tap(object sender, GestureEventArgs e) { e.Handled = true; But my gesture handling on the 3d objects still runs even though I have set handled to true. private void OnUpdate(object sender, GameTimerEventArgs e) { while (TouchPanel.IsGestureAvailable) { // Read the next gesture GestureSample gesture = TouchPanel.ReadGesture(); switch (gesture.GestureType) How am I supposed to stop it from propagating?

    Read the article

  • A* Jump Point Search - how does pruning really work?

    - by DeadMG
    I've come across Jump Point Search, and it seems pretty sweet to me. However, I'm unsure as to how their pruning rules actually work. More specifically, in Figure 1, it states that we can immediately prune all grey neighbours as these can be reached optimally from the parent of x without ever going through node x However, this seems somewhat at odds. In the second image, node 5 could be reached by first going through node 7 and skipping x entirely through a symmetrical path- that is, 6 -> x -> 5 seems to be symmetrical to 6 -> 7 -> 5. This would be the same as how node 3 can be reached without going through x in the first image. As such, I don't understand how these two images are not entirely equivalent, and not just rotated versions of each other. Secondly, I'd like to understand how this algorithm could be generalized to a three-dimensional search volume.

    Read the article

  • Ball bouncing at a certain angle and efficiency computations

    - by X Y
    I would like to make a pong game with a small twist (for now). Every time the ball bounces off one of the paddles i want it to be under a certain angle (between a min and a max). I simply can't wrap my head around how to actually do it (i have some thoughts and such but i simply cannot implement them properly - i feel i'm overcomplicating things). Here's an image with a small explanation . One other problem would be that the conditions for bouncing have to be different for every edge. For example, in the picture, on the two small horizontal edges i do not want a perfectly vertical bounce when in the middle of the edge but rather a constant angle (pi/4 maybe) in either direction depending on the collision point (before the middle of the edge, or after). All of my collisions are done with the Separating Axes Theorem (and seem to work fine). I'm looking for something efficient because i want to add a lot of things later on (maybe polygons with many edges and such). So i need to keep to a minimum the amount of checking done every frame. The collision algorithm begins testing whenever the bounding boxes of the paddle and the ball intersect. Is there something better to test for possible collisions every frame? (more efficient in the long run,with many more objects etc, not necessarily easy to code). I'm going to post the code for my game: Paddle Class public class Paddle : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private bool keybEnabled; private bool isLeftPaddle; private Texture2D paddleSprite; private Vector2 paddlePosition; private float paddleSpeedY; private Vector2 paddleScale = new Vector2(1f, 1f); private const float DEFAULT_Y_SPEED = 150; private Vector2[] Normals2Edges; private Vector2[] Vertices = new Vector2[4]; private List<Vector2> lst = new List<Vector2>(); private Vector2 Edge; #endregion #region Properties public float Speed { get {return paddleSpeedY; } set { paddleSpeedY = value; } } public Vector2[] Normal2EdgesVector { get { NormalsToEdges(this.isLeftPaddle); return Normals2Edges; } } public Vector2[] VertexVector { get { return Vertices; } } public Vector2 Scale { get { return paddleScale; } set { paddleScale = value; NormalsToEdges(this.isLeftPaddle); } } public float X { get { return paddlePosition.X; } set { paddlePosition.X = value; } } public float Y { get { return paddlePosition.Y; } set { paddlePosition.Y = value; } } public float Width { get { return (Scale.X == 1f ? (float)paddleSprite.Width : paddleSprite.Width * Scale.X); } } public float Height { get { return ( Scale.Y==1f ? (float)paddleSprite.Height : paddleSprite.Height*Scale.Y ); } } public Texture2D GetSprite { get { return paddleSprite; } } public Rectangle Boundary { get { return new Rectangle((int)paddlePosition.X, (int)paddlePosition.Y, (int)this.Width, (int)this.Height); } } public bool KeyboardEnabled { get { return keybEnabled; } } #endregion private void NormalsToEdges(bool isLeftPaddle) { Normals2Edges = null; Edge = Vector2.Zero; lst.Clear(); for (int i = 0; i < Vertices.Length; i++) { Edge = Vertices[i + 1 == Vertices.Length ? 0 : i + 1] - Vertices[i]; if (Edge != Vector2.Zero) { Edge.Normalize(); //outer normal to edge !! (origin in top-left) lst.Add(new Vector2(Edge.Y, -Edge.X)); } } Normals2Edges = lst.ToArray(); } public float[] ProjectPaddle(Vector2 axis) { if (Vertices.Length == 0 || axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, Vertices[0]); max = min; for (int i = 1; i < Vertices.Length; i++) { float p = Vector2.Dot(axis, Vertices[i]); if (p < min) min = p; else if (p > max) max = p; } return (new float[2] { min, max }); } public Paddle(Game game, bool isLeftPaddle, bool enableKeyboard = true) : base(game) { contentManager = new ContentManager(game.Services); keybEnabled = enableKeyboard; this.isLeftPaddle = isLeftPaddle; } public void setPosition(Vector2 newPos) { X = newPos.X; Y = newPos.Y; } public override void Initialize() { base.Initialize(); this.Speed = DEFAULT_Y_SPEED; X = 0; Y = 0; NormalsToEdges(this.isLeftPaddle); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleSprite = contentManager.Load<Texture2D>(@"Content\pongBar"); } public override void Update(GameTime gameTime) { //vertices array Vertices[0] = this.paddlePosition; Vertices[1] = this.paddlePosition + new Vector2(this.Width, 0); Vertices[2] = this.paddlePosition + new Vector2(this.Width, this.Height); Vertices[3] = this.paddlePosition + new Vector2(0, this.Height); // Move paddle, but don't allow movement off the screen if (KeyboardEnabled) { float moveDistance = Speed * (float)gameTime.ElapsedGameTime.TotalSeconds; KeyboardState newKeyState = Keyboard.GetState(); if (newKeyState.IsKeyDown(Keys.Down) && Y + paddleSprite.Height + moveDistance <= Game.GraphicsDevice.Viewport.Height) { Y += moveDistance; } else if (newKeyState.IsKeyDown(Keys.Up) && Y - moveDistance >= 0) { Y -= moveDistance; } } else { if (this.Y + this.Height > this.GraphicsDevice.Viewport.Height) { this.Y = this.Game.GraphicsDevice.Viewport.Height - this.Height - 1; } } base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(SpriteSortMode.Texture,null); spriteBatch.Draw(paddleSprite, paddlePosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Ball Class public class Ball : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private const float DEFAULT_SPEED = 50; private float speedIncrement = 0; private Vector2 ballScale = new Vector2(1f, 1f); private const float INCREASE_SPEED = 50; private Texture2D ballSprite; //initial texture private Vector2 ballPosition; //position private Vector2 centerOfBall; //center coords private Vector2 ballSpeed = new Vector2(DEFAULT_SPEED, DEFAULT_SPEED); //speed #endregion #region Properties public float DEFAULTSPEED { get { return DEFAULT_SPEED; } } public Vector2 ballCenter { get { return centerOfBall; } } public Vector2 Scale { get { return ballScale; } set { ballScale = value; } } public float SpeedX { get { return ballSpeed.X; } set { ballSpeed.X = value; } } public float SpeedY { get { return ballSpeed.Y; } set { ballSpeed.Y = value; } } public float X { get { return ballPosition.X; } set { ballPosition.X = value; } } public float Y { get { return ballPosition.Y; } set { ballPosition.Y = value; } } public Texture2D GetSprite { get { return ballSprite; } } public float Width { get { return (Scale.X == 1f ? (float)ballSprite.Width : ballSprite.Width * Scale.X); } } public float Height { get { return (Scale.Y == 1f ? (float)ballSprite.Height : ballSprite.Height * Scale.Y); } } public float SpeedIncreaseIncrement { get { return speedIncrement; } set { speedIncrement = value; } } public Rectangle Boundary { get { return new Rectangle((int)ballPosition.X, (int)ballPosition.Y, (int)this.Width, (int)this.Height); } } #endregion public Ball(Game game) : base(game) { contentManager = new ContentManager(game.Services); } public void Reset() { ballSpeed.X = DEFAULT_SPEED; ballSpeed.Y = DEFAULT_SPEED; ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } public void SpeedUp() { if (ballSpeed.Y < 0) ballSpeed.Y -= (INCREASE_SPEED + speedIncrement); else ballSpeed.Y += (INCREASE_SPEED + speedIncrement); if (ballSpeed.X < 0) ballSpeed.X -= (INCREASE_SPEED + speedIncrement); else ballSpeed.X += (INCREASE_SPEED + speedIncrement); } public float[] ProjectBall(Vector2 axis) { if (axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, this.ballCenter) - this.Width/2; //center - radius max = min + this.Width; //center + radius return (new float[2] { min, max }); } public void ChangeHorzDirection() { ballSpeed.X *= -1; } public void ChangeVertDirection() { ballSpeed.Y *= -1; } public override void Initialize() { base.Initialize(); ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); ballSprite = contentManager.Load<Texture2D>(@"Content\ball"); } public override void Update(GameTime gameTime) { if (this.Y < 1 || this.Y > GraphicsDevice.Viewport.Height - this.Height - 1) this.ChangeVertDirection(); centerOfBall = new Vector2(ballPosition.X + this.Width / 2, ballPosition.Y + this.Height / 2); base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(); spriteBatch.Draw(ballSprite, ballPosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Main game class public class gameStart : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; public gameStart() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; this.Window.Title = "Pong game"; } protected override void Initialize() { ball = new Ball(this); paddleLeft = new Paddle(this,true,false); paddleRight = new Paddle(this,false,true); Components.Add(ball); Components.Add(paddleLeft); Components.Add(paddleRight); this.Window.AllowUserResizing = false; this.IsMouseVisible = true; this.IsFixedTimeStep = false; this.isColliding = false; base.Initialize(); } #region MyPrivateStuff private Ball ball; private Paddle paddleLeft, paddleRight; private int[] bit = { -1, 1 }; private Random rnd = new Random(); private int updates = 0; enum nrPaddle { None, Left, Right }; private nrPaddle PongBar = nrPaddle.None; private ArrayList Axes = new ArrayList(); private Vector2 MTV; //minimum translation vector private bool isColliding; private float overlap; //smallest distance after projections private Vector2 overlapAxis; //axis of overlap #endregion protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleLeft.setPosition(new Vector2(0, this.GraphicsDevice.Viewport.Height / 2 - paddleLeft.Height / 2)); paddleRight.setPosition(new Vector2(this.GraphicsDevice.Viewport.Width - paddleRight.Width, this.GraphicsDevice.Viewport.Height / 2 - paddleRight.Height / 2)); paddleLeft.Scale = new Vector2(1f, 2f); //scale left paddle } private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] <= circle[0] || circle[1] <= pad[0]) { return false; } if (pad[1] - circle[0] < circle[1] - pad[0]) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax; } } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * overlap; } return true; } protected override void Update(GameTime gameTime) { updates += 1; float ftime = 5 * (float)gameTime.ElapsedGameTime.TotalSeconds; if (updates == 1) { isColliding = false; int Xrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; int Yrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; ball.SpeedX = Xrnd * ball.SpeedX; ball.SpeedY = Yrnd * ball.SpeedY; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } else { updates = 100; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } //autorun :) paddleLeft.Y = ball.Y; //collision detection PongBar = nrPaddle.None; if (ball.Boundary.Intersects(paddleLeft.Boundary)) { PongBar = nrPaddle.Left; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleLeft.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleLeft.VertexVector, ball.ballCenter)); } } else if (ball.Boundary.Intersects(paddleRight.Boundary)) { PongBar = nrPaddle.Right; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleRight.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleRight.VertexVector, ball.ballCenter)); } } if (PongBar != nrPaddle.None && !isColliding) switch (PongBar) { case nrPaddle.Left: if (ShapesIntersect(paddleLeft, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; case nrPaddle.Right: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; default: break; } if (!ShapesIntersect(paddleRight, ball) && !ShapesIntersect(paddleLeft, ball)) isColliding = false; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; //check ball movement if (ball.X > paddleRight.X + paddleRight.Width + 2) { //IncreaseScore(Left); ball.Reset(); updates = 0; return; } else if (ball.X < paddleLeft.X - 2) { //IncreaseScore(Right); ball.Reset(); updates = 0; return; } base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Aquamarine); spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend); spriteBatch.End(); base.Draw(gameTime); } } And one method i've used: public static Vector2 NormAxisFromCircle2ClosestVertex(Vector2[] vertices, Vector2 circle) { Vector2 temp = Vector2.Zero; if (vertices.Length > 0) { float dist = (circle.X - vertices[0].X) * (circle.X - vertices[0].X) + (circle.Y - vertices[0].Y) * (circle.Y - vertices[0].Y); for (int i = 1; i < vertices.Length;i++) { if (dist > (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y)) { temp = vertices[i]; //memorize the closest vertex dist = (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y); } } temp = circle - temp; temp.Normalize(); } return temp; } Thanks in advance for any tips on the 4 issues. EDIT1: Something isn't working properly. The collision axis doesn't come out right and the interpolation also seems to have no effect. I've changed the code a bit: private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] < circle[0] || circle[1] < pad[0]) { return false; } if (Math.Abs(pad[1] - circle[0]) < Math.Abs(circle[1] - pad[0])) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax * (-1); } //to get the proper axis } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * Math.Abs(overlap); } return true; } And part of the Update method: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) { ball.X += MTV.X; ball.Y += MTV.Y; } //test if (overlapAxis.X == 0) //collision with horizontal edge { } else if (overlapAxis.Y == 0) //collision with vertical edge { float factor = Math.Abs(ball.ballCenter.Y - paddleRight.Y) / paddleRight.Height; if (factor > 1) factor = 1f; if (overlapAxis.X < 0) //left edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(-1, -3), new Vector2(-1, 3), factor)))); else //right edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(1, -3), new Vector2(1, 3), factor)))); } else //vertex collision??? { ball.Speed = -ball.Speed; } } What seems to happen is that "overlapAxis" doesn't always return the right one. So instead of (-1,0) i get the (1,0) (this happened even before i multiplied with -1 there). Sometimes there isn't even a collision registered even though the ball passes through the paddle... The interpolation also seems to have no effect as the angles barely change (or the overlapAxis is almost never (-1,0) or (1,0) but something like (0.9783473, 0.02743843)... ). What am i missing here? :(

    Read the article

  • How to create a "retro" pixel shader for transformed 2D sprites that maintains pixel fidelity?

    - by David Gouveia
    The image below shows two sprites rendered with point sampling on top of a background: The left skull has no rotation/scaling applied to it, so every pixel matches perfectly with the background. The right skull is rotated/scaled, and this results in larger pixels that are no longer axis aligned. How could I develop a pixel shader that would render the transformed sprite on the right with axis aligned pixels of the same size as the rest of the scene? This might be related to how sprite scaling was implemented in old games such as Monkey Island, because that's the effect I'm trying to achieve, but with rotation added. Edit As per kaoD's suggestions, I tried to address the problem as a post-process. The easiest approach was to render to a separate render target first (downsampled to match the desired pixel size) and then upscale it when rendering a second time. It did address my requirements above. First I tried doing it Linear -> Point and the result was this: There's no distortion but the result looks blurred and it loses most of the highlights colors. In my opinion it breaks the retro look I needed. The second time I tried Point -> Point and the result was this: Despite the distortion, I think that might be good enough for my needs, although it does look better as a still image than in motion. To demonstrate, here's a video of the effect, although YouTube filtered the pixels out of it: http://youtu.be/hqokk58KFmI However, I'll leave the question open for a few more days in case someone comes up with a better sampling solution that maintains the crisp look while decreasing the amount of distortion when moving.

    Read the article

  • How to fix issue with my 3D first person camera?

    - by dxCUDA
    My camera moves and rotates, but relative to the worlds origin, instead of the players. I am having difficulty rotating the camera and then translating the camera in the direction relative to the camera facing angle. I have been able to translate the camera and rotate relative to the players origin, but not then rotate and translate in the direction relative to the cameras facing direction. My goal is to have a standard FPS-style camera. float yaw, pitch, roll; D3DXMATRIX rotationMatrix; D3DXVECTOR3 Direction; D3DXMATRIX matRotAxis,matRotZ; D3DXVECTOR3 RotAxis; // Set the yaw (Y axis), pitch (X axis), and roll (Z axis) rotations in radians. pitch = m_rotationX * 0.0174532925f; yaw = m_rotationY * 0.0174532925f; roll = m_rotationZ * 0.0174532925f; up = D3DXVECTOR3(0.0f, 1.0f, 0.0f);//Create the up vector //Build eye ,lookat and rotation vectors from player input data eye = D3DXVECTOR3(m_fCameraX, m_fCameraY, m_fCameraZ); lookat = D3DXVECTOR3(m_fLookatX, m_fLookatY, m_fLookatZ); rotation = D3DXVECTOR3(m_rotationX, m_rotationY, m_rotationZ); D3DXVECTOR3 camera[3] = {eye,//Eye lookat,//LookAt up };//Up RotAxis.x = pitch; RotAxis.y = yaw; RotAxis.z = roll; D3DXVec3Normalize(&Direction, &(camera[1] - camera[0]));//Direction vector D3DXVec3Cross(&RotAxis, &Direction, &camera[2]);//Strafe vector D3DXVec3Normalize(&RotAxis, &RotAxis); // Create the rotation matrix from the yaw, pitch, and roll values. D3DXMatrixRotationYawPitchRoll(&matRotAxis, pitch,yaw, roll); //rotate direction D3DXVec3TransformCoord(&Direction,&Direction,&matRotAxis); //Translate up vector D3DXVec3TransformCoord(&camera[2], &camera[2], &matRotAxis); //Translate in the direction of player rotation D3DXVec3TransformCoord(&camera[0], &camera[0], &matRotAxis); camera[1] = Direction + camera[0];//Avoid gimble locking D3DXMatrixLookAtLH(&in_viewMatrix, &camera[0], &camera[1], &camera[2]);

    Read the article

  • SDL to SFML simple question

    - by ultifinitus
    Hey! I've been working on a game in c++ for about a week and a half, and I've been using SDL. However, my current engine only needs the following from whatever library I use: enable double buffering load an image from path into something that I can apply to the screen apply an image to the screen with a certain x,y enable transparency on an image (possibly) image clipping, for sprite sheets. I am fairly sure that SFML has all of this functionality, I'm just not positive. Will someone confirm my suspicions? Also I have one or two questions regarding SFML itself. Do I have to do anything to enable hardware accelerated rendering? How quick is SFML at blending alpha values? (sorry for the less than intelligent question!)

    Read the article

  • Logic behind a bejeweled-like game

    - by Joe
    In a prototype I am doing, there is a minigame similar to bejeweled. Using a grid that is a 2d array (int[,]) how can I go about know when the user formed a match? I only care about horizontally and vertically. Off the top of my head I was thinking I would just look each direction. Something like: int item = grid[x,y]; if(grid[x-1,y]==item) { int step=x; int matches =2; while(grid[step-1,y]==item) { step++; matches++ } if(matches>2) //remove all matching items } else if(grid[x+1,y]==item //.... else if(grid[x,y-1==item) //... else if(grid[x,y+1]==item) //... It seems like there should be a better way. Is there?

    Read the article

  • How can I draw an arrow at the edge of the screen pointing to an object that is off screen?

    - by Adam Henderson
    I am wishing to do what is described in this topic: http://www.allegro.cc/forums/print-thread/283220 I have attempted a variety of the methods mentioned here. First I tried to use the method described by Carrus85: Just take the ratio of the two triangle hypontenuses (doesn't matter which triagle you use for the other, I suggest point 1 and point 2 as the distance you calculate). This will give you the aspect ratio percentage of the triangle in the corner from the larger triangle. Then you simply multiply deltax by that value to get the x-coordinate offset, and deltay by that value to get the y-coordinate offset. But I could not find a way to calculate how far the object is away from the edge of the screen. I then tried using ray casting (which I have never done before) suggested by 23yrold3yrold: Fire a ray from the center of the screen to the offscreen object. Calculate where on the rectangle the ray intersects. There's your coordinates. I first calculated the hypotenuse of the triangle formed by the difference in x and y positions of the two points. I used this to create a unit vector along that line. I looped through that vector until either the x coordinate or the y coordinate was off the screen. The two current x and y values then form the x and y of the arrow. Here is the code for my ray casting method (written in C++ and Allegro 5) void renderArrows(Object* i) { float x1 = i->getX() + (i->getWidth() / 2); float y1 = i->getY() + (i->getHeight() / 2); float x2 = screenCentreX; float y2 = ScreenCentreY; float dx = x2 - x1; float dy = y2 - y1; float hypotSquared = (dx * dx) + (dy * dy); float hypot = sqrt(hypotSquared); float unitX = dx / hypot; float unitY = dy / hypot; float rayX = x2 - view->getViewportX(); float rayY = y2 - view->getViewportY(); float arrowX = 0; float arrowY = 0; bool posFound = false; while(posFound == false) { rayX += unitX; rayY += unitY; if(rayX <= 0 || rayX >= screenWidth || rayY <= 0 || rayY >= screenHeight) { arrowX = rayX; arrowY = rayY; posFound = true; } } al_draw_bitmap(sprite, arrowX - spriteWidth, arrowY - spriteHeight, 0); } This was relatively successful. Arrows are displayed in the bottom right section of the screen when objects are located above and left of the screen as if the locations of the where the arrows are drawn have been rotated 180 degrees around the center of the screen. I assumed this was due to the fact that when I was calculating the hypotenuse of the triangle, it would always be positive regardless of whether or not the difference in x or difference in y is negative. Thinking about it, ray casting does not seem like a good way of solving the problem (due to the fact that it involves using sqrt() and a large for loop). Any help finding a suitable solution would be greatly appreciated, Thanks Adam

    Read the article

  • How do I load a libGDX Skin on Android?

    - by Lukas
    I am pretty desperate searching for a solution to load ui skins into my android app (actually it is not my app, it is a tutorial I'm following). The app always crashes at this part: assets.load("ui/defaultskin/defaultskin.json", Skin.class, new SkinLoader.SkinParameter("ui/defaultskin/defaultskin.atlas")); The files are the ones from the bitowl tutorial: http://bitowl.de/day6/ I guess Gdx.files.internal doesn't work on android, since the app crashed with this, too. Thanks for helping me out, Lukas

    Read the article

  • UDP Code client server architecture

    - by GameBuilder
    Hi I have developed a game on android.Now I want to play it on wifi or 3G. I have game packets which i want to send it form client(mobile) to server then to another client2(mobile). I don't know how to write code in Java to send the playPackets continuously to server and receive the playPacket continuously from the server to the clients. I guess i have to use two thread one for sending and one for receiving. Can someone help me with the code, or the procedure to write code for it. Thanks in advance.

    Read the article

  • Building a Flash Platformer

    - by Jonathan O
    I am basically making a game where the whole game is run in the onEnterFrame method. This is causing a delay in my code that makes debugging and testing difficult. Should programming an entire platformer in this method be efficient enough for me to run hundreds of lines of code? Also, do variables in flash get updated immediately? Are there just lots of threads listening at the same time? Here is the code... stage.addEventListener(Event.ENTER_FRAME, onEnter); function onEnter(e:Event):void { //Jumping if (Yoshi.y > groundBaseLevel) { dy = 0; canJump = true; onGround = true; //This line is not updated in time } if (Key.isDown(Key.UP) && canJump) { dy = -10; canJump = false; onGround = false; //This line is not updated in time } if(!onGround) { dy += gravity; Yoshi.y += dy; } //limit screen boundaries //character movement if (! Yoshi.hitTestObject(Platform)) //no collision detected { if (Key.isDown(Key.RIGHT)) { speed += 4; speed *= friction; Yoshi.x = Yoshi.x + movementIncrement + speed; Yoshi.scaleX = 1; Yoshi.gotoAndStop('Walking'); } else if (Key.isDown(Key.LEFT)) { speed -= 4; speed *= friction; Yoshi.x = Yoshi.x - movementIncrement + speed; Yoshi.scaleX = -1; Yoshi.gotoAndStop('Walking'); } else { speed *= friction; Yoshi.x = Yoshi.x + speed; Yoshi.gotoAndStop('Still'); } } else //bounce back collision detected { if(Yoshi.hitTestPoint(Platform.x - Platform.width/2, Platform.y - Platform.height/2, false)) { trace('collision left'); Yoshi.x -=20; } if(Yoshi.hitTestPoint(Platform.x, Platform.y - Platform.height/2, false)) { trace('collision top'); onGround=true; //This update is not happening in time speed = 0; } } }

    Read the article

  • Cannot convert parameter 1 from 'short *' to 'int *' [closed]

    - by Torben Carrington
    I'm trying to learn pointers and since I recently learned that short int takes up less memory [2 bytes as apposed to the long int's memory usage of 4 which is the default for int] I wanted to create a pointer that uses the memory address of a short integer. I'm following a tutorial in my book about Pointers and it's using the Swap function. The problem is I receive this error the moment I change everything from int to short int: error C2664: 'Swap' : cannot convert parameter 1 from 'short *' to 'int *' 1 Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast Since my code is so small here is the whole thing: void Swap(short int *sipX, short int *sipY) { short int siTemp = *sipX; *sipX = *sipY; *sipY = siTemp; } int main() { short int siBig = 100; short int siSmall = 1; std::cout << "Pre-Swap: " << siBig << " " << siSmall << std::endl; Swap(&siBig, &siSmall); std::cout << "Post-Swap: " << siBig << " " << siSmall << std::endl; return 0; }

    Read the article

  • What is this JavaScript gibberish?

    - by W3Geek
    I am studying how to make a 2D game with JavaScript by reading open source JavaScript games and I came across this gibberish... aSpriteData = [ "}\"¹-º\"À+º\"À+º\"À+º\"¿¤À ~C_ +º\"À+º\"À+º\"À*P7²OK%¾+½u_\"À<¡a¡a¡bM@±@ª", // 0 ground "a ' ![± 7°³b£[mt<Nµ7z]~¨OR»[f_7l},tl},+}%XN²Sb[bl£[±%Y_¹ !@ $", // 1 qbox "!A % @,[] ±}°@;µn¦&X£ <$ §¤ 8}}@Prc'U#Z'H'@· ¶\"is ¤&08@£(", // 2 mario " ´!A.@H#q8¸»e-½n®@±oW:&X¢a<&bbX~# }LWP41}k¬#3¨q#1f RQ@@:4@$", // 3 mario jump " 40 q$!hWa-½n¦#_Y}a©,0#aaPw@=cmY<mq©GBagaq&@q#0§0t0¤ $", // 4 mario run "+hP_@", // 5 pipe left "¢,6< R¤", // 6 pipe right "@ & ,'+hP?>³®'©}[!»¹.¢_^¥y/pX¸#µ°=a¾½hP?>³®'©}[!»¹.¢_^ Ba a", // 7 pipe top left "@ , !] \"º £] , 8O #7a&+¢ §²!cº 9] P &O ,4 e", // 8 pipe top right " £ #! ,! P!!vawd/XO¤8¼'¤P½»¹²'9¨ \"P²Pa²(!¢5!N*(4´b!Gk(a", // 9 goomba " Xu X5 =ou!¯­¬a[Z¼q.°u#|xv ¸··@=~^H'WOJ!¯­¬a=Nu ²J <J a", // 10 coin // yui "@ & !MX ~L \"y %P *¢ 5a K w !L \"y %P *­a%¬¢ 4 a", // 11 ebox // yui "¢ ,\"²+aN!@ &7 }\"²+aN!XH # }\"²+aN!X% 8}\"²+aN!X%£@ (", // 12 bricks "} %¿¢!N° I¨²*<P%.8\"h,!Cg r¥ H³a4X¢*<P%.H#I¬ :a!u !q", // 13 block makeSpace(20) + "4a }@ }0 N( w$ }\" N! +aa", // 14 bush left " r \"²y!L%aN zPN NyN#²L}[/cy¾ N" + makeSpace(18) + "@", // 15 bush mid makeSpace(18) + "++ !R·a!x6 &+6 87L ¢6 P+ 8+ (", // 16 bush right " %©¦ +pq 7> \"³ s" + makeSpace(25) + "@", // 17 cloud bottom left "a/a_#².Q¥'¥b}8.£¨7!X\"K+5cqs%(" + makeSpace(18) + "0", // 18 cloud bottom mid "bP ¢L P+ 8%a,*a%§@ J" + makeSpace(22) + "(", // 19 cloud bottom right "", // 20 mushroom "", // koopa 16x24 "", // 22 star "", // 23 flagpole "", // 24 flag "", // 25 flagpole top " 6 ~ }a }@ }0 }( }$ }\" }! } a} @} 0} (} $} \"² $", // 26 hill slope "a } \"m %8 *P!MF 5la\"y %P" + makeSpace(18) + "(", // 27 hill mid makeSpace(30) + "%\" t!DK \"q", // 28 hill top "", // 29 castle bricks "", // 30 castle doorway bottom "", // 31 castle doorway top "", // 32 castle top "", // 33 castle top 2 "", // 34 castle window right "", // 35 castle window left "", // 36 castle flag makeSpace(19) + "8@# (9F*RSf.8 A¢$!¢040HD", // 37 goomba flat " *(!¬#q³¡[_´Yp~¡=<¥g=&'PaS²¿ Sbq*<I#*£Ld%Ryd%¼½e8H8bf#0a", // 38 mario dead " = ³ #b 'N¶ Z½Z Z½Z Z½Z Z½Z Z½Z Z½Z =[q ²@ ³ ¶ 0", // 39 coin step 1 " ?@ /q /e '¤ #³ !ºa }@ N0 ?( /e '¤ #³ ¿ _a \"", // 40 coin step 2 " / > ] º !² #¢ %a + > ] º !² #¢ 'a \"", // 41 coin step 3 " 7¢ +² *] %> \"p !Ga t¢ I² 4º *] %> \"p ¡ Oa \"" // 42 coin step 4 ], What does it do? If you want to look at the source file here it is: http://www.nihilogic.dk/labs/mario/mario.js Beware, there is more gibberish inside. I can't seem to make sense of any of it. Thank you.

    Read the article

  • How should we approach publishing our game from India?

    - by Praveen Sharath
    Me and my friends are developing a game using Java for Windows operating system. We have nearly completed our game. As we feel that the game can make money, we wish to sell it. But in India we don't know any game publishing company. We want to know the following if possible. Will game publishers like BigFishGames.com publish our game even though we are not in USA? We are just students in college. Is it required that we can sell only after we start a company? Is it possible to sign contracts if the publisher wishes to publish our game, while the publisher and developer are in different countries? Thank you

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • creating bounding box list

    - by Christian Frantz
    I'm trying to create a list of bounding boxes for each cube drawn, so I can use the boxes to intersect with a ray that my mouse position is casting, but I have no idea how. I've created a list that stores the boxes, but how am I getting the values from each box? for (int x = 0; x < mapHeight; x++) { for (int z = 0; z < mapWidth; z++) { cubes.Add(new Vector3(x, map[x, z], z), Matrix.Identity, grass); boxList.Add(something here); } } public Cube(GraphicsDevice graphicsDevice) { device = graphicsDevice; var vertices = new List<VertexPositionTexture>(); BuildFace(vertices, new Vector3(0, 0, 0), new Vector3(0, 1, 1)); BuildFace(vertices, new Vector3(0, 0, 1), new Vector3(1, 1, 1)); BuildFace(vertices, new Vector3(1, 0, 1), new Vector3(1, 1, 0)); BuildFace(vertices, new Vector3(1, 0, 0), new Vector3(0, 1, 0)); BuildFaceHorizontal(vertices, new Vector3(0, 1, 0), new Vector3(1, 1, 1)); BuildFaceHorizontal(vertices, new Vector3(0, 0, 1), new Vector3(1, 0, 0)); cubeVertexBuffer = new VertexBuffer(device, VertexPositionTexture.VertexDeclaration, vertices.Count, BufferUsage.WriteOnly); cubeVertexBuffer.SetData<VertexPositionTexture>(vertices.ToArray()); } There aren't any clearly defined variables for the bounds of each cube created, so where do I create the bounding box from?

    Read the article

  • Prototype experience: Unity3D vs UDK

    - by LukeN
    Has anyone yet prototyped a game in both Unity3D and UDK? If so, which features made prototyping the game easier or more difficult in each toolkit? Was one prototype demonstrably better than the other (given the same starting assets)? I'm looking for specific answers with regard to using the toolkit features, not a comparison of available features. E.g. Destructable terrain is easier in toolkit X for reasons Y and Z. I can code, so the limitations of the inbuilt scripting languages are not a problem.

    Read the article

  • 3DS Max exporting too many vertexes for model

    - by Juan Pablo
    I have a sample model of a cube and a buddha downloaded from internet in 3ds format which I can load correctly into my program and view them without problem, but wanted to try and create my own model. I created a simple box mesh in 3ds max, and exported it as .3ds (Converted to mesh - export as .3ds) When inspecting the .3ds file with a hex viewer, I was expecting to see 8 vertexes and 12 faces declared (as the model I downloaded from internet). But what i found was that it listed 26 vertexes, and 12 faces! And when I try to load that file with my .3ds viewer, my parser isn't detecting the face block (0x4120), which is strange because it worked for other objects downloaded from internet. Do I have to set any special property in order to export a 3ds file with minimum vertexes and a vertex-index list?

    Read the article

  • Android device - C++ OpenGL 2: eglCreateWindowSurface invalid

    - by ThreaderSlash
    I am trying to debug and run OGLES on Native C++ in my Android device in order to implement a native 3D game for mobile smart phones. The point is that I got an error and see no reason for that. Here is the line from the code that the debugger complains: mSurface = eglCreateWindowSurface(mDisplay, lConfig, mApplication->window, NULL); And this is the error message: Invalid arguments ' Candidates are: void * eglCreateWindowSurface(void *, void *, unsigned long int, const int *) ' --x-- Here is the declaration: android_app* mApplication; EGLDisplay mDisplay; EGLint lFormat, lNumConfigs, lErrorResult; EGLConfig lConfig; // Defines display requirements. 16bits mode here. const EGLint lAttributes[] = { EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, EGL_BLUE_SIZE, 5, EGL_GREEN_SIZE, 6, EGL_RED_SIZE, 5, EGL_SURFACE_TYPE, EGL_WINDOW_BIT, EGL_RENDER_BUFFER, EGL_BACK_BUFFER, EGL_NONE }; // Retrieves a display connection and initializes it. packt_Log_debug("Connecting to the display."); mDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (mDisplay == EGL_NO_DISPLAY) goto ERROR; if (!eglInitialize(mDisplay, NULL, NULL)) goto ERROR; // Selects the first OpenGL configuration found. packt_Log_debug("Selecting a display config."); if(!eglChooseConfig(mDisplay, lAttributes, &lConfig, 1, &lNumConfigs) || (lNumConfigs <= 0)) goto ERROR; // Reconfigures the Android window with the EGL format. packt_Log_debug("Configuring window format."); if (!eglGetConfigAttrib(mDisplay, lConfig, EGL_NATIVE_VISUAL_ID, &lFormat)) goto ERROR; ANativeWindow_setBuffersGeometry(mApplication->window, 0, 0, lFormat); // Creates the display surface. packt_Log_debug("Initializing the display."); mSurface = eglCreateWindowSurface(mDisplay, lConfig, mApplication->window, NULL); --x-- Hope someone here can shed some light on it.

    Read the article

  • Slick2D, Nifty GUI listeners problem

    - by Patokun
    I'm trying to get Nifty GUI to work with Slick2D. So far everything is going great, except that I can't seem to figure out how to properly interact with the GUI. I'm trying the example in the nifty manual http://sourceforge.n....0.pdf/download but it doesn't seem to entirely work. The Element controller is being called for bind(...), init(...) and onStartScreen() as it should, as I can see their println output, but the next() method isn't being called when I click on the GUI element that I assigned the controller to, nor the screen controller as no output from println is shown. What's weird is, that the player is moving, so the mouse input is working. It's supposed to be called when I click the mouse button on it from the in the XML. Here is my code: My Element controller: public class ElementController implements Controller { private Element element; @Override public void bind(Nifty nifty, Screen screen, Element element, Properties parameter, Attributes controlDefinitionAttributes) { this.element = element; System.out.println("bind() called for element: " + element); } @Override public void init(Properties parameter, Attributes controlDefinitionAttributes) { System.out.println("init() called for element: " + element); } @Override public void onStartScreen() { System.out.println("onStartScreen() alled for element: " + element); } @Override public void onFocus(boolean getFocus) { System.out.println("onFocus() called for element: " + element + ", with: " + getFocus); } @Override public boolean inputEvent(NiftyInputEvent inputEvent) { return false; } public void next() { System.out.println("next() clicked for element: " + element); } } MyScreenController: class MyScreenController implements ScreenController { public void bind(Nifty nifty, Screen screen) {} public void onEndScreen() {} public void onStartScreen() {} public void next() { System.out.println("next() called from MyScreenController"); } } And my XML file: <?xml version="1.0" encoding="UTF-8"?> <nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://niftygui.sourceforge.net/nifty-1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd"> <screen id="start" controller="predaN00b.theThing.V0004.MyScreenController"> <layer childLayout="center" controller="predaN00b.theThing.V0004.ElementController"> <panel width="100px" height="100px" childLayout="vertical" backgroundColor="#ff0f"> <text font="aurulent-sans-16.fnt" color="#ffff" text="Hello World!"> <interact onClick="next()" /> </text> </panel> </layer> </screen> </nifty> My main class, in case it's needed: public class MainGameState extends BasicGame { public Nifty nifty; public MainGame() { super("Test"); } public void init(GameContainer container, StateBasedGame game) throws SlickException { nifty = new Nifty(new SlickRenderDevice(container), new NullSoundDevice(), new PlainSlickInputSystem(), new AccurateTimeProvider()); nifty.addXml("/xml/MainState.xml"); nifty.gotoScreen("start"); } public void update(GameContainer container, StateBasedGame game, int delta) throws SlickException { nifty.update(); } public void render(GameContainer container, StateBasedGame game, Graphics graphics) throws SlickException { nifty.render(false); } public static void main(String[] args) throws SlickException { AppGameContainer app = new AppGameContainer(new MainGame()); app.setAlwaysRender(true); app.setDisplayMode( 1260 , 720, false); //window size app.start(); } }

    Read the article

  • Alchemy like game for the web, open source. Any ideas for element combinations?

    - by JohnDel
    I created a web game like the Android game Alchemy. It's open source and in the back-end you can create your own elements / your own game. I was wondering what elements - ideas would be good to implement as a prototype / demo? Some ideas are: Colors Programming languages Chemical Compounds Same as the original alchemy Evolution of biological organisms What do you think? Any specific combination ideas?

    Read the article

  • Need help understanding XNA 4.0 BoundingBox vs BoundingSphere Intersection

    - by nerdherd
    I am new to both game programming and XNA, so I apologize if I'm missing a simple concept or something. I have created a simple 3D game with a player and a crate and I'm working on getting my collision detection working properly. Right now I am using a BoundingSphere for my player, and a BoundingBox for the crate. For some reason, XNA only detects a collision when my player's sphere touches the front face of the crate. I'm rendering all the BoundingSpheres and BoundingBoxes as wire frames so I can see what's going on, and everything visually appears to be correct, but I can't figure out this behavior. I have tried these checks: playerSphere.Intersects(crate.getBoundingBox()) playerSphere.Contains(crate.getBoundingBox(), ContainmentType.Intersects) playerSphere.Contains(crate.getBoundingBox()) != ContainmentType.Disjoint But they all seem to produce the same behavior (in other words, they are only true when I hit the front face of the crate). The interesting thing is that when I use a BoundingSphere for my crate the collision is detected as I would expect, but of course this makes the edges less accurate. Any thoughts or ideas? Have I missed something about how BoundingSpheres and BoundingBoxes compute their intersections? I'd be happy to post more code or screenshots to clarify if needed. Thanks!

    Read the article

  • Arrays for a heightmap tile-based map

    - by JPiolho
    I'm making a game that uses a map which have tiles, corners and borders. Here's a graphical representation: I've managed to store tiles and corners in memory but I'm having troubles to get borders structured. For the tiles, I have a [Map Width * Map Height] sized array. For corners I have [(Map Width + 1) * (Map Height + 1)] sized array. I've already made up the math needed to access corners from a tile, but I can't figure out how to store and access the borders from a single array. Tiles store the type (and other game logic variables) and via the array index I can get the X, Y. Via this tile position it is possible to get the array index of the corners (which store the Z index). The borders will store a game object and accessing corners from only border info would be also required. If someone even has a better way to store these for better memory and performance I would gladly accept that. EDIT: Using in C# and Javascript.

    Read the article

  • Can and should a game design be patented?

    - by Christian
    I have an idea for a game that I want to develop and I feel is unique, and I'm wondering if I should patent it. I read on the web that games can be patented, but just because it can be done doesn't mean that it makes sense to do it. I actually don't really want patent it (it's expensive, a hassle and I don't believe in patenting of ideas... unless it's something truly revolutionary). However, I'm concerned a bigger company could come along, with more experienced game designers and developers and steal the idea.

    Read the article

< Previous Page | 410 411 412 413 414 415 416 417 418 419 420 421  | Next Page >