Search Results

Search found 43200 results on 1728 pages for 'large object pattern'.

Page 447/1728 | < Previous Page | 443 444 445 446 447 448 449 450 451 452 453 454  | Next Page >

  • Windows Azure Use Case: Hybrid Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Organizations see the need for computing infrastructures that they can “rent” or pay for only when they need them. They also understand the benefits of distributed computing, but do not want to create this infrastructure themselves. However, they may have considerations that prevent them from moving all of their current IT investment to a distributed environment: Private data (do not want to send or store sensitive data off-site) High dollar investment in current infrastructure Applications currently running well, but may need additional periodic capacity Current applications not designed in a stateless fashion In these situations, a “hybrid” approach works best. In fact, with Windows Azure, a hybrid approach is an optimal way to implement distributed computing even when the stipulations above do not apply. Keeping a majority of the computing function in an organization local while exploring and expanding that footprint into Windows and SQL Azure is a good migration or expansion strategy. A “hybrid” architecture merely means that part of a computing cycle is shared between two architectures. For instance, some level of computing might be done in a Windows Azure web-based application, while the data is stored locally at the organization. Implementation: There are multiple methods for implementing a hybrid architecture, in a spectrum from very little interaction from the local infrastructure to Windows or SQL Azure. The patterns fall into two broad schemas, and even these can be mixed. 1. Client-Centric Hybrid Patterns In this pattern, programs are coded such that the client system sends queries or compute requests to multiple systems. The “client” in this case might be a web-based codeset actually stored on another system (which acts as a client, the user’s device serving as the presentation layer) or a compiled program. In either case, the code on the client requestor carries the burden of defining the layout of the requests. While this pattern is often the easiest to code, it’s the most brittle. Any change in the architecture must be reflected on each client, but this can be mitigated by using a centralized system as the client such as in the web scenario. 2. System-Centric Hybrid Patterns Another approach is to create a distributed architecture by turning on-site systems into “services” that can be called from Windows Azure using the service Bus or the Access Control Services (ACS) capabilities. Code calls from a series of in-process client application. In this pattern you move the “client” interface into the server application logic. If you do not wish to change the application itself, you can “layer” the results of the code return using a product (such as Microsoft BizTalk) that exposes a Web Services Definition Language (WSDL) endpoint to Windows Azure using the Application Fabric. In effect, this is similar to creating a Service Oriented Architecture (SOA) environment, and has the advantage of de-coupling your computing architecture. If each system offers a “service” of the results of some software processing, the operating system or platform becomes immaterial, assuming it adheres to a service contract. There are important considerations when you federate a system, whether to Windows or SQL Azure or any other distributed architecture. While these considerations are consistent with coding any application for distributed computing, they are especially important for a hybrid application. Connection resiliency - Applications on-premise normally have low-latency and good connection properties, something you’re not always guaranteed in a distributed and hybrid application. Whether a centralized client or a distributed one, the code should be able to handle extended retry logic. Authorization and Access - In a single authorization environment like a Active Directory domain, security is handled at a user-password level. In a distributed computing environment, you have more options. You can mitigate this with  using The Windows Azure Application Fabric feature of ACS to make the Azure application aware of the App Fabric as an ADFS provider. However, a claims-based authentication structure is often a superior choice.  Consistency and Concurrency - When you have a Relational Database Management System (RDBMS), Consistency and Concurrency are part of the design. In a Service Architecture, you need to plan for sequential message handling and lifecycle. Resources: How to Build a Hybrid On-Premise/In Cloud Application: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx  General Architecture guidance: http://blogs.msdn.com/b/buckwoody/archive/2010/12/21/windows-azure-learning-plan-architecture.aspx   

    Read the article

  • Passthrough Objects – Duck Typing++

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Can't see a genuine use for this, but I got the idea in my head and wanted to work it through. It's an extension to the idea of duck typing, for scenarios where types have similar behaviour, but implemented in differently-named members. So you may have a set of objects you want to treat as an interface, which don't implement the interface explicitly, and don't have the same member names so they can't be duck-typed into implicitly implementing the interface. In a fictitious example, I want to call Get on whichever ICache implementation is current, and have the call passed through to the relevant method – whether it's called Read, Retrieve or whatever: A sample implementation is up on github here: PassthroughSample. This uses Castle's DynamicProxy behind the scenes in the same way as my duck typing sample, but allows you to configure the passthrough to specify how the inner (implementation) and outer (interface) members are mapped:       var setup = new Passthrough();     var cache = setup.Create("PassthroughSample.Tests.Stubs.AspNetCache, PassthroughSample.Tests")                             .WithPassthrough("Name", "CacheName")                             .WithPassthrough("Get", "Retrieve")                             .WithPassthrough("Set", "Insert")                             .As<ICache>(); - or using some ugly Lambdas to avoid the strings :     Expression<Func<ICache, string, object>> get = (o, s) => o.Get(s);     Expression<Func<Memcached, string, object>> read = (i, s) => i.Read(s);     Expression<Action<ICache, string, object>> set = (o, s, obj) => o.Set(s, obj);     Expression<Action<Memcached, string, object>> insert = (i, s, obj) => i.Put(s, obj);       ICache cache = new Passthrough<ICache, Memcached>()                     .Create()                     .WithPassthrough(o => o.Name, i => i.InstanceName)                     .WithPassthrough(get, read)                     .WithPassthrough(set, insert)                     .As();   - or even in config:   ICache cache = Passthrough.GetConfigured<ICache>(); ...  <passthrough>     <types>       <typename="PassthroughSample.Tests.Stubs.ICache, PassthroughSample.Tests"             passesThroughTo="PassthroughSample.Tests.Stubs.AppFabricCache, PassthroughSample.Tests">         <members>           <membername="Name"passesThroughTo="RegionName"/>           <membername="Get"passesThroughTo="Out"/>           <membername="Set"passesThroughTo="In"/>         </members>       </type>   Possibly useful for injecting stubs for dependencies in tests, when your application code isn't using an IoC container. Possibly it also has an alternative implementation using .NET 4.0 dynamic objects, rather than the dynamic proxy.

    Read the article

  • Configuring JPA Primary key sequence generators

    - by pachunoori.vinay.kumar(at)oracle.com
    This article describes the JPA feature of generating and assigning the unique sequence numbers to JPA entity .This article provides information on jpa sequence generator annotations and its usage. UseCase Description Adding a new Employee to the organization using Employee form should assign unique employee Id. Following description provides the detailed steps to implement the generation of unique employee numbers using JPA generators feature Steps to configure JPA Generators 1.Generate Employee Entity using "Entities from Table Wizard". View image2.Create a Database Connection and select the table "Employee" for which entity will be generated and Finish the wizards with default selections. View image 3.Select the offline database sources-Schema-create a Sequence object or you can copy to offline db from online database connection. View image 4.Open the persistence.xml in application navigator and select the Entity "Employee" in structure view and select the tab "Generators" in flat editor. 5.In the Sequence Generator section,enter name of sequence "InvSeq" and select the sequence from drop down list created in step3. View image 6.Expand the Employees in structure view and select EmployeeId and select the "Primary Key Generation" tab.7.In the Generated value section,select the "Use Generated value" check box ,select the strategy as "Sequence" and select the Generator as "InvSeq" defined step 4. View image   Following annotations gets added for the JPA generator configured in JDeveloper for an entity To use a specific named sequence object (whether it is generated by schema generation or already exists in the database) you must define a sequence generator using a @SequenceGenerator annotation. Provide a unique label as the name for the sequence generator and refer the name in the @GeneratedValue annotation along with generation strategy  For  example,see the below Employee Entity sample code configured for sequence generation. EMPLOYEE_ID is the primary key and is configured for auto generation of sequence numbers. EMPLOYEE_SEQ is the sequence object exist in database.This sequence is configured for generating the sequence numbers and assign the value as primary key to Employee_id column in Employee table. @SequenceGenerator(name="InvSeq", sequenceName = "EMPLOYEE_SEQ")   @Entity public class Employee implements Serializable {    @Id    @Column(name="EMPLOYEE_ID", nullable = false)    @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="InvSeq")   private Long employeeId; }   @SequenceGenerator @GeneratedValue @SequenceGenerator - will define the sequence generator based on a  database sequence object Usage: @SequenceGenerator(name="SequenceGenerator", sequenceName = "EMPLOYEE_SEQ") @GeneratedValue - Will define the generation strategy and refers the sequence generator  Usage:     @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="name of the Sequence generator defined in @SequenceGenerator")

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Reading All Users Session

    - by imran_ku07
      Introduction :            InProc Session is the widely used state management. Storing the session state Inproc is also the fastest method and is well-suited to small amounts of volatile data. Reading and writing current user Session is very easy. But some times we need to read all users session before taking a decision or sometimes we may need to check which users are currently active with the help of Session. But unfortunately there is no class in .Net Framework (i don't found myself) to read all user InProc Session Data. In this article i will use reflection to read all user Inproc Session.   Description :              This code will work equally in both MVC and webform, but for demonstration i will use a simple webform example. So let's create a simple Website and Add two aspx pages, Default.aspx and Default2.aspx. In Default.aspx just add a link to navigate to Default2.aspx and in Default.aspx.cs just add a Session. Default.aspx: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="Default" %><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html ><head runat="server">    <title>Untitled Page</title></head><body>    <form id="form1" runat="server">    <div>        <a href="Default2.aspx">Click to navigate to next page</a>    </div>    </form></body></html>  Default.aspx.cs:  using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;public partial class Default : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        Session["User"] = "User" + DateTime.Now;    }} Now when every user click this link will navigate to Default2.aspx where all the magic appears.Default2.aspx.cs: using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;using System.Reflection;using System.Web.SessionState;public partial class Default2 : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        object obj = typeof(HttpRuntime).GetProperty("CacheInternal", BindingFlags.NonPublic | BindingFlags.Static).GetValue(null, null);        Hashtable c2 = (Hashtable)obj.GetType().GetField("_entries", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(obj);        foreach (DictionaryEntry entry in c2)        {            object o1 = entry.Value.GetType().GetProperty("Value", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(entry.Value, null);            if (o1.GetType().ToString() == "System.Web.SessionState.InProcSessionState")            {                SessionStateItemCollection sess = (SessionStateItemCollection)o1.GetType().GetField("_sessionItems", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(o1);                if (sess != null)                {                    if (sess["User"] != null)                    {                        Label1.Text += sess["User"] + " is Active.<br>";                    }                }            }        }    }}            Now just open more than one browsers or more than one browser instance and then navigate to Default.aspx and click the link, you will see all the user's Session data.    How this works :        InProc session data is stored in the HttpRuntime’s internal cache in an implementation of ISessionStateItemCollection that implements ICollection. In this code, first of all i got CacheInternal Static Property of HttpRuntime class and then with the help of this object i got _entries private member which is of type ICollection. Then simply enumerate this dictionary and only take object of type System.Web.SessionState.InProcSessionState and finaly got SessionStateItemCollection for each user.Summary :        In this article, I shows you how you can get all current user Sessions. However one thing you will find when executing this code is that it will not show the current user Session which is set in the current request context because Session will be saved after all the Page Events.

    Read the article

  • Using Lightbox with _Screen

    Although, I have to admit that I discovered Bernard Bout's ideas and concepts about implementing a lightbox in Visual FoxPro quite a while ago, there was no "spare" time in active projects that allowed me to have a closer look into his solution(s). Luckily, these days I received a demand to focus a little bit more on this. This article describes the steps about how to integrate and make use of Bernard's lightbox class in combination with _Screen in Visual FoxPro. The requirement in this project was to be able to visually lock the whole application (_Screen area) and guide the user to an information that should not be ignored easily. Depending on the importance any current user activity should be interrupted and focus put onto the notification. Getting the "meat", eh, source code Please check out Bernard's blog on Foxite directly in order to get the latest and greatest version. As time of writing this article I use version 6.0 as described in this blog entry: The Fastest Lightbox Ever The Lightbox class is sub-classed from the imgCanvas class from the GdiPlusX project on VFPx and therefore you need to have the source code of GdiPlusX as well, and integrate it into your development environment. The version I use is available here: Release GDIPlusX 1.20 As soon as you open the bbGdiLightbox class the first it, VFP might ask you to update the reference to the gdiplusx.vcx. As we have the sources, no problem and you have access to Bernard's code. The class itself is pretty easy to understand, some properties that you do not need to change and three methods: Setup(), ShowLightbox() and BeforeDraw() The challenge - _Screen or not? Reading Bernard's article about the fastest lightbox ever, he states the following: "The class will only work on a form. It will not support any other containers" Really? And what about _Screen? Isn't that a form class, too? Yes, of course it is but nonetheless trying to use _Screen directly will fail. Well, let's have look at the code to see why: WITH This .Left = 0 .Top = 0 .Height = ThisForm.Height .Width = ThisForm.Width .ZOrder(0) .Visible = .F.ENDWITH During the setup of the lightbox as well as while capturing the image as replacement for your forms and controls, the object reference Thisform is used. Which is a little bit restrictive to my opinion but let's continue. The second issue lies in the method ShowLightbox() and introduced by the call of .Bitmap.FromScreen(): Lparameters tlVisiblilty* tlVisiblilty - show or hide (T/F)* grab a screen dump with controlsIF tlVisiblilty Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = IIF(ThisForm.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing loCaptureBmp = .Bitmap.FromScreen(ThisForm.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; ThisForm.Width ,; ThisForm.Height) ENDWITH * save it to a property This.capturebmp = loCaptureBmp ThisForm.SetAll("Visible",.F.) This.DraW() This.Visible = .T.ELSE ThisForm.SetAll("Visible",.T.) This.Visible = .F.ENDIF My first trials in using the class ended in an exception - GdiPlusError:OutOfMemory - thrown by the Bitmap object. Frankly speaking, this happened mainly because of my lack of knowledge about GdiPlusX. After reading some documentation, especially about the FromScreen() method I experimented a little bit. Capturing the visible area of _Screen actually was not the real problem but the dimensions I specified for the bitmap. The modifications - step by step First of all, it is to get rid of restrictive object references on Thisform and to change them into either This.Parent or more generic into This.oForm (even better: This.oControl). The Lightbox.Setup() method now sets the necessary object reference like so: *====================================================================* Initial setup* Default value: This.oControl = "This.Parent"* Alternative: This.oControl = "_Screen"*====================================================================With This .oControl = Evaluate(.oControl) If Vartype(.oControl) == T_OBJECT .Anchor = 0 .Left = 0 .Top = 0 .Width = .oControl.Width .Height = .oControl.Height .Anchor = 15 .ZOrder(0) .Visible = .F. EndIfEndwith Also, based on other developers' comments in Bernard articles on his lightbox concept and evolution I found the source code to handle the differences between a form and _Screen and goes into Lightbox.ShowLightbox() like this: *====================================================================* tlVisibility - show or hide (T/F)* grab a screen dump with controls*====================================================================Lparameters tlVisibility Local loControl m.loControl = This.oControl If m.tlVisibility Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = Iif(m.loControl.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing If Upper(m.loControl.Name) == Upper("Screen") loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd) Else loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; m.loControl.Width ,; m.loControl.Height) EndIf Endwith * save it to a property This.CaptureBmp = loCaptureBmp m.loControl.SetAll("Visible",.F.) This.Draw() This.Visible = .T. Else This.CaptureBmp = .Null. m.loControl.SetAll("Visible",.T.) This.Visible = .F. Endif {loadposition content_adsense} Are we done? Almost... Although, Bernard says it clearly in his article: "Just drop the class on a form and call it as shown." It did not come clear to my mind in the first place with _Screen, but, yeah, he is right. Dropping the class on a form provides a permanent link between those two classes, it creates a valid This.Parent object reference. Bearing in mind that the lightbox class can not be "dropped" on the _Screen, we have to create the same type of binding during runtime execution like so: *====================================================================* Create global lightbox component*==================================================================== Local llOk, loException As Exception m.llOk = .F. m.loException = .Null. If Not Vartype(_Screen.Lightbox) == "O" Try _Screen.AddObject("Lightbox", "bbGdiLightbox") Catch To m.loException Assert .F. Message m.loException.Message EndTry EndIf m.llOk = (Vartype(_Screen.Lightbox) == "O")Return m.llOk Through runtime instantiation we create a valid binding to This.Parent in the lightbox object and the code works as expected with _Screen. Ease your life: Use properties instead of constants Having a closer look at the BeforeDraw() method might wet your appetite to simplify the code a little bit. Looking at the sample screenshots in Bernard's article you see several forms in different colors. This got me to modify the code like so: *====================================================================* Apply the actual lightbox effect on the captured bitmap.*====================================================================If Vartype(This.CaptureBmp) == T_OBJECT Local loGfx As xfcGraphics loGfx = This.oGfx With _Screen.System.Drawing loGfx.DrawImage(This.CaptureBmp,This.Rectangle,This.Rectangle,.GraphicsUnit.Pixel) * change the colours as needed here * possible colours are (220,128,0,0),(220,0,0,128) etc. loBrush = .SolidBrush.New(.Color.FromArgb( ; This.Opacity, .Color.FromRGB(This.BorderColor))) loGfx.FillRectangle(loBrush,This.Rectangle) EndwithEndif Create an additional property Opacity to specify the grade of translucency you would like to have without the need to change the code in each instance of the class. This way you only need to change the values of Opacity and BorderColor to tweak the appearance of your lightbox. This could be quite helpful to signalize different levels of importance (ie. green, yellow, orange, red, etc...) of notifications to the users of the application. Final thoughts Using the lightbox concept in combination with _Screen instead of forms is possible. Already Jim Wiggins comments in Bernard's article to loop through the _Screen.Forms collection in order to cascade the lightbox visibility to all active forms. Good idea. But honestly, I believe that instead of looping all forms one could use _Screen.SetAll("ShowLightbox", .T./.F., "Form") with Form.ShowLightbox_Access method to gain more speed. The modifications described above might provide even more features to your applications while consuming less resources and performance. Additionally, the restrictions to capture only forms does not exist anymore. Using _Screen you are able to capture and cover anything. The captured area of _Screen does not include any toolbars, docked windows, or menus. Therefore, it is advised to take this concept on a higher level and to combine it with additional classes that handle the state of toolbars, docked windows and menus. Which I did for the customer's project.

    Read the article

  • How do I set up MVP for a Winforms solution?

    - by JonWillis
    Question moved from Stackoverflow - http://stackoverflow.com/questions/4971048/how-do-i-set-up-mvp-for-a-winforms-solution I have used MVP and MVC in the past, and I prefer MVP as it controls the flow of execution so much better in my opinion. I have created my infrastructure (datastore/repository classes) and use them without issue when hard coding sample data, so now I am moving onto the GUI and preparing my MVP. Section A I have seen MVP using the view as the entry point, that is in the views constructor method it creates the presenter, which in turn creates the model, wiring up events as needed. I have also seen the presenter as the entry point, where a view, model and presenter are created, this presenter is then given a view and model object in its constructor to wire up the events. As in 2, but the model is not passed to the presenter. Instead the model is a static class where methods are called and responses returned directly. Section B In terms of keeping the view and model in sync I have seen. Whenever a value in the view in changed, i.e. TextChanged event in .Net/C#. This fires a DataChangedEvent which is passed through into the model, to keep it in sync at all times. And where the model changes, i.e. a background event it listens to, then the view is updated via the same idea of raising a DataChangedEvent. When a user wants to commit changes a SaveEvent it fires, passing through into the model to make the save. In this case the model mimics the view's data and processes actions. Similar to #b1, however the view does not sync with the model all the time. Instead when the user wants to commit changes, SaveEvent is fired and the presenter grabs the latest details and passes them into the model. in this case the model does not know about the views data until it is required to act upon it, in which case it is passed all the needed details. Section C Displaying of business objects in the view, i.e. a object (MyClass) not primitive data (int, double) The view has property fields for all its data that it will display as domain/business objects. Such as view.Animals exposes a IEnumerable<IAnimal> property, even though the view processes these into Nodes in a TreeView. Then for the selected animal it would expose SelectedAnimal as IAnimal property. The view has no knowledge of domain objects, it exposes property for primitive/framework (.Net/Java) included objects types only. In this instance the presenter will pass an adapter object the domain object, the adapter will then translate a given business object into the controls visible on the view. In this instance the adapter must have access to the actual controls on the view, not just any view so becomes more tightly coupled. Section D Multiple views used to create a single control. i.e. You have a complex view with a simple model like saving objects of different types. You could have a menu system at the side with each click on an item the appropriate controls are shown. You create one huge view, that contains all of the individual controls which are exposed via the views interface. You have several views. You have one view for the menu and a blank panel. This view creates the other views required but does not display them (visible = false), this view also implements the interface for each view it contains (i.e. child views) so it can expose to one presenter. The blank panel is filled with other views (Controls.Add(myview)) and ((myview.visible = true). The events raised in these "child"-views are handled by the parent view which in turn pass the event to the presenter, and visa versa for supplying events back down to child elements. Each view, be it the main parent or smaller child views are each wired into there own presenter and model. You can literately just drop a view control into an existing form and it will have the functionality ready, just needs wiring into a presenter behind the scenes. Section E Should everything have an interface, now based on how the MVP is done in the above examples will affect this answer as they might not be cross-compatible. Everything has an interface, the View, Presenter and Model. Each of these then obviously has a concrete implementation. Even if you only have one concrete view, model and presenter. The View and Model have an interface. This allows the views and models to differ. The presenter creates/is given view and model objects and it just serves to pass messages between them. Only the View has an interface. The Model has static methods and is not created, thus no need for an interface. If you want a different model, the presenter calls a different set of static class methods. Being static the Model has no link to the presenter. Personal thoughts From all the different variations I have presented (most I have probably used in some form) of which I am sure there are more. I prefer A3 as keeping business logic reusable outside just MVP, B2 for less data duplication and less events being fired. C1 for not adding in another class, sure it puts a small amount of non unit testable logic into a view (how a domain object is visualised) but this could be code reviewed, or simply viewed in the application. If the logic was complex I would agree to an adapter class but not in all cases. For section D, i feel D1 creates a view that is too big atleast for a menu example. I have used D2 and D3 before. Problem with D2 is you end up having to write lots of code to route events to and from the presenter to the correct child view, and its not drag/drop compatible, each new control needs more wiring in to support the single presenter. D3 is my prefered choice but adds in yet more classes as presenters and models to deal with the view, even if the view happens to be very simple or has no need to be reused. i think a mixture of D2 and D3 is best based on circumstances. As to section E, I think everything having an interface could be overkill I already do it for domain/business objects and often see no advantage in the "design" by doing so, but it does help in mocking objects in tests. Personally I would see E2 as a classic solution, although have seen E3 used in 2 projects I have worked on previously. Question Am I implementing MVP correctly? Is there a right way of going about it? I've read Martin Fowler's work that has variations, and I remember when I first started doing MVC, I understood the concept, but could not originally work out where is the entry point, everything has its own function but what controls and creates the original set of MVC objects.

    Read the article

  • Read & Write app.config

    - by Rodney Vinyard
    Imports System.Configuration   Public Class Form1       Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load           Dim config As System.Configuration.Configuration = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)         Me.txtFromFolder.Text = ConfigurationManager.AppSettings("fromFolder")         Me.txtToFolder.Text = ConfigurationManager.AppSettings("toFolder")         End Sub       Private Sub Form1_FormClosing(ByVal sender As System.Object, ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing             'to write         Dim config As System.Configuration.Configuration = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)           config.AppSettings.Settings.Remove("fromFolder")         config.AppSettings.Settings.Add("fromFolder", txtFromFolder.Text.Trim)           config.AppSettings.Settings.Remove("toFolder")         config.AppSettings.Settings.Add("toFolder", txtToFolder.Text.Trim)           config.Save(ConfigurationSaveMode.Modified)           ConfigurationManager.RefreshSection("appSettings")       End Sub

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • Cloud Computing Architecture Patterns: Don’t Focus on the Client

    - by BuckWoody
    Normally I try to put topics in the positive in other words "Do this" not "Don't do that". Sometimes its clearer to focus on what *not* to do. Popular development processes often start with screen mockups, or user input descriptions. In a scale-out pattern like Cloud Computing on Windows Azure, that's the wrong place to start. Start with the Data    Instead, I recommend that you start with the data that a process requires. That data might be temporary or persisted, but starting with the data and its requirements helps to define not only the storage engine you need but also drives everything from security to the integrity of the application. For instance, assume the requirements show that the user must enter their phone number, and that this datum is used in a contact management system further down the application chain. For that datum, you can determine what data type you need (U.S. only or International?) the security requirements, whether it needs ACID compliance, how it will be searched, indexed and so on. From one small data point you can extrapolate out your options for storing and processing the data. Here's the interesting part, which begins to break the patterns that we've used for decades: all of the data doesn't have the same requirements. The phone number might be best suited for a list, or an element, or a string, with either BASE or ACID requirements, based on how it is used. That means we don't have to dump everything into XML, an RDBMS, a NoSQL engine, or a flat file exclusively. In fact, one record might use all of those depending on the use-case requirements. Next Is Data Management  With the data defined, we can move on to how to store the data. Again, the requirements now dictate whether we need a full relational calculus or set-based operations, or we can choose another method based on the requirements for the data. And breaking another pattern its OK to store in more than once, in more than one location. We do this all the time for reporting systems and Business Intelligence systems, so this is a pattern we need to think about even for OLTP data. Move to Data Transport How does the data get around? We can use a connection-based method, sending the data along a transport to the storage engine, but in some cases we may want to use a cache, a queue, the Service Bus, or Complex Event Processing. Finally, Data Processing Most RDBMS engines, NoSQL, and certainly Big Data engines not only store data, but can process and manipulate it as well. Its doubtful that you'll calculate that phone number right? Well, if you're the phone company, you most certainly will. And so we see that even once we've chosen the data type, storage and engine, the same element can have different computing requirements based on how it is used. Sure, We Need A Front-End At Some Point Not all data is entered by human hands in fact most data isn't. We don't really need a Graphical User Interface (GUI) we need some way for a GUI to get data into and out of the systems listed earlier.   But when we do need to allow users to enter or examine data, that should be left to the GUI that best fits the device the user has. Ever tried to use an application designed for a web browser on a phone? Or one designed for a tablet on a phone? Its usually quite painful. The siren song of "We'll just write one interface for all devices" is strong, and has beguiled many an unsuspecting architect. But they just don't work out.   Instead, focus on the data, its transport and processing. Create API calls or a message system that allows for resilient transport to the device or interface, and let it do what it does best. References Microsoft Architecture Journal:   http://msdn.microsoft.com/en-us/architecture/bb410935.aspx Patterns and Practices:   http://msdn.microsoft.com/en-us/library/ff921345.aspx Windows Azure iOS, Android, Windows 8 Mobile Devices SDK: http://www.windowsazure.com/en-us/develop/mobile/tutorials/get-started-ios/ Windows Azure Facebook SDK: http://ntotten.com/2013/03/14/using-windows-azure-mobile-services-with-the-facebook-sdk-for-windows-phone/

    Read the article

  • JRockit Virtual Edition Debug Key

    - by changjae.lee
    There are a few keys that can help the debugging of the JRVE env in console. you can type in each keys in JRVE console to see what's happening under the hood. key '0' : System information key '5' : Enable shutdown key '7' : Start JRockit Management Server (port 7091) key '8' : Statistics Counters key '9' : Full Thread Dump key '0' : Status of Debug-key Below is the sample out from each keys. Debug-key '1' pressed ============ JRockitVE System Information ============ JRockitVE version : 11.1.1.3.0-67-131044 Kernel version : 6.1.0.0-97-131024 JVM version : R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 Hypervisor version : Xen 3.4.0 Boot state : 0x007effff Uptime : 0 days 02:04:31 CPU : uniprocessor @2327 Mhz CPU usage : 0% ctx/s: 285 preempt/s: 0 migrations/s: 0 Physical pages : 82379/261121 (321/1020 MB) Network info : 10.179.97.64 (10.179.97.64/255.255.254.0) GateWay : 10.179.96.1 MAC address : 00:16:3e:7e:dc:78 Boot options : vfsCwd : /application/user_projects/domains/wlsve_domain mainArgs : java -javaagent:/jrockitve/services/sshd/sshd.jar -cp /jrockitve/jrockit/lib/tools.jar:/jrockitve/lib/common.jar:/application/patch_wls1032/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/application/wlserver_10.3/server/lib/weblogic.jar -Dweblogic.Name=WlsveAdmin -Dweblogic.Domain=wlsve_domain -Dweblogic.management.username=weblogic -Dweblogic.management.password=welcome1 -Dweblogic.management.GenerateDefaultConfig=true weblogic.Server consLog : /jrockitve/log/jrockitve.log mounts : ext2 / dev0; posixLocale : en_US posixTimezone : Asia/Seoul posixEncoding : ISO-8859-1 Local disk : Size: 1024M, Used: 728M, Free: 295M ======================================================== Debug-key '5' pressed Shutdown enabled. Debug-key '7' pressed [JRockit] Management server already started. Ignoring request. Debug-key '8' pressed Starting stat recording Debug-key '8' pressed ========= Statistics Counters for the last second ========= dev.eth0_rx.cnt : 22 packets dev.eth0_rx_bytes.cnt : 2704 bytes dev.net_interrupts.cnt : 22 interrupts evt.timer_ticks.cnt : 123 ticks hyper.priv_entries.cnt : 144 entries schedule.context_switches.cnt : 271 switches schedule.idle_cpu_time.cnt : 997318849 nanoseconds schedule.idle_cpu_time_0.cnt : 997318849 nanoseconds schedule.total_cpu_time.cnt : 1000031757 nanoseconds time.system_time.cnt : 1000 ns time.timer_updates.cnt : 123 updates time.wallclock_time.cnt : 1000 ns ======================================= Debug-key '9' pressed ===== FULL THREAD DUMP =============== Fri Jun 4 08:22:12 2010 BEA JRockit(R) R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 "Main Thread" id=1 idx=0x4 tid=1 prio=5 alive, in native, waiting -- Waiting for notification on: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at jrockit/vm/Threads.waitForNotifySignal(JLjava/lang/Object;)Z(Native Method) at java/lang/Object.wait(J)V(Native Method) at java/lang/Object.wait(Object.java:485) at weblogic/t3/srvr/T3Srvr.waitForDeath(T3Srvr.java:919) ^-- Lock released while waiting: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at weblogic/t3/srvr/T3Srvr.run(T3Srvr.java:479) at weblogic/Server.main(Server.java:67) at jrockit/vm/RNI.c2java(IIIII)V(Native Method) -- end of trace "(Signal Handler)" id=2 idx=0x8 tid=2 prio=5 alive, in native, daemon Open lock chains ================ Chain 1: "ExecuteThread: '0' for queue: 'weblogic.socket.Muxer'" id=23 idx=0x50 tid=20 waiting for java/lang/String@0x630c588 held by: "ExecuteThread: '1' for queue: 'weblogic.socket.Muxer'" id=24 idx=0x54 tid=21 (active) ===== END OF THREAD DUMP =============== Debug-key '0' pressed Debug-keys enabled Happy Cloud Walking :)

    Read the article

  • Problems with Level Architect, Citrus Engine, Flash

    - by Idan
    I am using the Citrus Engine to make a Flash game, and the Level Architect doesn't work well for me. Firstly, when I first launch it and open my project and my level, nothing is shown, no assets and not anything I have previously done with my level. To fix it, I open another project. The other project works fine, meaning I can see the assets and the level. Then I go back to the actual project I am working on, and the problem is fixed, only it does not fix the second problem: I can't add my own assests. I follow the manual and add tags like this: [Property(value="0")] But it doesn't change a thing in the level architect window (even after I close and reopen it). Any ideas? Thanks! Here's the code of the class I want to be shown in the Level Architect: package { import com.citrusengine.objects.PhysicsObject; import com.citrusengine.objects.platformer.Sensor; import flash.utils.clearTimeout; import flash.utils.setTimeout; /** * @author Aymeric */ public class Teleporter extends Sensor { [Property(value="0")] public var endX:Number=0; [Property(value="0")] public var endY:Number=0; public var object:PhysicsObject; [Property(value="0")] public var time:Number = 0; public var needToTeleport:Boolean = false; protected var _teleporting:Boolean = false; private var _teleportTimeoutID:uint; public function Teleporter(name:String, params:Object = null) { super(name, params); } override public function destroy():void { clearTimeout(_teleportTimeoutID); super.destroy(); } override public function update(timeDelta:Number):void { super.update(timeDelta); if (needToTeleport) { _teleporting = true; _teleportTimeoutID = setTimeout(_teleport, time); needToTeleport = false; } _updateAnimation(); } protected function _teleport():void { _teleporting = false; object.x = endX; object.y = endY; clearTimeout(_teleportTimeoutID); } protected function _updateAnimation():void { if (_teleporting) { _animation = "teleport"; } else { _animation = "normal"; } } } }

    Read the article

  • Delving into design patterns, and what that means for the Oracle user experience

    - by Kathy.Miedema
    By Kathy Miedema, Oracle Applications User Experience George Hackman, Senior Director, Applications User Experiences The Oracle Applications User Experience team has some exciting things happening around Fusion Applications design patterns. Because we’re hoping to have some new offerings soon (stay tuned with VoX to see what’s in the pipeline around Fusion Applications design patterns), now is a good time to talk more about what design patterns can do for the individual user as well as the entire company. George Hackman, Senior Director of Operations User Experience, says the first thing to note is that user experience is not just about the user interface. It’s about understanding how people do things, observing them, and then finding the patterns that emerge. The Applications UX team develops those patterns and then builds them into Oracle applications. What emerges, Hackman says, is a consistent, efficient user experience that promotes a productive workplace. Creating design patterns What is a design pattern in the context of enterprise software? “Every day, people use technology to get things done,” Hackman says. “They navigate a virtual world that reaches from enterprise to consumer apps, and from desktop to mobile. This virtual world is constantly under construction. New areas are being developed and old areas are being redone. As this world is being built and remodeled, efficient pathways and practices emerge. “Oracle's user experience team watches users navigate this world. We measure their productivity and ask them about their satisfaction. We take the most efficient, most productive pathways from the enterprise and consumer world and turn them into Oracle's user experience patterns.” Hackman describes the process as combining all of the best practices from every part of a user’s world. Members of the user experience team observe, analyze, design, prototype, and measure each work task to find the best possible pattern for a particular work flow. As the team builds the patterns, “we make sure they are fully buildable using Oracle technology,” Hackman said. “So customers know they can use these patterns. There’s no need to make something up from scratch, not knowing whether you can even build it.” Hackman says that creating something on a computer is a good example of a user experience pattern. “People are creating things all the time,” he says. “On the consumer side, they are creating documents. On the enterprise side, they are creating expense reports. On a mobile phone, they are creating contacts. They are using different apps like iPhone or Facebook or Gmail or Oracle software, all doing this creation process.” The Applications UX team starts their process by observing how people might create something. “We observe people creating things. We see the patterns, we analyze and document, then we apply them to our products. It might be different from phone to web browser, but we have these design patterns that create a consistent experience across platforms, and across products, too. The result for customers Oracle constantly improves its part of the virtual world, Hackman said. New products are created and existing products are upgraded. Because Oracle builds user experience design patterns, Oracle's virtual world becomes both more powerful and more familiar at the same time. Because of design patterns, users can navigate with ease as they embrace the latest technology – because it behaves the way they expect it to. This means less training and faster adoption for individual users, and more productivity for the business as a whole. Hackman said Oracle gives customers and partners access to design patterns so that they can build in the virtual world using the same best practices. Customers and partners can extend applications with a user experience that is comfortable and familiar to their users. For businesses that are integrating different Oracle applications, design patterns are key. The user experience created in E-Business Suite should be similar to the user experience in Fusion Applications, Hackman said. If a user is transitioning from one application to the other, it shouldn’t be difficult for them to do their work. With design patterns, it isn’t. “Oracle user experience patterns are the building blocks for the virtual world that ensure productivity, consistency and user satisfaction,” Hackman said. “They are built for the enterprise, but incorporate the best practices from across the virtual world. They empower productivity and facilitate social interaction. When you build with patterns, you get all the end-user benefits of less training / retraining from the finished product. You also get faster / cheaper development.” What’s coming? You can already access design patterns to help you build Dashboards with OBIEE here. And we promised you at the beginning that we had something in the pipeline on Fusion Applications design patterns. Look for the announcement about when they are available here on VoX.

    Read the article

  • Python class representation under the hood

    - by decentralised
    OK, here is a simple Python class: class AddSomething(object): __metaclass__ = MyMetaClass x = 10 def __init__(self, a): self.a = a def add(self, a, b): return a + b We have specified a metaclass, and that means we could write something like this: class MyMetaClass(type): def __init__(cls, name, bases, cdict): # do something with the class Now, the cdict holds a representation of AddSomething: AddSomething = type('AddSomething', (object,), {'x' : 10, '__init__': __init__, 'add': add}) So my question is simple, are all Python classes represented in this second format internally? If not, how are they represented? EDIT - Python 2.7

    Read the article

  • Using Entity Framework Entity splitting customisations in an ASP.Net application

    - by nikolaosk
    I have been teaching in the past few weeks many people on how to use Entity Framework. I have decided to provide some of the samples I am using in my classes. First let’s try to define what EF is and why it is going to help us to create easily data-centric applications.Entity Framework is an object-relational mapping (ORM) framework for the .NET Framework.EF addresses the problem of Object-relational impedance mismatch . I will not be talking about that mismatch because it is well documented in many...(read more)

    Read the article

  • Nautilus doesn't work

    - by bruce
    Whenever I open nautilus it crashes and I get this error in terminal. i am running saucy. does anybody know of a different file manger that i can install? sys:1: Warning: g_object_set: assertion 'G_IS_OBJECT (object)' failed totem-video-thumbnailer couldn't open file 'file:///home/bruce/New%20Project.ogv' sys:1: Warning: g_object_unref: assertion 'G_IS_OBJECT (object)' failed Segmentation fault (core dumped)

    Read the article

  • Using Entity Framework Table splitting customisations in an ASP.Net application

    - by nikolaosk
    I have been teaching in the past few weeks many people on how to use Entity Framework. I have decided to provide some of the samples I am using in my classes. First let’s try to define what EF is and why it is going to help us to create easily data-centric applications.Entity Framework is an object-relational mapping (ORM) framework for the .NET Framework.EF addresses the problem of Object-relational impedance mismatch . I will not be talking about that mismatch because it is well documented in many...(read more)

    Read the article

  • People, Process & Engagement: WebCenter Partner Keste

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Within the WebCenter group here at Oracle, discussions about people, process and engagement cross over many vertical industries and products. Amidst our growing partner ecosystem, the community provides us insight into great customer use cases every day. Such is the case with our partner, Keste, who provides us a guest post on our blog today with an overview of their innovative solution for a customer in the transportation industry. Keste is an Oracle software solutions and development company headquartered in Dallas, Texas. As a Platinum member of the Oracle® PartnerNetwork, Keste designs, develops and deploys custom solutions that automate complex business processes. Seamless Customer Self-Service Experience in the Trucking Industry with Oracle WebCenter Portal  Keste, Oracle Platinum Partner Customer Overview Omnitracs, Inc., a Qualcomm company provides mobility solutions for trucking fleets to companies in the transportation industry. Omnitracs’ mobility services include basic communications such as text as well as advanced monitoring services such as GPS tracking, temperature tracking of perishable goods, load tracking and weighting distribution, and many others. Customer Business Needs Already the leading provider of mobility solutions for large trucking fleets, they chose to target smaller trucking fleets as new customers. However their existing high-touch customer support method would not be a cost effective or scalable method to manage and service these smaller customers. Omnitracs needed to provide several self-service features to make customer support more scalable while keeping customer satisfaction levels high and the costs manageable. The solution also had to be very intuitive and easy to use. The systems that Omnitracs sells to these trucking customers require professional installation and smaller customers need to track and schedule the installation. Information captured in Oracle eBusiness Suite needed to be readily available for new customers to track these purchases and delivery details. Omnitracs wanted a high impact User Interface to significantly improve customer experience with the ability to integrate with EBS, provisioning systems as well as CRM systems that were already implemented. Omnitracs also wanted to build an architecture platform that could potentially be extended to other Portals. Omnitracs’ stated goal was to deliver an “eBay-like” or “Amazon-like” experience for all of their customers so that they could reach a much broader market beyond their large company customer base. Solution Overview In order to manage the increased complexity, the growing support needs of global customers and improve overall product time-to-market in a cost-effective manner, IT began to deliver a self-service model. This self service model not only transformed numerous business processes but is also allowing the business to keep up with the growing demands of the (internal and external) customers. This solution was a customer service Portal that provided self service capabilities for large and small customers alike for Activation of mobility products, managing add-on applications for the devices (much like the Apple App Store), transferring services when trucks are sold to other companies as well as deactivation all without the involvement of a call service agent or sending multiple emails to different Omnitracs contacts. This is a conceptual view of the Customer Portal showing the details of the components that make up the solution. 12.00 The portal application for transactions was entirely built using ADF 11g R2. Omnitracs’ business had a pressing requirement to have a portal available 24/7 for its customers. Since there were interactions with EBS in the back-end, the downtimes on the EBS would negate this availability. Omnitracs devised a decoupling strategy at the database side for the EBS data. The decoupling of the database was done using Oracle Data Guard and completely insulated the solution from any eBusiness Suite down time. The customer has no knowledge whether eBS is running or not. Here are two sample screenshots of the portal application built in Oracle ADF. Customer Benefits The Customer Portal not only provided the scalability to grow the business but also provided the seamless integration with other disparate applications. Some of the key benefits are: Improved Customer Experience: With a modern look and feel and a Portal that has the aspects of an App Store, the customer experience was significantly improved. Page response times went from several seconds to sub-second for all of the pages. Enabled new product launches: After successfully dominating the large fleet market, Omnitracs now has a scalable solution to sell and manage smaller fleet customers giving them a huge advantage over their nearest competitors. Dozens of new customers have been acquired via this portal through an onboarding process that now takes minutes Seamless Integrations Improves Customer Support: ADF 11gR2 allowed Omnitracs to bring a diverse list of applications into one integrated solution. This provided a seamless experience for customers to route them from Marketing focused application to a customer-oriented portal. Internally, it also allowed Sales Representatives to have an integrated flow for taking a prospect through the various steps to onboard them as a customer. Key integrations included: Unity Core Salesforce.com Merchant e-Solution for credit card Custom Omnitracs Applications like CUPS and AUTO Security utilizing OID and OVD Back end integration with EBS (Data Guard) and iQ Database Business Impact Significant business impacts were realized through the launch of customer portal. It not only allows the business to push through in underserved segments, but also reduces the time it needs to spend on customer support—allowing the business to focus more on sales and identifying the market for new products. Some of the Immediate Benefits are The entire onboarding process is now completely automated and now completes in minutes. This represents an 85% productivity improvement over their previous processes. And it was 160 times faster! With the success of this self-service solution, the business is now targeting about 3X customer growth in the next five years. This represents a tripling of their overall customer base and significant downstream revenue for the ongoing services. 90%+ improvement of customer onboarding and management process by utilizing, single sign on integration using OID/OAM solution, performance improvements and new self-service functionality Unified login for all Customers, Partners and Internal Users enables login to a common portal and seamless access to all other integrated applications targeted at the respective audience Significantly improved customer experience with a better look and feel with a more user experience focused Portal screens. Helped sales of the new product by having an easy way of ordering and activating the product. Data Guard helped increase availability of the Portal to 99%+ and make it independent of EBS downtime. This gave customers the feel of high availability of the portal application. Some of the anticipated longer term Benefits are: Platform that can be leveraged to launch any new product introduction and enable all product teams to reach new customers and new markets Easy integration with content management to allow business owners more control of the product catalog Overall reduced TCO with standardization of the Oracle platform Managed IT support cost savings through optimization of technology skills needed to support and modify this solution ------------------------------------------------------------ 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif";}

    Read the article

  • Physics/Graphics Components

    - by Brett Powell
    I have spent the last 48 hours reading up on Object Component systems, and feel I am ready enough to start implementing it. I got the base Object and Component classes created, but now that I need to start creating the actual components I am a bit confused. When I think of them in terms of HealthComponent or something that would basically just be a property, it makes perfect sense. When it is something more general as a Physics/Graphics component, I get a bit confused. My Object class looks like this so far (If you notice any changes I should make please let me know, still new to this)... typedef unsigned int ID; class GameObject { public: GameObject(ID id, Ogre::String name = ""); ~GameObject(); ID &getID(); Ogre::String &getName(); virtual void update() = 0; // Component Functions void addComponent(Component *component); void removeComponent(Ogre::String familyName); template<typename T> T* getComponent(Ogre::String familyName) { return dynamic_cast<T*>(m_components[familyName]); } protected: // Properties ID m_ID; Ogre::String m_Name; float m_flVelocity; Ogre::Vector3 m_vecPosition; // Components std::map<std::string,Component*> m_components; std::map<std::string,Component*>::iterator m_componentItr; }; Now the problem I am running into is what would the general population put into Components such as Physics/Graphics? For Ogre (my rendering engine) the visible Objects will consist of multiple Ogre::SceneNode (possibly multiple) to attach it to the scene, Ogre::Entity (possibly multiple) to show the visible meshes, and so on. Would it be best to just add multiple GraphicComponent's to the Object and let each GraphicComponent handle one SceneNode/Entity or is the idea to have one of each Component needed? For Physics I am even more confused. I suppose maybe creating a RigidBody and keeping track of mass/interia/etc. would make sense. But I am having trouble thinking of how to actually putting specifics into a Component. Once I get a couple of these "Required" components done, I think it will make a lot more sense. As of right now though I am still a bit stumped.

    Read the article

  • Allocating Entities within an Entity System

    - by miguel.martin
    I'm quite unsure how I should allocate/resemble my entities within my entity system. I have various options, but most of them seem to have cons associated with them. In all cases entities are resembled by an ID (integer), and possibly has a wrapper class associated with it. This wrapper class has methods to add/remove components to/from the entity. Before I mention the options, here is the basic structure of my entity system: Entity An object that describes an object within the game Component Used to store data for the entity System Contains entities with specific components Used to update entities with specific components World Contains entities and systems for the entity system Can create/destroy entites and have systems added/removed from/to it Here are my options, that I have thought of: Option 1: Do not store the Entity wrapper classes, and just store the next ID/deleted IDs. In other words, entities will be returned by value, like so: Entity entity = world.createEntity(); This is much like entityx, except I see some flaws in this design. Cons There can be duplicate entity wrapper classes (as the copy-ctor has to be implemented, and systems need to contain entities) If an Entity is destroyed, the duplicate entity wrapper classes will not have an updated value Option 2: Store the entity wrapper classes within an object pool. i.e. Entities will be return by pointer/reference, like so: Entity& e = world.createEntity(); Cons If there is duplicate entities, then when an entity is destroyed, the same entity object may be re-used to allocate another entity. Option 3: Use raw IDs, and forget about the wrapper entity classes. The downfall to this, I think, is the syntax that will be required for it. I'm thinking about doing thisas it seems the most simple & easy to implement it. I'm quite unsure about it, because of the syntax. i.e. To add a component with this design, it would look like: Entity e = world.createEntity(); world.addComponent<Position>(e, 0, 3); As apposed to this: Entity e = world.createEntity(); e.addComponent<Position>(0, 3); Cons Syntax Duplicate IDs

    Read the article

  • How to make creating viewmodels at runtime less painful

    - by Mr Happy
    I apologize for the long question, it reads a bit as a rant, but I promise it's not! I've summarized my question(s) below In the MVC world, things are straightforward. The Model has state, the View shows the Model, and the Controller does stuff to/with the Model (basically), a controller has no state. To do stuff the Controller has some dependencies on web services, repository, the lot. When you instantiate a controller you care about supplying those dependencies, nothing else. When you execute an action (method on Controller), you use those dependencies to retrieve or update the Model or calling some other domain service. If there's any context, say like some user wants to see the details of a particular item, you pass the Id of that item as parameter to the Action. Nowhere in the Controller is there any reference to any state. So far so good. Enter MVVM. I love WPF, I love data binding. I love frameworks that make data binding to ViewModels even easier (using Caliburn Micro a.t.m.). I feel things are less straightforward in this world though. Let's do the exercise again: the Model has state, the View shows the ViewModel, and the ViewModel does stuff to/with the Model (basically), a ViewModel does have state! (to clarify; maybe it delegates all the properties to one or more Models, but that means it must have a reference to the model one way or another, which is state in itself) To do stuff the ViewModel has some dependencies on web services, repository, the lot. When you instantiate a ViewModel you care about supplying those dependencies, but also the state. And this, ladies and gentlemen, annoys me to no end. Whenever you need to instantiate a ProductDetailsViewModel from the ProductSearchViewModel (from which you called the ProductSearchWebService which in turn returned IEnumerable<ProductDTO>, everybody still with me?), you can do one of these things: call new ProductDetailsViewModel(productDTO, _shoppingCartWebService /* dependcy */);, this is bad, imagine 3 more dependencies, this means the ProductSearchViewModel needs to take on those dependencies as well. Also changing the constructor is painful. call _myInjectedProductDetailsViewModelFactory.Create().Initialize(productDTO);, the factory is just a Func, they are easily generated by most IoC frameworks. I think this is bad because Init methods are a leaky abstraction. You also can't use the readonly keyword for fields that are set in the Init method. I'm sure there are a few more reasons. call _myInjectedProductDetailsViewModelAbstractFactory.Create(productDTO); So... this is the pattern (abstract factory) that is usually recommended for this type of problem. I though it was genius since it satisfies my craving for static typing, until I actually started using it. The amount of boilerplate code is I think too much (you know, apart from the ridiculous variable names I get use). For each ViewModel that needs runtime parameters you'll get two extra files (factory interface and implementation), and you need to type the non-runtime dependencies like 4 extra times. And each time the dependencies change, you get to change it in the factory as well. It feels like I don't even use a DI container anymore. (I think Castle Windsor has some kind of solution for this [with it's own drawbacks, correct me if I'm wrong]). do something with anonymous types or dictionary. I like my static typing. So, yeah. Mixing state and behavior in this way creates a problem which don't exist at all in MVC. And I feel like there currently isn't a really adequate solution for this problem. Now I'd like to observe some things: People actually use MVVM. So they either don't care about all of the above, or they have some brilliant other solution. I haven't found an in-depth example of MVVM with WPF. For example, the NDDD-sample project immensely helped me understand some DDD concepts. I'd really like it if someone could point me in the direction of something similar for MVVM/WPF. Maybe I'm doing MVVM all wrong and I should turn my design upside down. Maybe I shouldn't have this problem at all. Well I know other people have asked the same question so I think I'm not the only one. To summarize Am I correct to conclude that having the ViewModel being an integration point for both state and behavior is the reason for some difficulties with the MVVM pattern as a whole? Is using the abstract factory pattern the only/best way to instantiate a ViewModel in a statically typed way? Is there something like an in depth reference implementation available? Is having a lot of ViewModels with both state/behavior a design smell?

    Read the article

  • What are the software design essentials? [closed]

    - by Craig Schwarze
    I've decided to create a 1 page "cheat sheet" of essential software design principles for my programmers. It doesn't explain the principles in any great depth, but is simply there as a reference and a reminder. Here's what I've come up with - I would welcome your comments. What have I left out? What have I explained poorly? What is there that shouldn't be? Basic Design Principles The Principle of Least Surprise – your solution should be obvious, predictable and consistent. Keep It Simple Stupid (KISS) - the simplest solution is usually the best one. You Ain’t Gonna Need It (YAGNI) - create a solution for the current problem rather than what might happen in the future. Don’t Repeat Yourself (DRY) - rigorously remove duplication from your design and code. Advanced Design Principles Program to an interface, not an implementation – Don’t declare variables to be of a particular concrete class. Rather, declare them to an interface, and instantiate them using a creational pattern. Favour composition over inheritance – Don’t overuse inheritance. In most cases, rich behaviour is best added by instantiating objects, rather than inheriting from classes. Strive for loosely coupled designs – Minimise the interdependencies between objects. They should be able to interact with minimal knowledge of each other via small, tightly defined interfaces. Principle of Least Knowledge – Also called the “Law of Demeter”, and is colloquially summarised as “Only talk to your friends”. Specifically, a method in an object should only invoke methods on the object itself, objects passed as a parameter to the method, any object the method creates, any components of the object. SOLID Design Principles Single Responsibility Principle – Each class should have one well defined purpose, and only one reason to change. This reduces the fragility of your code, and makes it much more maintainable. Open/Close Principle – A class should be open to extension, but closed to modification. In practice, this means extracting the code that is most likely to change to another class, and then injecting it as required via an appropriate pattern. Liskov Substitution Principle – Subtypes must be substitutable for their base types. Essentially, get your inheritance right. In the classic example, type square should not inherit from type rectangle, as they have different properties (you can independently set the sides of a rectangle). Instead, both should inherit from type shape. Interface Segregation Principle – Clients should not be forced to depend upon methods they do not use. Don’t have fat interfaces, rather split them up into smaller, behaviour centric interfaces. Dependency Inversion Principle – There are two parts to this principle: High-level modules should not depend on low-level modules. Both should depend on abstractions. Abstractions should not depend on details. Details should depend on abstractions. In modern development, this is often handled by an IoC (Inversion of Control) container.

    Read the article

< Previous Page | 443 444 445 446 447 448 449 450 451 452 453 454  | Next Page >