Search Results

Search found 39786 results on 1592 pages for 'back button'.

Page 468/1592 | < Previous Page | 464 465 466 467 468 469 470 471 472 473 474 475  | Next Page >

  • Updated data is not loaded in the same browser(using Ajax )

    - by Mouli
    Initilly load some datas into dropdown list. It contain company code and company related fields in Textbox. Using Ajax to load the company related Fields in onchange Function I edit the company related fields and update it. Its updated Successfully then i Click the back button and refresh the browser. I select the updated company form the dropdown list. It always list the old value insted of updated data. I want to show the updated fields into corresponding textbox. This part of coding is to load the companyname into dropdown list <% DBAccess dbAccess = Util.initDatabaseAccess(); ResultSet rs = null; ResultSet rsEdit = null; int updateSuccess = 0; String button = request.getParameter("saveAction"); rs = dbAccess.executeQuery("select companyname,Companycode,companyid from yosemitecompany where cmpstatus=1 order by companyname"); %> My Ajax function <script> function showCompanyDetails(str) { if (str=="") { document.getElementById("CompanyName").innerHTML=""; return; } if (window.XMLHttpRequest) { xmlhttp=new XMLHttpRequest(); } else { xmlhttp=new ActiveXObject("Microsoft.XMLHTTP"); } xmlhttp.onreadystatechange=function() { if (xmlhttp.readyState==4 && xmlhttp.status==200) { var resValue=new Array(); resValue = xmlhttp.responseText.split("$"); document.getElementById("CompanyName").value=resValue[0]; document.getElementById("StreetName1").value=(resValue[1]!=null && !resValue[1].equalsIgnoreCase("null") && resValue[1].length>0?resValue[1]:""); document.getElementById("StreetName2").value=(resValue[2]!=null && !resValue[2].equalsIgnoreCase("null") && resValue[2].length>0?resValue[2]:""); document.getElementById("City").value=(resValue[3]!=null && !resValue[3].equalsIgnoreCase("null") && resValue[3].length>0?resValue[3]:""); document.getElementById("Zipcode").value=trim((resValue[5]!=null && !resValue[5].equalsIgnoreCase("null") && resValue[5].length>0?resValue[5]:"")); document.getElementById("officePhone").value=(resValue[6]!=null && !resValue[6].equalsIgnoreCase("null") && resValue[6].length>0?resValue[6]:""); document.getElementById("Fax1").value=(resValue[7]!=null && !resValue[7].equalsIgnoreCase("null") && resValue[7].length>0?resValue[7]:""); document.getElementById("email").value=(resValue[8]!=null && !resValue[8].equalsIgnoreCase("null") && resValue[8].length>0?resValue[8]:""); document.getElementById("WebSite").value=(resValue[9]!=null && !resValue[9].equalsIgnoreCase("null") && resValue[9].length>0?resValue[9]:""); document.getElementById("description").value=(resValue[10]!=null && !resValue[10].equalsIgnoreCase("null") && resValue[10].length>0?resValue[10]:""); document.getElementById("companycode").value=resValue[11]; document.getElementById("tempCompanyId").value=resValue[12]; document.getElementById("tempStateId").value=resValue[13]; stateID = resValue[13]; countryID = resValue[14]; processAjaxRequestPost('ajaxRequestPost','SingleListHandler','getCountryListDetails', document.getElementById("tempCompanyId").value); showTimezone(resValue[15]); document.getElementById("userName").value=resValue[16]; document.getElementById("passWord").value=resValue[17]; } } xmlhttp.open("GET","customerDetail.jsp?val="+str,true); xmlhttp.send(); } </script> My Update function <%if(updateSuccess <= 0){ if(button != null && button.equalsIgnoreCase("update")) { String companyCode = request.getParameter("companycode").trim(); String companyName = request.getParameter("CompanyName").trim(); String StreetName1 = request.getParameter("StreetName1").trim(); String StreetName2 = request.getParameter("StreetName2").trim(); String City = request.getParameter("City").trim(); String Zipcode = request.getParameter("Zipcode").trim(); String officePhone = request.getParameter("officePhone").trim(); String Fax1 = request.getParameter("Fax1").trim(); String email = request.getParameter("email").trim(); String WebSite = request.getParameter("WebSite").trim(); String description = request.getParameter("description").trim(); String companyid = request.getParameter("tempCompanyId").trim(); String stateId = request.getParameter("tempStateId").trim(); String timeZone = request.getParameter("timezone").trim(); String uploadCustomerLogo = request.getParameter("uploadCustomerLogo").trim(); String userName = request.getParameter("userName").trim(); String passWord = request.getParameter("passWord").trim(); String smtpInsertFlag = "NO"; String getCompanyId = null; updateSuccess = dbAccess.executeUpdate("update yosemitecompany set companyname='"+com.zoniac.util.Util.deQuoteForSingleQuote(companyName)+"', streetname1='"+com.zoniac.util.Util.deQuoteForSingleQuote(StreetName1)+"', streetname2='"+com.zoniac.util.Util.deQuoteForSingleQuote(StreetName2)+"', cityname='"+com.zoniac.util.Util.deQuoteForSingleQuote(City)+"', zipcode='"+com.zoniac.util.Util.deQuoteForSingleQuote(Zipcode)+"', phonenumber1='"+com.zoniac.util.Util.deQuoteForSingleQuote(officePhone)+"', fax1='"+com.zoniac.util.Util.deQuoteForSingleQuote(Fax1)+"', email1='"+com.zoniac.util.Util.deQuoteForSingleQuote(email)+"', website='"+com.zoniac.util.Util.deQuoteForSingleQuote(WebSite)+"', description='"+com.zoniac.util.Util.deQuoteForSingleQuote(description)+"',timezoneid="+timeZone+", stateid="+stateId+" where companyid='"+companyid+"'"); if(rs != null) { rs = null; dbAccess.close(); } } %> My customerDetail.jsp File <% String val = request.getParameter("val"); DBAccess dbAccess = Util.initDatabaseAccess(); ResultSet rs = null; String outputResult = null; String ff = "NO"; rs = dbAccess.executeQuery("select companyname,streetname1,streetname2,cityname,(select statename from state where stateid = (select stateid from yosemitecompany where companyid ="+val+"))as state,zipcode,phonenumber1,fax1,email1,website,description,companycode,companyid,(select stateid from state where stateid = (select stateid from yosemitecompany where companyid ="+val+"))as statecode,(select countryid from country where countryid =(select countryid from state where stateid = (select stateid from yosemitecompany where companyid ="+val+")))as countryid,timezoneid from yosemitecompany where companyid = "+val+""); if(rs.next()){ outputResult = rs.getString(1)+"$"+rs.getString(2)+"$"+rs.getString(3)+"$"+rs.getString(4)+"$"+rs.getString(5)+"$"+rs.getString(6)+"$"+rs.getString(7)+"$"+rs.getString(8)+"$"+rs.getString(9)+"$"+rs.getString(10)+"$"+rs.getString(11)+"$"+rs.getString(12)+"$"+rs.getString(13)+"$"+rs.getString(14)+"$"+rs.getString(15)+"$"+rs.getString(16); } rs = null; rs = dbAccess.executeQuery("select username,password from EMAILAUTHENTICATIONDETAILS where companyid="+val); if(rs.next()){ ff="YES"; outputResult += "$"+rs.getString(1)+"$"+rs.getString(2); } if(ff.equals("NO")){ outputResult += "$$"; } out.println(outputResult); outputResult = null; ff = "NO"; if(rs!=null) { rs = null; dbAccess.close(); } %>

    Read the article

  • more radio problems * sighs * been at this for one week now

    - by jeansymolanza
    hi guys really i don't know what im doing wrong... i am trying to process multiple radios with mysql. the first step has involved me echoing the results on the process page. each time i select any radio option it simply displays the first row result. this is that i see after trying to submit the form: Notifications Thank you. The notifications have been updated successfully. statusid: 14 notc2: 1 Return this is the code for the form: <div style="padding: 15px;"> <span class="loginfail" style="font-size:24px; font-weight: bold">Notifications</span><p> <?php include("progress_insertcomment.php"); ?> <?php // Make a MySQL Connection mysql_select_db("speedycm_data") or die(mysql_error()); $query_comment = "select * from tbl_alert order by id desc limit 1"; $comment = mysql_query($query_comment, $speedycms) or die(mysql_error()); $row_comment = mysql_fetch_assoc($comment); $totalRows_comment = mysql_num_rows($comment); ?> <!--- add notification ---> <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <span id="sprytextarea1"> <textarea id='comment' name="comment" style="height: 75px; width:330px;"><?php echo $row_comment['comment']; ?></textarea> </span> <p> <button type="submit">Add</button> <input type="hidden" name="notc" value="1"/> </form> <!--- notification history ---> <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <table border="0" cellspacing="2" cellpadding="2"> <?php if ( $row_comment == 0 ) { echo "<span style='font-size: 11px;'>No current alerts.</span>"; } else { // Get all the data from the "example" table $result = mysql_query("SELECT * FROM tbl_alert ORDER BY id DESC") or die(mysql_error()); while($rows=mysql_fetch_array($result)){ ?> <tr> <td> <?php echo "<div class='bubble'><div class='pimped'> <blockquote>" . $rows['comment'] . " </blockquote></div> <cite><strong>" . $rows['user'] . "</strong> @ " . $rows['date'] . "</cite> <span style='font-size: 10px;'> <p> <a href='editalert.php?id=". $rows['id'] ."' class='form' >Edit</a>&nbsp;&#8226;&nbsp;<a href='deletealert.php?id=". $rows['id'] ."' class='form'>Delete</a> </span> </div> "; ?> </td> <td valign="top" align="center"><div style="padding-left: 30px;"><span style="font-size: 10px;">Completed?</span> <p class="field switch"> <!--- determine status of notification ---> <?php $status = $rows['status']; $id = $rows['id']; ?> <input type="radio" name="selstatus[<?php echo $id; ?>]" value="no" <?php if($status == 'yes') {echo 'checked';} else {echo '';} ?>/> <input type="radio" name="selstatus[<?php echo $id; ?>]" value="yes" <?php if($status == 'yes') {echo 'checked';} else {echo '';} ?>/> <input type="hidden" name="statusid" value="<?php echo $id; ?>"/> <label for="radio1" class="cb-enable <?php if($status == 'yes') {echo 'selected';} else {echo '';} ?>"><span>Yes</span></label> <label for="radio2" class="cb-disable <?php if($status == 'no') {echo 'selected';} else {echo '';} ?>"><span>No</span></label> </p> </div></td> </tr> <tr> <td></td> <?php } } ?> <td align="center"><div style="padding-left: 30px;"> <button type="submit">Update</button> <input type="hidden" name="notc2" value="1"/> </div></td> </tr> </table> </form> </div> this is the code for the processing page: <?php // 6) update notifications if (array_key_exists('notc2',$_POST)) { $update = $_POST['selstatus']; echo "<p style='font-size: 12px;'>Thank you. The notifications have been updated successfully.<p>"; foreach($_POST as $key => $value){ echo $key . ': ' . $value . '<br>'; } echo "<p><span style='font-size: 12px;'> <a onClick=\"history.go(-1)\" class='form'>Return</a></p> <p></span> "; exit; }; ?> how do i resolve this problem? please any help would be appreciated. i would like to display the id and value of the selected checkbox on the processing page before inserting it into the table. thanking you in advance. GOD BLESS

    Read the article

  • Find Label Control in Repeater Asp.net

    - by user2769165
    I am using repeater and I want to find the label control in my repeater. here is my code <asp:Repeater ID="friendRepeater" runat="server"> <table cellpadding="0" cellspacing="0"> <ItemTemplate> <tr style=" width:700px; height:120px;"> <td> <div style=" padding-left:180px;"> <div id="leftHandPost" style="float:left; width:120px; height:120px; border: medium solid #cdaf95; padding-top:5px;"> <div id="childLeft" style=" padding-left:5px;"> <div id="photo" style=" border: thin solid black; width:100px;height:100px;"> <asp:Image id="photoImage" runat="server" ImageUrl='<%# String.Concat("Images/", Eval("Picture")) %>' Width="100px" Height="100px" /> </div> </div><!--childLeft--> </div><!--leftHandPost--> </div> </td> <td> <div id="rightHandPost" style=" float:right; padding-right:260px;"> <div id="childRight" style="width:400px; height:120px; border: medium solid #cdaf95; padding-top:5px; padding-left:10px;"> <strong><asp:Label id="lblName" runat="server"><%# Eval("PersonName") %></asp:Label></strong><br /> <div style=" float:right; padding-right:10px;"><asp:Button runat="server" Text="Add" onClick="add" /></div><br /> <asp:Label id="lblID" runat="server"><%# Eval("PersonID") %></asp:Label><br /> <asp:Label id="lblEmail" runat="server"><%# Eval("Email") %></asp:Label> </div><!--childRight--> </div><!--rightHandPost--> </td> </tr> </ItemTemplate> <AlternatingItemTemplate> <tr style=" width:700px; height:120px;"> <td> <div style=" padding-left:180px;"> <div id="Div1" style="float:left; width:120px; height:120px; border: medium solid #cdaf95; padding-top:5px;"> <div id="Div2" style="padding-left:5px;"> <div id="Div3" style=" border: thin solid black; width:100px;height:100px;"> <asp:Image id="photoImage" runat="server" ImageUrl='<%# String.Concat("Images/", Eval("Picture")) %>' Width="100px" Height="100px" /> </div> </div><!--childLeft--> </div><!--leftHandPost--> </div> </td> <td> <div id="Div4" style=" float:right; padding-right:260px;"> <div id="Div5" style="width:400px; height:120px; border: medium solid #cdaf95; padding-top:5px; padding-left:10px;"> <strong><asp:Label id="lblName" runat="server"><%# Eval("PersonName")%></asp:Label></strong> <div style=" float:right; padding-right:10px;"><asp:Button id="btnAdd" runat="server" Text="Add" onClick="add"></asp:Button></div><br /> <br /> <asp:Label id="lblID" runat="server"><%# Eval("PersonID") %></asp:Label><br /> <asp:Label id="lblEmail" runat="server"><%# Eval("Email") %></asp:Label> </div><!--childRight--> </div><!--rightHandPost--> </td> </tr> </AlternatingItemTemplate> <FooterTemplate> </table> </FooterTemplate> </asp:Repeater> Here is the code behind for the add button. protected void add(object sender, EventArgs e) { DateTime date = DateTime.Now; System.Web.UI.WebControls.Label la = (System.Web.UI.WebControls.Label)friendRepeater.FindControl("PersonID"); String id = la.Text; try { MySqlConnection connStr = new MySqlConnection(); connStr.ConnectionString = "Server = localhost; Database = healthlivin; Uid = root; Pwd = khei92;"; String insertFriend = "INSERT INTO contactFriend(friendID, PersonID, PersonIDB, date) values (@id, @personIDA, @personIDB, @date)"; MySqlCommand cmdInsertStaff = new MySqlCommand(insertFriend, connStr); cmdInsertStaff.Parameters.AddWithValue("@id", "F000004"); cmdInsertStaff.Parameters.AddWithValue("@personIDA", "M000001"); cmdInsertStaff.Parameters.AddWithValue("@personIDB", id); cmdInsertStaff.Parameters.AddWithValue("@date", date); connStr.Open(); cmdInsertStaff.ExecuteNonQuery(); MessageBox.Show("inserted"); connStr.Close(); } catch (Exception ex) { MessageBox.Show(ex.ToString()); } } I have get the error of Object reference not set to an instance of an object. I think is because there are no value in the Label. The Find Control are not working. May I know how can fix this problem? Thank you very much

    Read the article

  • WiX 3 Tutorial: Custom EULA License and MSI localization

    - by Mladen Prajdic
    In this part of the ongoing Wix tutorial series we’ll take a look at how to localize your MSI into different languages. We’re still the mighty SuperForm: Program that takes care of all your label color needs. :) Localizing the MSI With WiX 3.0 localizing an MSI is pretty much a simple and straightforward process. First let look at the WiX project Properties->Build. There you can see "Cultures to build" textbox. Put specific cultures to build into the testbox or leave it empty to build all of them. Cultures have to be in correct culture format like en-US, en-GB or de-DE. Next we have to tell WiX which cultures we actually have in our project. Take a look at the first post in the series about Solution/Project structure and look at the Lang directory in the project structure picture. There we have de-de and en-us subfolders each with its own localized stuff. In the subfolders pay attention to the WXL files Loc_de-de.wxl and Loc_en-us.wxl. Each one has a <String Id="LANG"> under the WixLocalization root node. By including the string with id LANG we tell WiX we want that culture built. For English we have <String Id="LANG">1033</String>, for German <String Id="LANG">1031</String> in Loc_de-de.wxl and for French we’d have to create another file Loc_fr-FR.wxl and put <String Id="LANG">1036</String>. WXL files are localization files. Any string we want to localize we have to put in there. To reference it we use loc keyword like this: !(loc.IdOfTheVariable) => !(loc.MustCloseSuperForm) This is our Loc_en-us.wxl. Note that German wxl has an identical structure but values are in German. <?xml version="1.0" encoding="utf-8"?><WixLocalization Culture="en-us" xmlns="http://schemas.microsoft.com/wix/2006/localization" Codepage="1252"> <String Id="LANG">1033</String> <String Id="ProductName">SuperForm</String> <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String> <String Id="ManufacturerName">My Company Name</String> <String Id="AppNotSupported">This application is is not supported on your current OS. Minimal OS supported is Windows XP SP2</String> <String Id="DotNetFrameworkNeeded">.NET Framework 3.5 is required. Please install the .NET Framework then run this installer again.</String> <String Id="MustCloseSuperForm">Must close SuperForm!</String> <String Id="SuperFormNewerVersionInstalled">A newer version of !(loc.ProductName) is already installed.</String> <String Id="ProductKeyCheckDialog_Title">!(loc.ProductName) setup</String> <String Id="ProductKeyCheckDialogControls_Title">!(loc.ProductName) Product check</String> <String Id="ProductKeyCheckDialogControls_Description">Plese Enter following information to perform the licence check.</String> <String Id="ProductKeyCheckDialogControls_FullName">Full Name:</String> <String Id="ProductKeyCheckDialogControls_Organization">Organization:</String> <String Id="ProductKeyCheckDialogControls_ProductKey">Product Key:</String> <String Id="ProductKeyCheckDialogControls_InvalidProductKey">The product key you entered is invalid. Please call user support.</String> </WixLocalization>   As you can see from the file we can use localization variables in other variables like we do for SuperFormNewerVersionInstalled string. ProductKeyCheckDialog* strings are to localize a custom dialog for Product key check which we’ll look at in the next post. Built in dialog text localization Under the de-de folder there’s also the WixUI_de-de.wxl file. This files contains German translations of all texts that are in WiX built in dialogs. It can be downloaded from WiX 3.0.5419.0 Source Forge site. Download the wix3-sources.zip and go to \src\ext\UIExtension\wixlib. There you’ll find already translated all WiX texts in 12 Languages. Localizing the custom EULA license Here it gets ugly. We can override the default EULA license easily by overriding WixUILicenseRtf WiX variable like this: <WixVariable Id="WixUILicenseRtf" Value="License.rtf" /> where License.rtf is the name of your custom EULA license file. The downside of this method is that you can only have one license file which means no localization for it. That’s why we need to make a workaround. License is checked on a dialog name LicenseAgreementDialog. What we have to do is overwrite that dialog and insert the functionality for localization. This is a code for LicenseAgreementDialogOverwritten.wxs, an overwritten LicenseAgreementDialog that supports localization. LicenseAcceptedOverwritten replaces the LicenseAccepted built in variable. <?xml version="1.0" encoding="UTF-8" ?><Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <Fragment> <UI> <Dialog Id="LicenseAgreementDialogOverwritten" Width="370" Height="270" Title="!(loc.LicenseAgreementDlg_Title)"> <Control Id="LicenseAcceptedOverwrittenCheckBox" Type="CheckBox" X="20" Y="207" Width="330" Height="18" CheckBoxValue="1" Property="LicenseAcceptedOverwritten" Text="!(loc.LicenseAgreementDlgLicenseAcceptedCheckBox)" /> <Control Id="Back" Type="PushButton" X="180" Y="243" Width="56" Height="17" Text="!(loc.WixUIBack)" /> <Control Id="Next" Type="PushButton" X="236" Y="243" Width="56" Height="17" Default="yes" Text="!(loc.WixUINext)"> <Publish Event="SpawnWaitDialog" Value="WaitForCostingDlg">CostingComplete = 1</Publish> <Condition Action="disable"> <![CDATA[ LicenseAcceptedOverwritten <> "1" ]]> </Condition> <Condition Action="enable">LicenseAcceptedOverwritten = "1"</Condition> </Control> <Control Id="Cancel" Type="PushButton" X="304" Y="243" Width="56" Height="17" Cancel="yes" Text="!(loc.WixUICancel)"> <Publish Event="SpawnDialog" Value="CancelDlg">1</Publish> </Control> <Control Id="BannerBitmap" Type="Bitmap" X="0" Y="0" Width="370" Height="44" TabSkip="no" Text="!(loc.LicenseAgreementDlgBannerBitmap)" /> <Control Id="LicenseText" Type="ScrollableText" X="20" Y="60" Width="330" Height="140" Sunken="yes" TabSkip="no"> <!-- This is original line --> <!--<Text SourceFile="!(wix.WixUILicenseRtf=$(var.LicenseRtf))" />--> <!-- To enable EULA localization we change it to this --> <Text SourceFile="$(var.ProjectDir)\!(loc.LicenseRtf)" /> <!-- In each of localization files (wxl) put line like this: <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String>--> </Control> <Control Id="Print" Type="PushButton" X="112" Y="243" Width="56" Height="17" Text="!(loc.WixUIPrint)"> <Publish Event="DoAction" Value="WixUIPrintEula">1</Publish> </Control> <Control Id="BannerLine" Type="Line" X="0" Y="44" Width="370" Height="0" /> <Control Id="BottomLine" Type="Line" X="0" Y="234" Width="370" Height="0" /> <Control Id="Description" Type="Text" X="25" Y="23" Width="340" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgDescription)" /> <Control Id="Title" Type="Text" X="15" Y="6" Width="200" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgTitle)" /> </Dialog> </UI> </Fragment></Wix>   Look at the Control with Id "LicenseText” and read the comments. We’ve changed the original license text source to "$(var.ProjectDir)\!(loc.LicenseRtf)". var.ProjectDir is the directory of the project file. The !(loc.LicenseRtf) is where the magic happens. Scroll up and take a look at the wxl localization file example. We have the LicenseRtf declared there and it’s been made overridable so developers can change it if they want. The value of the LicenseRtf is the path to our localized EULA relative to the WiX project directory. With little hacking we’ve achieved a fully localizable installer package.   The final step is to insert the extended LicenseAgreementDialogOverwritten license dialog into the installer GUI chain. This is how it’s done under the <UI> node of course.   <UI> <!-- code to be discussed in later posts –> <!-- BEGIN UI LOGIC FOR CLEAN INSTALLER --> <Publish Dialog="WelcomeDlg" Control="Next" Event="NewDialog" Value="LicenseAgreementDialogOverwritten">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Back" Event="NewDialog" Value="WelcomeDlg">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Next" Event="NewDialog" Value="ProductKeyCheckDialog">LicenseAcceptedOverwritten = "1" AND NOT OLDER_VERSION_FOUND</Publish> <Publish Dialog="InstallDirDlg" Control="Back" Event="NewDialog" Value="ProductKeyCheckDialog">1</Publish> <!-- END UI LOGIC FOR CLEAN INSTALLER –> <!-- code to be discussed in later posts --></UI> For a thing that should be simple for the end developer to do, localization can be a bit advanced for the novice WiXer. Hope this post makes the journey easier and that next versions of WiX improve this process. WiX 3 tutorial by Mladen Prajdic navigation WiX 3 Tutorial: Solution/Project structure and Dev resources WiX 3 Tutorial: Understanding main wxs and wxi file WiX 3 Tutorial: Generating file/directory fragments with Heat.exe  WiX 3 Tutorial: Custom EULA License and MSI localization WiX 3 Tutorial: Product Key Check custom action WiX 3 Tutorial: Building an updater WiX 3 Tutorial: Icons and installer pictures WiX 3 Tutorial: Creating a Bootstrapper

    Read the article

  • Remotely Schedule and Stream Recorded TV in Windows 7 Media Center

    - by DigitalGeekery
    Have you ever been away from home and suddenly realized you forgot to record your favorite program? Now Windows 7 Media Center, users can schedule recordings remotely from their phones or mobile devices with Remote Potato. How it Works Remote Potato installs server software on the host computer running Windows 7 Media Center. Once the software is installed, we’ll need to do some port forwarding on the router and setup an optional dynamic DNS address. When setup is completed, we will access the application through a web based interface. Silverlight is required for Streaming recorded TV, but scheduling recordings can be done through an HTML interface. Installing Remote Potato Download and install Remote Potato on the Media Center PC. (See download link below) If you plan to stream any Recorded TV, you’ll also want to install the streaming pack located on the same page. It isn’t required to stream all shows, only shows that require the AC3 audio codec. Click Yes to allow Remote Potato to add rules to the Windows Firewall for remote access. You’ll likely need to accept a few UAC prompts. When notified that the rules were added, click OK. Remote Potato will then prompt you to allow administrator privileges to reserve a URL for it’s web server. Click Yes. Remote Potato server will start. Click on the configuration button at the right to to reveal the settings tabs.   One the General tab, you’ll have the option to run Remote Potato on startup and minimized in the System Tray. If you’re running Media Center on a dedicated HTPC, you’ll probably want to enable both startup options. Forwarding Ports on Your Router You’ll need to forward a couple ports on your router. By default, these will be ports 9080 and 9081. In this example we’re using a Linksys WRT54GL router, however, the steps for port forwarding will vary from router to router. On the Linksys configuration page, click on the Applications & Gaming Tab, and then the Port Range Forward tab. Under Application, type in a name of your choosing. In both the Start and End boxes, type the port number 9080. Enter the local IP address of your Media Center computer in the IP address column. Click the check box under Enable. Repeat the process on the next line, but this time use port 9081. When finished, click the Save Settings button. Note: It’s highly recommended that you configure the home computer running Media Center & Remote Potato with a static IP address.   Find your IP Address You’ll need to find the IP address assigned to your router from your ISP. There are many ways to do this but a quick and easy way is to visit a site like checkip.dyndns.org (link available below) The current external IP address of your router will be displayed in the browser.   Dynamic DNS This is an optional step, but  it’s highly recommended. Many routers, such as the Linksys WRT54GL we are using, support Dynamic DNS (DDNS). What Dynamic DNS allows you to do is affiliate your home router’s external IP address to a domain name. Every time your home router is assigned a a new IP address by your ISP, the domain name is updated to point to your new IP address. Remote Potato’s user interface is accessed over the Internet is by connecting to your router’s IP address followed by a colon and the port number. (Ex: XXX.XXX.XXX.XXX:9080) Instead of constantly having to look up and remember an IP address, you can use DDNS along with a 3rd party provider like DynDNS.com, to sign up for a free domain name and configure it to be updated each time your router is assigned a new IP address. Go to the DynDNS.com website (See link at the end of the article) and sign up for a free Domain name. You’ll need to register and confirm by email.   Once you’ve signed in and selected your domain name click Activate Services. You’ll get a confirmation message that your domain name has been activated.    On the Linksys WRT54GL click on the Setup tab an then DDNS. Select DynDNS.org, or TZO.com if you prefer to use their service, from the drop down list.   With DynDNS, you’ll need to fill in your username and password you signed up with at the DynDNS website and the hostname you chose. Note: You can connect over your local network with the IP Address of the computer running Remote Potato followed by a colon and the port number. Ex: 192.168.1.2:9080 Logging in Remote Potato and Recording a Show Once you connect, you’ll see the start page. To view the TV listings, click on TV Guide. You’ll then see your guide listings. There are a few ways to navigate the listings. At the top left, you can click on any of the preset time buttons to jump to  the listings at that time of the day.  Click on the arrows to the right and left of the day and date at the top center to proceed to the previous or next day. Or, jump to a specific day with the date and date buttons at the top right.   To setup a recording, click on a program.   You can choose to record the individual show or the entire series by clicking on Record Show or Record Series.   Remote Potato on Mobile Devices Perhaps the coolest feature of Remote Potato is the ability to schedule recording from your phone or mobile device. Note: For any devices or computers without Silverlight, you will be prompted to view the HTML page. Select Browse Listings. Select your program to record. In the Program Details, select Record Show to record the single episode or Record Series to record all instances of the series. You will then see a red dot on the program listing to indicate that the show is scheduled for recording.   Streaming Recorded TV Click on Recorded TV from the home screen to access your previously recorded TV programs. Click on the selection you wish to stream. Click on Play. If you receive this error message, you’ll need to install the streaming pack for Remote Potato. This is found on the same download page as installation files. (See link below) The Begin from slider allows you to start playback from the start (by default) or a different time of the program by moving the slider. The Quality (bitrate) setting  allows you to choose the quality of the playback. We found the video quality on the Normal setting to be pretty lousy, and Low was just pointless. High was the best overall viewing experience as it provided smooth quality video playback. We experienced significant stuttering during playback using the Ultra High setting.   Click Start when you are ready to begin. When playback begins you’ll see a slider at the top right.   Move the slider left or right to increase or decrease the size of the video. There’s also a button to switch to full screen.   Media Center users who travel frequently or are always on the go will likely find Remote Potato to be a blessing. Since being released earlier this year, updates for Remote Potato have come fast and furious. The latest beta release includes support for streaming music and photos. If you like those nice network TV logos, check out our article on adding TV channel logos to Windows Media Center. Downloads and Links Download Remote Potato and Streaming Pack Find your IP address Sign Up for a Domain Name at DynDNS.com Similar Articles Productive Geek Tips Schedule Updates for Windows Media CenterUsing Netflix Watchnow in Windows Vista Media Center (Gmedia)Add a Sleep Timer to Windows 7 Media CenterStartup Customizations for Media Center in Windows 7Enable Media Streaming in Windows Home Server to Windows Media Player TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 FoxClocks adds World Times in your Statusbar (Firefox) Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos

    Read the article

  • Netflix, jQuery, JSONP, and OData

    - by Stephen Walther
    At the last MIX conference, Netflix announced that they are exposing their catalog of movie information using the OData protocol. This is great news! This means that you can take advantage of all of the advanced OData querying features against a live database of Netflix movies. In this blog entry, I’ll demonstrate how you can use Netflix, jQuery, JSONP, and OData to create a simple movie lookup form. The form enables you to enter a movie title, or part of a movie title, and display a list of matching movies. For example, Figure 1 illustrates the movies displayed when you enter the value robot into the lookup form.   Using the Netflix OData Catalog API You can learn about the Netflix OData Catalog API at the following website: http://developer.netflix.com/docs/oData_Catalog The nice thing about this website is that it provides plenty of samples. It also has a good general reference for OData. For example, the website includes a list of OData filter operators and functions. The Netflix Catalog API exposes 4 top-level resources: Titles – A database of Movie information including interesting movie properties such as synopsis, BoxArt, and Cast. People – A database of people information including interesting information such as Awards, TitlesDirected, and TitlesActedIn. Languages – Enables you to get title information in different languages. Genres – Enables you to get title information for specific movie genres. OData is REST based. This means that you can perform queries by putting together the right URL. For example, if you want to get a list of the movies that were released after 2010 and that had an average rating greater than 4 then you can enter the following URL in the address bar of your browser: http://odata.netflix.com/Catalog/Titles?$filter=ReleaseYear gt 2010&AverageRating gt 4 Entering this URL returns the movies in Figure 2. Creating the Movie Lookup Form The complete code for the Movie Lookup form is contained in Listing 1. Listing 1 – MovieLookup.htm <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Netflix with jQuery</title> <style type="text/css"> #movieTemplateContainer div { width:400px; padding: 10px; margin: 10px; border: black solid 1px; } </style> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="App_Scripts/Microtemplates.js" type="text/javascript"></script> </head> <body> <label>Search Movies:</label> <input id="movieName" size="50" /> <button id="btnLookup">Lookup</button> <div id="movieTemplateContainer"></div> <script id="movieTemplate" type="text/html"> <div> <img src="<%=BoxArtSmallUrl %>" /> <strong><%=Name%></strong> <p> <%=Synopsis %> </p> </div> </script> <script type="text/javascript"> $("#btnLookup").click(function () { // Build OData query var movieName = $("#movieName").val(); var query = "http://odata.netflix.com/Catalog" // netflix base url + "/Titles" // top-level resource + "?$filter=substringof('" + escape(movieName) + "',Name)" // filter by movie name + "&$callback=callback" // jsonp request + "&$format=json"; // json request // Make JSONP call to Netflix $.ajax({ dataType: "jsonp", url: query, jsonpCallback: "callback", success: callback }); }); function callback(result) { // unwrap result var movies = result["d"]["results"]; // show movies in template var showMovie = tmpl("movieTemplate"); var html = ""; for (var i = 0; i < movies.length; i++) { // flatten movie movies[i].BoxArtSmallUrl = movies[i].BoxArt.SmallUrl; // render with template html += showMovie(movies[i]); } $("#movieTemplateContainer").html(html); } </script> </body> </html> The HTML page in Listing 1 includes two JavaScript libraries: <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="App_Scripts/Microtemplates.js" type="text/javascript"></script> The first script tag retrieves jQuery from the Microsoft Ajax CDN. You can learn more about the Microsoft Ajax CDN by visiting the following website: http://www.asp.net/ajaxLibrary/cdn.ashx The second script tag is used to reference Resig’s micro-templating library. Because I want to use a template to display each movie, I need this library: http://ejohn.org/blog/javascript-micro-templating/ When you enter a value into the Search Movies input field and click the button, the following JavaScript code is executed: // Build OData query var movieName = $("#movieName").val(); var query = "http://odata.netflix.com/Catalog" // netflix base url + "/Titles" // top-level resource + "?$filter=substringof('" + escape(movieName) + "',Name)" // filter by movie name + "&$callback=callback" // jsonp request + "&$format=json"; // json request // Make JSONP call to Netflix $.ajax({ dataType: "jsonp", url: query, jsonpCallback: "callback", success: callback }); This code Is used to build a query that will be executed against the Netflix Catalog API. For example, if you enter the search phrase King Kong then the following URL is created: http://odata.netflix.com/Catalog/Titles?$filter=substringof(‘King%20Kong’,Name)&$callback=callback&$format=json This query includes the following parameters: $filter – You assign a filter expression to this parameter to filter the movie results. $callback – You assign the name of a JavaScript callback method to this parameter. OData calls this method to return the movie results. $format – you assign either the value json or xml to this parameter to specify how the format of the movie results. Notice that all of the OData parameters -- $filter, $callback, $format -- start with a dollar sign $. The Movie Lookup form uses JSONP to retrieve data across the Internet. Because WCF Data Services supports JSONP, and Netflix uses WCF Data Services to expose movies using the OData protocol, you can use JSONP when interacting with the Netflix Catalog API. To learn more about using JSONP with OData, see Pablo Castro’s blog: http://blogs.msdn.com/pablo/archive/2009/02/25/adding-support-for-jsonp-and-url-controlled-format-to-ado-net-data-services.aspx The actual JSONP call is performed by calling the $.ajax() method. When this call successfully completes, the JavaScript callback() method is called. The callback() method looks like this: function callback(result) { // unwrap result var movies = result["d"]["results"]; // show movies in template var showMovie = tmpl("movieTemplate"); var html = ""; for (var i = 0; i < movies.length; i++) { // flatten movie movies[i].BoxArtSmallUrl = movies[i].BoxArt.SmallUrl; // render with template html += showMovie(movies[i]); } $("#movieTemplateContainer").html(html); } The movie results from Netflix are passed to the callback method. The callback method takes advantage of Resig’s micro-templating library to display each of the movie results. A template used to display each movie is passed to the tmpl() method. The movie template looks like this: <script id="movieTemplate" type="text/html"> <div> <img src="<%=BoxArtSmallUrl %>" /> <strong><%=Name%></strong> <p> <%=Synopsis %> </p> </div> </script>   This template looks like a server-side ASP.NET template. However, the template is rendered in the client (browser) instead of the server. Summary The goal of this blog entry was to demonstrate how well jQuery works with OData. We managed to use a number of interesting open-source libraries and open protocols while building the Movie Lookup form including jQuery, JSONP, JSON, and OData.

    Read the article

  • Real Excel Templates I

    - by Tim Dexter
    As promised, I'm starting to document the new Excel templates that I teased you all with a few weeks back. Leslie is buried in 11g documentation and will not get to officially documenting the templates for a while. I'll do my best to be professional and not ramble on about this and that, although the weather here has finally turned and its 'scorchio' here in Colorado today. Maybe our stand of Aspen will finally come into leaf ... but I digress. Preamble These templates are not actually that new, I helped in a small way to develop them a few years back with Excel 'meistress' Shirley for a company that was trying to use the Report Manager(RR) Excel FSG outputs under EBS 12. The functionality they needed was just not there in the RR FSG templates, the templates are actually XSL that is created from the the RR Excel template builder and fed to BIP for processing. Think of Excel from our RTF templates and you'll be there ie not really Excel but HTML masquerading as Excel. Although still under controlled release in EBS they have now made their way to the standlone release and are willing to share their Excel goodness. You get everything you have with hte Excel Analyzer Excel templates plus so much more. Therein lies a question, what will happen to the Analyzer templates? My understanding is that both will come together into a single Excel template format some time in the post-11g release world. The new XLSX format for Exce 2007/10 is also in the mix too so watch this space. What more do these templates offer? Well, you can structure data in the Excel output. Similar to RTF templates you can create sheets of data that have master-detail n relationships. Although the analyzer templates can do this, you have to get into macros whereas BIP will do this all for you. You can also use native XSL functions in your data to manipulate it prior to rendering. BP functions are not currently supported. The most impressive, for me at least, is the sheet 'bursting'. You can split your hierarchical data across multiple sheets and dynamically name those sheets. Finally, you of course, still get all the native Excel functionality. Pre-reqs You must be on 10.1.3.4.1 plus the latest rollup patch, 9546699. You can patch upa BIP instance running with OBIEE, no problem You need Excel 2000 or above to build the templates Some patience - there is no Excel template builder for these new templates. So its all going to have to be done by hand. Its not that tough but can get a little 'fiddly'. You can not test the template from Excel , it has to be deployed and then run. Limitations The new templates are definitely superior to the Analyzer templates but there are a few limitations. Re-grouping is not supported. You can only follow a data hierarchy not bend it to your will unless you want to get into macros. No support for BIP functions. The templates support native XSL functions only. No template builder Getting Started The templates make the use of named cells and groups of cells to allow BIP to find the insertion point for data points. It also uses a hidden sheet to store calculation mappings from named cells to XML data elements. To start with, in the great BIP tradition, we need some sample XML data. Becasue I wanted to show the master-detail output we need some hierarchical data. If you have not yet gotten into the data templates, now is a good time, I wrote a post a while back starting from the simple to more complex. They generate ideal data sets for these templates. Im working with the following data set: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... <LIST_G_DEPT> <EMPLOYEES> Simple enough to follow and bread and butter stuff for an RTF template. Building the Template For an Excel template we need to start by thinking about how we want to render the data. Come up with a sample output in Excel. Its all dummy data, nothing marked up yet with one row of data for each level. I have the department name and then a repeating row for the employees. You can apply Excel formatting to the layout. The total is going to be derived from a data element. We'll get to Excel functions later. Marking Up Cells Next we need to start marking up the cells with custom names to map them to data elements. The cell names need to follow a specific format: For data grouping, XDO_GROUP_?group_name? For data elements, XDO_?element_name? Notice the question mark delimter, the group_name and element_name are case sensitive. The next step is to find how to name cells; the easiest method is to highlight the cell and then type in the name. You can also find the Name Manager dialog. I use 2007 and its available on the ribbon under the Formulas section Go thorugh the process of naming all the cells for the element values you have. Using my data set from above.You should end up with something like this in your 'Name Manager' dialog. You can update any mistakes you might have made through this dialog. Creating Groups In the image above you can see there are a couple of named group cells. To create these its a simple case of highlighting the cells that make up the group and then naming them. For the EMP group, highlight the employee row and then type in the name, XDO_GROUP?G_EMP? Notice the 10,000 total is outside of the G_EMP group. Its actually named, XDO_?TOTAL_SALARY?, a query calculated value. For the department group, we need to include the department name cell and the sub EMP grouping and name it, XDO_GROUP?G_DEPT? Notice, the 10,000 total is included in the G_DEPT group. This will ensure it repeats at the department level. Lastly, we do need to include a special sheet in the workbook. We will not have anything meaningful in there for now, but it needs to be present. Create a new sheet and name it XDO_METADATA. The name is important as the BIP rendering engine will looking for it. For our current example we do not need anything other than the required stuff in our XDO_METADATA sheet but, it must be present. Easy enough to hide it. Here's what I have: The only cell that is important is the 'Data Constraints:' cell. The rest is optional. To save curious users getting distracted, hide the metadata sheet. Deploying & Running Templates We should now have a usable Excel template. Loading it into a report is easy enough using the browser UI, just like an RTF template. Set the template type to Excel. You will now be able to run the report and hopefully get something like this. You will not get the red highlighting, thats just some conditional formatting I added to the template using Excel functionality. Your dates are probably going to look raw too. I got around this for now using an Excel function on the cell: =--REPLACE(SUBSTITUTE(E8,"T"," "),LEN(E8)-6,6,"") Google to the rescue on that one. Try some other stuff out. To avoid constantly loading the template through the UI. If you have BIP running locally or you can access the reports repository, once you have loaded the template the first time. Just save the template directly into the report folder. I have put together a sample report using a sample data set, available here. Just drop the xml data file, EmpbyDeptExcelData.xml into 'demo files' folder and you should be good to go. Thats the basics, next we'll start using some XSL functions in the template and move onto the 'bursting' across sheets.

    Read the article

  • Step by Step:How to use Web Services in ASP.NET AJAX

    - by Yousef_Jadallah
    In my Article Preventing Duplicate Date With ASP.NET AJAX I’ve used ASP.NET AJAX With Web Service Technology, Therefore I add this topic as an introduction how to access Web services from client script in AJAX-enabled ASP.NET Web pages. As well I write this topic to answer the common questions which most of the developers face while working with ASP.NET Ajax Web Services especially in Microsoft ASP.NET official forum http://forums.asp.net/. ASP.NET enables you to create Web services can be accessed from client script in Web pages by using AJAX technology to make Web service calls. Data is exchanged asynchronously between client and server, typically in JSON format.   Lets go a head with the steps :   1-Create a new project , if you are using VS 2005 you have to create ASP.NET Ajax Enabled Web site.   2-Add new Item , Choose Web Service file .     3-To make your Web Services accessible from script, first it must be an .asmx Web service whose Web service class is qualified with the ScriptServiceAttribute attribute and every method you are using to be called from Client script must be qualified with the WebMethodAttribute attribute. On other hand you can use your Web page( CS or VB files) to add static methods accessible from Client Script , just you need to add WebMethod Attribute and set the EnablePageMethods attribute of the ScriptManager control to true..   The other condition is to register the ScriptHandlerFactory HTTP handler, which processes calls made from script to .asmx Web services : <system.web> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" type="System.Web.Script.Services.ScriptHandlerFactory" validate="false"/> </httpHandlers> <system.web> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } but this already added automatically for any Web.config file of any ASP.NET AJAX Enabled WebSite or Project, So you don’t need to add it.   4-Avoid the default Method HelloWorld, then add your method in your asmx file lets say  OurServerOutput , As a consequence your Web service will be like this : using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Services;     [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [System.Web.Script.Services.ScriptService] public class WebService : System.Web.Services.WebService {     [WebMethod] public string OurServerOutput() { return "The Server Date and Time is : " + DateTime.Now.ToString(); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   5-Add ScriptManager Contol to your aspx file then reference the Web service by adding an asp:ServiceReference child element to the ScriptManager control and setting its path attribute to point to the Web service, That generate a JavaScript proxy class for calling the specified Web service from client script.   <asp:ScriptManager runat="server" ID="scriptManager"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Basically ,to enable your application to call Web services(.asmx files) by using client script, the server asynchronous communication layer automatically generates JavaScript proxy classes. A proxy class is generated for each Web service for which an <asp:ServiceReference> element is included under the <asp:ScriptManager> control in the page.   6-Create new button to call the JavaSciprt function and a label to display the returned value . <input id="btnCallDateTime" type="button" value="Call Web Service" onclick="CallDateTime()"/> <asp:Label ID="lblOutupt" runat="server" Text="Label"></asp:Label> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   7-Define the JavaScript code to call the Web Service : <script language="javascript" type="text/javascript">   function CallDateTime() {   WebService.OurServerOutput(OnSucceeded); }   function OnSucceeded(result) { var lblOutput = document.getElementById("lblOutupt"); lblOutput.innerHTML = result; } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } CallDateTime function calls the Web Service Method OurServerOutput… OnSucceeded function Used as the callback function that processes the Web Service return value. which the result parameter is a simple parameter contain the Server Date Time value returned from the Web Service . Finally , when you complete these steps and run your application you can press the button and retrieve Server Date time without postback.   Conclusion: In this topic I describes how to access Web services from client script in AJAX-enabled ASP.NET Web pages With a full .NET Framework/JSON serialize, direct integration with the familiar .asmx Web services ,Using  simple example,Also you can connect with the database to return value by create WebMethod in your Web Service file and the same steps you can use. Next time I will show you more complex example which returns a complex type like objects.   Hope this help.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Mapping UrlEncoded POST Values in ASP.NET Web API

    - by Rick Strahl
    If there's one thing that's a bit unexpected in ASP.NET Web API, it's the limited support for mapping url encoded POST data values to simple parameters of ApiController methods. When I first looked at this I thought I was doing something wrong, because it seems mighty odd that you can bind query string values to parameters by name, but can't bind POST values to parameters in the same way. To demonstrate here's a simple example. If you have a Web API method like this:[HttpGet] public HttpResponseMessage Authenticate(string username, string password) { …} and then hit with a URL like this: http://localhost:88/samples/authenticate?Username=ricks&Password=sekrit it works just fine. The query string values are mapped to the username and password parameters of our API method. But if you now change the method to work with [HttpPost] instead like this:[HttpPost] public HttpResponseMessage Authenticate(string username, string password) { …} and hit it with a POST HTTP Request like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Content-type: application/x-www-form-urlencoded Content-Length: 30 Username=ricks&Password=sekrit you'll find that while the request works, it doesn't actually receive the two string parameters. The username and password parameters are null and so the method is definitely going to fail. When I mentioned this over Twitter a few days ago I got a lot of responses back of why I'd want to do this in the first place - after all HTML Form submissions are the domain of MVC and not WebAPI which is a valid point. However, the more common use case is using POST Variables with AJAX calls. The following is quite common for passing simple values:$.post(url,{ Username: "Rick", Password: "sekrit" },function(result) {…}); but alas that doesn't work. How ASP.NET Web API handles Content Bodies Web API supports parsing content data in a variety of ways, but it does not deal with multiple posted content values. In effect you can only post a single content value to a Web API Action method. That one parameter can be very complex and you can bind it in a variety of ways, but ultimately you're tied to a single POST content value in your parameter definition. While it's possible to support multiple parameters on a POST/PUT operation, only one parameter can be mapped to the actual content - the rest have to be mapped to route values or the query string. Web API treats the whole request body as one big chunk of data that is sent to a Media Type Formatter that's responsible for de-serializing the content into whatever value the method requires. The restriction comes from async nature of Web API where the request data is read only once inside of the formatter that retrieves and deserializes it. Because it's read once, checking for content (like individual POST variables) first is not possible. However, Web API does provide a couple of ways to access the form POST data: Model Binding - object property mapping to bind POST values FormDataCollection - collection of POST keys/values ModelBinding POST Values - Binding POST data to Object Properties The recommended way to handle POST values in Web API is to use Model Binding, which maps individual urlencoded POST values to properties of a model object provided as the parameter. Model binding requires a single object as input to be bound to the POST data, with each POST key that matches a property name (including nested properties like Address.Street) being mapped and updated including automatic type conversion of simple types. This is a very nice feature - and a familiar one from MVC - that makes it very easy to have model objects mapped directly from inbound data. The obvious drawback with Model Binding is that you need a model for it to work: You have to provide a strongly typed object that can receive the data and this object has to map the inbound data. To rewrite the example above to use ModelBinding I have to create a class maps the properties that I need as parameters:public class LoginData { public string Username { get; set; } public string Password { get; set; } } and then accept the data like this in the API method:[HttpPost] public HttpResponseMessage Authenticate(LoginData login) { string username = login.Username; string password = login.Password; … } This works fine mapping the POST values to the properties of the login object. As a side benefit of this method definition, the method now also allows posting of JSON or XML to the same endpoint. If I change my request to send JSON like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: application/jsonContent-type: application/json Content-Length: 40 {"Username":"ricks","Password":"sekrit"} it works as well and transparently, courtesy of the nice Content Negotiation features of Web API. There's nothing wrong with using Model binding and in fact it's a common practice to use (view) model object for inputs coming back from the client and mapping them into these models. But it can be  kind of a hassle if you have AJAX applications with a ton of backend hits, especially if many methods are very atomic and focused and don't effectively require a model or view. Not always do you have to pass structured data, but sometimes there are just a couple of simple response values that need to be sent back. If all you need is to pass a couple operational parameters, creating a view model object just for parameter purposes seems like overkill. Maybe you can use the query string instead (if that makes sense), but if you can't then you can often end up with a plethora of 'message objects' that serve no further  purpose than to make Model Binding work. Note that you can accept multiple parameters with ModelBinding so the following would still work:[HttpPost] public HttpResponseMessage Authenticate(LoginData login, string loginDomain) but only the object will be bound to POST data. As long as loginDomain comes from the querystring or route data this will work. Collecting POST values with FormDataCollection Another more dynamic approach to handle POST values is to collect POST data into a FormDataCollection. FormDataCollection is a very basic key/value collection (like FormCollection in MVC and Request.Form in ASP.NET in general) and then read the values out individually by querying each. [HttpPost] public HttpResponseMessage Authenticate(FormDataCollection form) { var username = form.Get("Username"); var password = form.Get("Password"); …} The downside to this approach is that it's not strongly typed, you have to handle type conversions on non-string parameters, and it gets a bit more complicated to test such as setup as you have to seed a FormDataCollection with data. On the other hand it's flexible and easy to use and especially with string parameters is easy to deal with. It's also dynamic, so if the client sends you a variety of combinations of values on which you make operating decisions, this is much easier to work with than a strongly typed object that would have to account for all possible values up front. The downside is that the code looks old school and isn't as self-documenting as a parameter list or object parameter would be. Nevertheless it's totally functionality and a viable choice for collecting POST values. What about [FromBody]? Web API also has a [FromBody] attribute that can be assigned to parameters. If you have multiple parameters on a Web API method signature you can use [FromBody] to specify which one will be parsed from the POST content. Unfortunately it's not terribly useful as it only returns content in raw format and requires a totally non-standard format ("=content") to specify your content. For more info in how FromBody works and several related issues to how POST data is mapped, you can check out Mike Stalls post: How WebAPI does Parameter Binding Not really sure where the Web API team thought [FromBody] would really be a good fit other than a down and dirty way to send a full string buffer. Extending Web API to make multiple POST Vars work? Don't think so Clearly there's no native support for multiple POST variables being mapped to parameters, which is a bit of a bummer. I know in my own work on one project my customer actually found this to be a real sticking point in their AJAX backend work, and we ended up not using Web API and using MVC JSON features instead. That's kind of sad because Web API is supposed to be the proper solution for AJAX backends. With all of ASP.NET Web API's extensibility you'd think there would be some way to build this functionality on our own, but after spending a bit of time digging and asking some of the experts from the team and Web API community I didn't hear anything that even suggests that this is possible. From what I could find I'd say it's not possible primarily because Web API's Routing engine does not account for the POST variable mapping. This means [HttpPost] methods with url encoded POST buffers are not mapped to the parameters of the endpoint, and so the routes would never even trigger a request that could be intercepted. Once the routing doesn't work there's not much that can be done. If somebody has an idea how this could be accomplished I would love to hear about it. Do we really need multi-value POST mapping? I think that that POST value mapping is a feature that one would expect of any API tool to have. If you look at common APIs out there like Flicker and Google Maps etc. they all work with POST data. POST data is very prominent much more so than JSON inputs and so supporting as many options that enable would seem to be crucial. All that aside, Web API does provide very nice features with Model Binding that allows you to capture many POST variables easily enough, and logistically this will let you build whatever you need with POST data of all shapes as long as you map objects. But having to have an object for every operation that receives a data input is going to take its toll in heavy AJAX applications, with a lot of types created that do nothing more than act as parameter containers. I also think that POST variable mapping is an expected behavior and Web APIs non-support will likely result in many, many questions like this one: How do I bind a simple POST value in ASP.NET WebAPI RC? with no clear answer to this question. I hope for V.next of WebAPI Microsoft will consider this a feature that's worth adding. Related Articles Passing multiple POST parameters to Web API Controller Methods Mike Stall's post: How Web API does Parameter Binding Where does ASP.NET Web API Fit?© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 2

    - by SQLOS Team
    Part 1 of this series was an introduction and overview of Hyper-V Dynamic Memory. This part looks at SQL Server memory management and how the SQL engine responds to changing OS memory conditions.   Part 2: SQL Server Memory Management As with any Windows process, sqlserver.exe has a virtual address space (VAS) of 4GB on 32-bit and 8TB in 64-bit editions. Pages in its VAS are mapped to pages in physical memory when the memory is committed and referenced for the first time. The collection of VAS pages that have been recently referenced is known as the Working Set. How and when SQL Server allocates virtual memory and grows its working set depends on the memory model it uses. SQL Server supports three basic memory models:   1. Conventional Memory Model   The Conventional model is the default SQL Server memory model and has the following properties: - Dynamic - can grow or shrink its working set in response to load and external (operating system) memory conditions. - OS uses 4K pages – (not to be confused with SQL Server “pages” which are 8K regions of committed memory).- Pageable - Can be paged out to disk by the operating system.   2. Locked Page Model The locked page memory model is set when SQL Server is started with "Lock Pages in Memory" privilege*. It has the following characteristics: - Dynamic - can grow or shrink its working set in the same way as the Conventional model.- OS uses 4K pages - Non-Pageable – When memory is committed it is locked in memory, meaning that it will remain backed by physical memory and will not be paged out by the operating system. A common misconception is to interpret "locked" as non-dynamic. A SQL Server instance using the locked page memory model will grow and shrink (allocate memory and release memory) in response to changing workload and OS memory conditions in the same way as it does with the conventional model.   This is an important consideration when we look at Hyper-V Dynamic Memory – “locked” memory works perfectly well with “dynamic” memory.   * Note in “Denali” (Standard Edition and above), and in SQL 2008 R2 64-bit (Enterprise and above editions) the Lock Pages in Memory privilege is all that is required to set this model. In 2008 R2 64-Bit standard edition it also requires trace flag 845 to be set, in 2008 R2 32-bit editions it requires sp_configure 'awe enabled' 1.   3. Large Page Model The Large page model is set using trace flag 834 and potentially offers a small performance boost for systems that are configured with large pages. It is characterized by: - Static - memory is allocated at startup and does not change. - OS uses large (>2MB) pages - Non-Pageable The large page model is supported with Hyper-V Dynamic Memory (and Hyper-V also supports large pages), but you get no benefit from using Dynamic Memory with this model since SQL Server memory does not grow or shrink. The rest of this article will focus on the locked and conventional SQL Server memory models.   When does SQL Server grow? For “dynamic” configurations (Conventional and Locked memory models), the sqlservr.exe process grows – allocates and commits memory from the OS – in response to a workload. As much memory is allocated as is required to optimally run the query and buffer data for future queries, subject to limitations imposed by:   - SQL Server max server memory setting. If this configuration option is set, the buffer pool is not allowed to grow to more than this value. In SQL Server 2008 this value represents single page allocations, and in “Denali” it represents any size page allocations and also managed CLR procedure allocations.   - Memory signals from OS. The operating system sets a signal on memory resource notification objects to indicate whether it has memory available or whether it is low on available memory. If there is only 32MB free for every 4GB of memory a low memory signal is set, which continues until 64MB/4GB is free. If there is 96MB/4GB free the operating system sets a high memory signal. SQL Server only allocates memory when the high memory signal is set.   To summarize, for SQL Server to grow you need three conditions: a workload, max server memory setting higher than the current allocation, high memory signals from the OS.    When does SQL Server shrink caches? SQL Server as a rule does not like to return memory to the OS, but it will shrink its caches in response to memory pressure. Memory pressure can be divided into “internal” and “external”.   - External memory pressure occurs when the operating system is running low on memory and low memory signals are set. The SQL Server Resource Monitor checks for low memory signals approximately every 5 seconds and it will attempt to free memory until the signals stop.   To free memory SQL Server does the following: ·         Frees unused memory. ·         Notifies Memory Manager Clients to release memory o   Caches – Free unreferenced cache objects. o   Buffer pool - Based on oldest access times.   The freed memory is released back to the operating system. This process continues until the low memory resource notifications stop.    - Internal memory pressure occurs when the size of different caches and allocations increase but the SQL Server process needs to keep its total memory within a target value. For example if max server memory is set and certain caches are growing large, it will cause SQL to free memory for re-use internally, but not to release memory back to the OS. If you lower the value of max server memory you will generate internal memory pressure that will cause SQL to release memory back to the OS.    Memory pressure handling has not changed much since SQL 2005 and it was described in detail in a blog post by Slava Oks.   Note that SQL Server Express is an exception to the above behavior. Unlike other editions it does not assume it is the most important process running on the system but tries to be more “desktop” friendly. It will empty its working set after a period of inactivity.   How does SQL Server respond to changing OS memory?    In SQL Server 2005 support for Hot-Add memory was introduced. This feature, available in Enterprise and above editions, allows the server to make use of any extra physical memory that was added after SQL Server started. Being able to add physical memory when the system is running is limited to specialized hardware, but with the Hyper-V Dynamic Memory feature, when new memory is allocated to a guest virtual machine, it looks like hot-add physical memory to the guest. What this means is that thanks to the hot-add memory feature, SQL Server 2005 and higher can dynamically grow if more “physical” memory is granted to a guest VM by Hyper-V dynamic memory.   SQL Server checks OS memory every second and dynamically adjusts its “target” (based on available OS memory and max server memory) accordingly.   In “Denali” Standard Edition will also have sqlserver.exe support for hot-add memory when running virtualized (i.e. detecting and acting on Hyper-V Dynamic Memory allocations).   How does a SQL Server workload in a guest VM impact Hyper-V dynamic memory scheduling?   When a SQL workload causes the sqlserver.exe process to grow its working set, the Hyper-V memory scheduler will detect memory pressure in the guest VM and add memory to it. SQL Server will then detect the extra memory and grow according to workload demand. In our tests we have seen this feedback process cause a guest VM to grow quickly in response to SQL workload - we are still working on characterizing this ramp-up.    How does SQL Server respond when Hyper-V removes memory from a guest VM through ballooning?   If pressure from other VM's cause Hyper-V Dynamic Memory to take memory away from a VM through ballooning (allocating memory with a virtual device driver and returning it to the host OS), Windows Memory Manager will page out unlocked portions of memory and signal low resource notification events. When SQL Server detects these events it will shrink memory until the low memory notifications stop (see cache shrinking description above).    This raises another question. Can we make SQL Server release memory more readily and hence behave more "dynamically" without compromising performance? In certain circumstances where the application workload is predictable it may be possible to have a job which varies "max server memory" according to need, lowering it when the engine is inactive and raising it before a period of activity. This would have limited applicaability but it is something we're looking into.   What Memory Management changes are there in SQL Server “Denali”?   In SQL Server “Denali” (aka SQL11) the Memory Manager has been re-written to be more efficient. The main changes are summarized in this post. An important change with respect to Hyper-V Dynamic Memory support is that now the max server memory setting includes any size page allocations and managed CLR procedure allocations it now represents a closer approximation to total sqlserver.exe memory usage. This makes it easier to calculate a value for max server memory, which becomes important when configuring virtual machines to work well with Hyper-V Dynamic Memory Startup and Maximum RAM settings.   Another important change is no more AWE or hot-add support for 32-bit edition. This means if you're running a 32-bit edition of Denali you're limited to a 4GB address space and will not be able to take advantage of dynamically added OS memory that wasn't present when SQL Server started (though Hyper-V Dynamic Memory is still a supported configuration).   In part 3 we’ll develop some best practices for configuring and using SQL Server with Dynamic Memory. Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • December release of Microsoft All-In-One Code Framework is available now.

    - by Jialiang
    The code samples in Microsoft All-In-One Code Framework are updated on 2010-12-13. Download address: http://1code.codeplex.com/releases/view/57459#DownloadId=185534 Updated code sample index categorized by technologies: http://1code.codeplex.com/wikipage?title=All-In-One%20Code%20Framework%20Sample%20Catalog (it also allows you to download individual code samples instead of the entire All-In-One Code Framework sample package.) If it’s the first time that you hear about Microsoft All-In-One Code Framework, please watch the introduction video on YouTube http://www.youtube.com/watch?v=cO5Li3APU58, or read the introduction on our homepage http://1code.codeplex.com/,  and this Port25 article http://port25.technet.com/archive/2010/01/18/the-all-in-one-code-framework.aspx.  -------------- New ASP.NET Code Samples VBASPNETAJAXWebChat and CSASPNETAJAXWebChat Most of you have some experience in chatting with friends on the web. So you may want to know how to make a web chat application, it seems to be quite complicated. But ASP.NET gives you the power to buiild a chat room easily. In this code sample, we will construct our own web chat room with the amazing AJAX feature. The principle is simple relatively. As we all know, a base chat application need 4 base controls: one List control to show the chat room members, one List control to show the message list, one TextBox control to input messages and one button to send message. User inputs his message in the textbox first and then presses Send button, it will send the message to the server. The message list will update every 2 seconds to get the newest message list in the chat room from the server. We need to know, it is hard for us to make an AJAX web chat application like a windows form application because we cannot keep the connection after one web request ended. So a lot of events which communicates between client side and server side cannot be realized. The common workaround is to make web requests in every some seconds to check whether the server side has been updated. But another technique called COMET makes it possible. But it is different with AJAX and will not be talked in details in this KB. For more details about COMET, we can get some clues from the Reference.   CSASPNETCurrentOnlineUserList and VBASPNETCurrentOnlineUserList This sample demos a system that needs to display a list of current online users' information. As a matter of fact, Membership.GetNumberOfUsersOnline Method  can get the number of online users and there is a convenient approach to check whether the user is online by using Membership.GetUser(string userName).IsOnline property,however many asp.net projects are not using membership.So in this case,the sample shows how to display a list of current online users' information without using membership provider. It is not difficult to check whether the user is online by using session.Many projects tend to be used “Session_End” event to mark a user as “Offline”,however ,it may not be a good idea,because it can’t detect the user status accurately. In addition, "Session_End" event is only available in the "InProc" session mode. If you are storing session states in the State Server or SQL Server, "Session_End" event will never fire. To handle this issue, we need to save the user online status to a  global DataTable or  DataBase. In the sample application, define a global DataTable to store the information of online users.Use XmlHttpRequest in the pages to update and check user's last active time at intervals and also retrieve information on how many users are still online. The sample project can auto delete offline users' information from a global DataTable by checking users’ last active time. A step-by-step guide illustrating how to display a list of current online users' information without using membership provider: 1. Login page. Let user sign in and add current user’s information to a global datatable while Initialize the global datatable which used to store information of current online users. 2. Current online user list page. Use XmlHttpRequest in this page to update and check user's last active time at intervals and also retrieve information on how many users are still online. 3. If user closes the page without clicking  the sign out link button ,the sample project can auto mark the user as offline and delete offline users' information from a global DataTable which used to store information of current online users  by checking users’ last active time. Then the current online user list will be like this:   CSASPNETIPtoLocation This sample demonstrates how to find the geographical location from an IP address. As we know, it is not hard for us to get the IP address of visitors via Request.ServerVariable property, but it is really difficult for us to know where they come from. To achieve this feature, the sample uses a free third party web service from http://freegeoip.appspot.com/, which returns the information about an IP address we send to the server in the format of XML, JSON or CSV. It makes all things easier.   CSASPNETBackgroundWorker Sometimes we do an operation which needs long time to complete. It will stop the response and the page is blank until the operation finished. In this case, we want the operation to run in the background, and in the page, we want to display the progress of the running operation. Therefore, the user can know the operation is running and can know the progress. CSASPNETInheritingFromTreeNode In windows forms TreeView, each tree node has a property called "Tag" which can be used to store a custom object. Many customers want to implement the same tag feature in ASP.NET TreeView. This project creates a custom TreeView control named "CustomTreeView" to achieve this goal. CSASPNETRemoteUploadAndDownload and VBASPNETRemoteUploadAndDownload This code sample was created in response to a code sample request in our new code sample request frunction for customers. The code samples demonstrate uploading files to and downloading files from a remote HTTP or FTP server. In .NET Framework 2.0 and higher versions, there are some lightweight class libraries which support HTTP and FTP protocol transmission. By using these classes, we can achieve this programming requirement.   CSASPNETImageEditUpload and VBASPNETImageEditUpload This demo will shows how to insert, edit and update a common image with the type of "jpg", "png", "gif" or "bmp" . We mainly use two different SqlDataSources with the same database to bind to GridView and FormView in order to establish the “cascading” effort. Besides we apply our self-made ImageHanlder to encoding or decoding images of different types, and use context to output the stream of images. We will explicitly assign the binary streams of images through the event of “FormView_ItemInserting” or “Form_ItemUpdating” to synchronize the stream both in what we can see on an aspx page as well as in what’s really stored in the database.   WebBrowser Control, Network and other Windows General New Code Samples   CSWebBrowserSuppressError and VBWebBrowserSuppressError The sample demonstrates how to make WebBrowser suppress errors, such as script error, navigation error and so on.   CSWebBrowserWithProxy and VBWebBrowserWithProxy The sample demonstrates how to make WebBrowser use a proxy server.   CSWebDownloadProgress and VBWebDownloadProgress The sample demonstrates how to show progress during the download. It also supplies the features to Start, Pause, Resume and Cancel a download.   CppSetDesktopWallpaper, CSSetDesktopWallpaper and VBSetDesktopWallpaper This code sample application allows you select an image, view a preview (resized smaller to fit if necessary), select a display style among Tile, Center, Stretch, Fit (Windows 7 and later) and Fill (Windows 7 and later), and set the image as the Desktop wallpaper. CSWindowsServiceRecoveryProperty and VBWindowsServiceRecoveryProperty CSWindowsServiceRecoveryProperty example demonstrates how to use ChangeServiceConfig2 to configure the service "Recovery" properties in C#. This example operates all the options you can see on the service "Recovery" tab, including setting the "Enable actions for stops with errors" option in Windows Vista and later operating systems. This example also include how to grant the shut down privilege to the process, so that we can configure a special option in the "Recovery" tab - "Restart Computer Options...".   New Office Development Code Samples   CSOneNoteRibbonAddIn and VBOneNoteRibbonAddIn The code sample demonstrates a OneNote 2010 COM add-in that implements IDTExtensibility2. The add-in also supports customizing the Ribbon by implementing the IRibbonExtensibility interface. It is a skeleton OneNote add-in that developers can extend it to implement more functions. The code sample was requested by a customer in our code sample request service. We expect that this could help developers in the community.   New Windows Shell Code Samples   CppShellExtPreviewHandler, CSShellExtPreviewHandler and VBShellExtPreviewHandler In the past two months, we released the code samples of Windows Context Menu Handler, Infotip Handler, and Thumbnail Handler. This is the fourth part of the shell extension series: Preview Handler. The code samples demo the C++, C# and VB.NET implementation of a preview handler for a new file type registered with the .recipe extension. Preview handlers are called when an item is selected to show a lightweight, rich, read-only preview of the file's contents in the view's reading pane. This is done without launching the file's associated application. Windows Vista and later operating systems support preview handlers. To be a valid preview handler, several interfaces must be implemented. This includes IPreviewHandler (shobjidl.h); IInitializeWithFile, IInitializeWithStream, or IInitializeWithItem (propsys.h); IObjectWithSite (ocidl.h); and IOleWindow (oleidl.h). There are also optional interfaces, such as IPreviewHandlerVisuals (shobjidl.h), that a preview handler can implement to provide extended support. Windows API Code Pack for Microsoft .NET Framework makes the implementation of these interfaces very easy in .NET. The example preview handler provides previews for .recipe files. The .recipe file type is simply an XML file registered as a unique file name extension. It includes the title of the recipe, its author, difficulty, preparation time, cook time, nutrition information, comments, an embedded preview image, and so on. The preview handler extracts the title, comments, and the embedded image, and display them in a preview window.   In response to many customers' request, we added setup projects in every shell extension samples in this release. Those setup projects allow you to deploy the shell extensions to your end users' machines. ---------- Download address: http://1code.codeplex.com/releases/view/57459#DownloadId=185534 Updated code sample index categorized by technologies: http://1code.codeplex.com/wikipage?title=All-In-One%20Code%20Framework%20Sample%20Catalog (it also allows you to download individual code samples instead of the entire All-In-One Code Framework sample package.) If you have any feedback for us, please email: [email protected]. We look forward to your comments.

    Read the article

  • CodePlex Daily Summary for Wednesday, October 02, 2013

    CodePlex Daily Summary for Wednesday, October 02, 2013Popular ReleasesEla, functional programming language: Ela, dynamic functional language (PDF, book, 0.6): A book about Ela, dynamic functional language in PDF format.Compact 2013 Tools: Managed Code Version of Apps 1.0: Compact13MinShell Download https://download-codeplex.sec.s-msft.com/Images/v20779/RuntimeBinary.gif Compact13MinShellV3.0.zip The Codeplex Project Downloads Page AboutCompact13Tools.zip: Each app as an OS Content Subproject. Includes CoreCon3 Subproject. Apps.zip: Just the apps in a a zip file AppInstallersx86.zip: The apps as separate x86 installers Compact13MinShell Download: (Separate Codeplex Project) The Minshell that implements the menu that includes these apps via registr...Application Architecture Guidelines: App Architecture Guidelines 3.0.8: This document is an overview of software qualities, principles, patterns, practices, tools and libraries.C# Intellisense for Notepad++: Release v1.0.7.0: - smart indentation - document formatting To avoid the DLLs getting locked by OS use MSI file for the installation.CS-Script for Notepad++: Release v1.0.7.0: - smart indentation - document formatting To avoid the DLLs getting locked by OS use MSI file for the installation.State of Decay Save Manager: Version 1.0.2: Added Start/Stop button for timer to manually enable/disable Quick save routine updated to force it to refresh the folder date Quick save added to backup listing Manual update button Lower level hooking for F5 and F9 buttons workingSharePoint Farm documentation tool: SPDocumentor 0.1: SPDocumentor 0.1 This is a POC version of the tool that will be implemented.DotNetNuke® Form and List: 06.00.06: DotNetNuke Form and List 06.00.06 Changes to 6.0.6•Add in Sql to remove 'text on row' setting for UserDefinedTable to make SQL Azure compatible. •Add new azureCompatible element to manifest. •Added a fix for importing templates. Changes to 6.0.2•Fix: MakeThumbnail was broken if the application pool was configured to .Net 4 •Change: Data is now stored in nvarchar(max) instead of ntext Changes to 6.0.1•Scripts now compatible with SQL Azure. Changes to 6.0.0•Icons are shown in module action b...BlackJumboDog: Ver5.9.6: 2013.09.30 Ver5.9.6 (1)SMTP???????、???????????????? (2)WinAPI??????? (3)Web???????CGI???????????????????????Microsoft Ajax Minifier: Microsoft Ajax Minifier 5.2: Mostly internal code tweaks. added -nosize switch to turn off the size- and gzip-calculations done after minification. removed the comments in the build targets script for the old AjaxMin build task (discussion #458831). Fixed an issue with extended Unicode characters encoded inside a string literal with adjacent \uHHHH\uHHHH sequences. Fixed an IndexOutOfRange exception when encountering a CSS identifier that's a single underscore character (_). In previous builds, the net35 and net20...AJAX Control Toolkit: September 2013 Release: AJAX Control Toolkit Release Notes - September 2013 Release (Updated) Version 7.1001September 2013 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Important UpdateThis release has been updated to fix two issues: Upda...WDTVHubGen - Adds Metadata, thumbnails and subtitles to WDTV Live Hubs: WDTVHubGen.v2.1.4.apifix-alpha: WDTVHubGen.v2.1.4.apifix-alpha is for testers to figure out if we got the NEW api plugged in ok. thanksVisual Log Parser: VisualLogParser: Portable Visual Log Parser for Dotnet 4.0Trace Reader for Microsoft Dynamics CRM: Trace Reader (1.2013.9.29): Initial releaseAudioWordsDownloader: AudioWordsDownloader 1.1 build 88: New features list of words (mp3 files) is available upon typing when a download path is defined list of download paths is added paths history settings added Bug fixed case mismatch in word search field fixed path not exist bug fixed when history has been used path, when filled from dialog, not stored refresh autocomplete list after path change word sought is deleted when path is changed at the end sought word list is deleted word list not refreshed download ends. word lis...Wsus Package Publisher: Release v1.3.1309.28: Fix a bug, where WPP crash when running on a computer where Windows was installed in another language than Fr, En or De, and launching the Update Creation Wizard. Fix a bug, where WPP crash if some Multi-Thread job are launch with more than 64 items. Add a button to abort "Install This Update" wizard. Allow WPP to remember which columns are shown last time. Make URL clickable on the Update Information Tab. Add a new feature, when Double-Clicking on an update, the default action exec...Tweetinvi a friendly Twitter C# API: Alpha 0.8.3.0: Version 0.8.3.0 emphasis on the FIlteredStream and ease how to manage Exceptions that can occur due to the network or any other issue you might encounter. Will be available through nuget the 29/09/2013. FilteredStream Features provided by the Twitter Stream API - Ability to track specific keywords - Ability to track specific users - Ability to track specific locations Additional features - Detect the reasons the tweet has been retrieved from the Filtered API. You have access to both the ma...AcDown?????: AcDown????? v4.5: ??●AcDown??????????、??、??、???????。????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。 ●??????AcPlay?????,??????、????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ??v4.5 ???? AcPlay????????v3.5 ????????,???????????30% ?? ???????GoodManga.net???? ?? ?????????? ?? ??Acfun?????????? ??Bilibili??????????? ?????????flvcd???????? ??SfAcg????????????? ???????????? ???????????????? ????32...Magick.NET: Magick.NET 6.8.7.001: Magick.NET linked with ImageMagick 6.8.7.0. Breaking changes: - ToBitmap method of MagickImage returns a png instead of a bmp. - Changed the value for full transparency from 255(Q8)/65535(Q16) to 0. - MagickColor now uses floats instead of Byte/UInt16.Media Companion: Media Companion MC3.578b: With the feedback received over the renaming of Movie Folders, and files, there has been some refinement done. As well as I would like to introduce Blu-Ray movie folder support, for Pre-Frodo and Frodo onwards versions of XBMC. To start with, Context menu option for renaming movies, now has three sub options: Movie & Folder, Movie only & Folder only. The option Manual Movie Rename needs to be selected from Movie Preferences, but the autoscrape boxes do not need to be selected. Blu Ray Fo...New ProjectsAll CRM Resources for Microsoft Dynamics CRM: Microsoft Dynamics CRM Resources Windows 8 App with News, Feeds, Forums, Blogs, Videos & Twitter updates, information, guides & resources #MSDynCRM community.BasiliskBugTracker: A sample teamwork project for the Telerik Academy's ASP.NET Course 2013.CagerAutoPilot: Programmatically control a toy helicopter with kinectClass Libraries & Database Management: ClassDBManager permette la sincronizzazione delle classi (creazione/modifica/cancellazione) in base alle tabelle contenute nel databaseCommand Line Utility: Enables fast, easy creation of object-oriented settings classes in C# that interface directly with command line input. Minimize code and increase robustness.Controles | Versa: Login Pagina Principal Cadastro UsuáriosDispage: DisPage is a system to hide a website under a different browser title (For example "Vimeo" could look like "Google" (I am working on a way of changing this)ExpressiveDataGenerators: Expressive and powerfull test data generators.Fabrikam Fiber: This project provides download and support to anyone (i.e. trainers) who want to access the Fabrikam Fiber sample application, setup scripts, notes, etc.Get all numbers in between a pair of numbers: Get all integers between two numbers. C#, VB.NETHungryCrowd food lovers market: food lovers market, food, marketsInvalid User Details for SharePoint 2007 and 2010 Sites: Client Based Utility to export invalid users from a SharePoint site (2007 and 2010), as a CSV file using native SP Web Services (UserGroup.asmx and People.asmx)Kh?o Sát Công Ngh?: 1. Tên d? tài: Th?c tr?ng và gi?i pháp h? tr? nâng cao nang l?c c?nh tranh c?a các doanh nghi?p nh? và v?a t?nh Thanh Hóa Lightning: Micro toolkit to make it easy to get content on your site, and serve it fast.LovelyCMS: LovelyCMS ist ein sehr einfaches Content Management System auf der Basis von ASP.NET MVC4.MVC Error Handler: Simple library that allows you to easily create error pages for common HTTP error and application exceptions.MVC Table Styling selection to CSS and demo table: Enter table styling by selection from drop-down list and both generated CSS and see effect of the CSS on a demo table.MvcWebApiFramework: main frameworkNoDemo: It is not only a demo.NumbersInWordsRU: ?????? ??? ??????????? ????? ??????? ? ????? ????????Omnifactotum: Omnifactotum is the .NET library intended to help .NET developers avoid writing the same helper types, methods and extension methods for different projects.Outlook Rules Offline Processor: A utility for organizing Microsoft Outlook rules. The utility uses the rules export file, *.RWZ, to make changes.SharePoint Farm documentation tool: The SPDocumentor (SharePoint Farm documentation tool) allows you to generate a word document that includes most of your farm settings. Startup Shutdown Mailer: This tool is a simple Windows Service which sends an e-mail to a specified account whenever your PC was started up or shut down.YüzKitabi: Daha güvenli ve etkilesimli YüzKitabi Uygulamasi

    Read the article

  • Create and Consume WCF service using Visual Studio 2010

    - by sreejukg
    In this article I am going to demonstrate how to create a WCF service, that can be hosted inside IIS and a windows application that consume the WCF service. To support service oriented architecture, Microsoft developed the programming model named Windows Communication Foundation (WCF). ASMX was the prior version from Microsoft, was completely based on XML and .Net framework continues to support ASMX web services in future versions also. While ASMX web services was the first step towards the service oriented architecture, Microsoft has made a big step forward by introducing WCF. An overview of planning for WCF can be found from this link http://msdn.microsoft.com/en-us/library/ff649584.aspx . The following are the important differences between WCF and ASMX from an asp.net developer point of view. 1. ASMX web services are easy to write, configure and consume 2. ASMX web services are only hosted in IIS 3. ASMX web services can only use http 4. WCF, can be hosted inside IIS, windows service, console application, WAS(Windows Process Activation Service) etc 5. WCF can be used with HTTP, TCP/IP, MSMQ and other protocols. The detailed difference between ASMX web service and WCF can be found here. http://msdn.microsoft.com/en-us/library/cc304771.aspx Though WCF is a bigger step for future, Visual Studio makes it simpler to create, publish and consume the WCF service. In this demonstration, I am going to create a service named SayHello that accepts 2 parameters such as name and language code. The service will return a hello to user name that corresponds to the language. So the proposed service usage is as follows. Caller: SayHello(“Sreeju”, “en”) -> return value -> Hello Sreeju Caller: SayHello(“???”, “ar”) -> return value -> ????? ??? Caller: SayHello(“Sreeju”, “es”) - > return value -> Hola Sreeju Note: calling an automated translation service is not the intention of this article. If you are interested, you can find bing translator API and can use in your application. http://www.microsofttranslator.com/dev/ So Let us start First I am going to create a Service Application that offer the SayHello Service. Open Visual Studio 2010, Go to File -> New Project, from your preferred language from the templates section select WCF, select WCF service application as the project type, give the project a name(I named it as HelloService), click ok so that visual studio will create the project for you. In this demonstration, I have used C# as the programming language. Visual studio will create the necessary files for you to start with. By default it will create a service with name Service1.svc and there will be an interface named IService.cs. The screenshot for the project in solution explorer is as follows Since I want to demonstrate how to create new service, I deleted Service1.Svc and IService1.cs files from the project by right click the file and select delete. Now in the project there is no service available, I am going to create one. From the solution explorer, right click the project, select Add -> New Item Add new item dialog will appear to you. Select WCF service from the list, give the name as HelloService.svc, and click on the Add button. Now Visual studio will create 2 files with name IHelloService.cs and HelloService.svc. These files are basically the service definition (IHelloService.cs) and the service implementation (HelloService.svc). Let us examine the IHelloService interface. The code state that IHelloService is the service definition and it provides an operation/method (similar to web method in ASMX web services) named DoWork(). Any WCF service will have a definition file as an Interface that defines the service. Let us see what is inside HelloService.svc The code illustrated is implementing the interface IHelloService. The code is self-explanatory; the HelloService class needs to implement all the methods defined in the Service Definition. Let me do the service as I require. Open IHelloService.cs in visual studio, and delete the DoWork() method and add a definition for SayHello(), do not forget to add OperationContract attribute to the method. The modified IHelloService.cs will look as follows Now implement the SayHello method in the HelloService.svc.cs file. Here I wrote the code for SayHello method as follows. I am done with the service. Now you can build and run the service by clicking f5 (or selecting start debugging from the debug menu). Visual studio will host the service in give you a client to test it. The screenshot is as follows. In the left pane, it shows the services available in the server and in right side you can invoke the service. To test the service sayHello, double click on it from the above window. It will ask you to enter the parameters and click on the invoke button. See a sample output below. Now I have done with the service. The next step is to write a service client. Creating a consumer application involves 2 steps. One generating the class and configuration file corresponds to the service. Create a project that utilizes the generated class and configuration file. First I am going to generate the class and configuration file. There is a great tool available with Visual Studio named svcutil.exe, this tool will create the necessary class and configuration files for you. Read the documentation for the svcutil.exe here http://msdn.microsoft.com/en-us/library/aa347733.aspx . Open Visual studio command prompt, you can find it under Start Menu -> All Programs -> Visual Studio 2010 -> Visual Studio Tools -> Visual Studio command prompt Make sure the service is in running state in visual studio. Note the url for the service(from the running window, you can right click and choose copy address). Now from the command prompt, enter the svcutil.exe command as follows. I have mentioned the url and the /d switch – for the directory to store the output files(In this case d:\temp). If you are using windows drive(in my case it is c: ) , make sure you open the command prompt with run as administrator option, otherwise you will get permission error(Only in windows 7 or windows vista). The tool has created 2 files, HelloService.cs and output.config. Now the next step is to create a new project and use the created files and consume the service. Let us do that now. I am going to add a console application to the current solution. Right click solution name in the solution explorer, right click, Add-> New Project Under Visual C#, select console application, give the project a name, I named it TestService Now navigate to d:\temp where I generated the files with the svcutil.exe. Rename output.config to app.config. Next step is to add both files (d:\temp\helloservice.cs and app.config) to the files. In the solution explorer, right click the project, Add -> Add existing item, browse to the d:\temp folder, select the 2 files as mentioned before, click on the add button. Now you need to add a reference to the System.ServiceModel to the project. From solution explorer, right click the references under testservice project, select Add reference. In the Add reference dialog, select the .Net tab, select System.ServiceModel, and click ok Now open program.cs by double clicking on it and add the code to consume the web service to the main method. The modified file looks as follows Right click the testservice project and set as startup project. Click f5 to run the project. See the sample output as follows Publishing WCF service under IIS is similar to publishing ASP.Net application. Publish the application to a folder using Visual studio publishing feature, create a virtual directory and create it as an application. Don’t forget to set the application pool to use ASP.Net version 4. One last thing you need to check is the app.config file you have added to the solution. See the element client under ServiceModel element. There is an endpoint element with address attribute that points to the published service URL. If you permanently host the service under IIS, you can simply change the address parameter to the corresponding one and your application will consume the service. You have seen how easily you can build/consume WCF service. If you need the solution in zipped format, please post your email below.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Ten - oh, wait, eleven - Eleven things you should know about the ASP.NET Fall 2012 Update

    - by Jon Galloway
    Today, just a little over two months after the big ASP.NET 4.5 / ASP.NET MVC 4 / ASP.NET Web API / Visual Studio 2012 / Web Matrix 2 release, the first preview of the ASP.NET Fall 2012 Update is out. Here's what you need to know: There are no new framework bits in this release - there's no change or update to ASP.NET Core, ASP.NET MVC or Web Forms features. This means that you can start using it without any updates to your server, upgrade concerns, etc. This update is really an update to the project templates and Visual Studio tooling, conceptually similar to the ASP.NET MVC 3 Tools Update. It's a relatively lightweight install. It's a 41MB download. I've installed it many times and usually takes 5-7 minutes; it's never required a reboot. It adds some new project templates to ASP.NET MVC: Facebook Application and Single Page Application templates. It adds a lot of cool enhancements to ASP.NET Web API. It adds some tooling that makes it easy to take advantage of features like SignalR, Friendly URLs, and Windows Azure Authentication. Most of the new features are installed via NuGet packages. Since ASP.NET is open source, nightly NuGet packages are available, and the roadmap is published, most of this has really been publicly available for a while. The official name of this drop is the ASP.NET Fall 2012 Update BUILD Prerelease. Please do not attempt to say that ten times fast. While the EULA doesn't prohibit it, it WILL legally change your first name to Scott. As with all new releases, you can find out everything you need to know about the Fall Update at http://asp.net/vnext (especially the release notes!) I'm going to be showing all of this off, assisted by special guest code monkey Scott Hanselman, this Friday at BUILD: Bleeding edge ASP.NET: See what is next for MVC, Web API, SignalR and more… (and I've heard it will be livestreamed). Let's look at some of those things in more detail. No new bits ASP.NET 4.5, MVC 4 and Web API have a lot of great core features. I see the goal of this update release as making it easier to put those features to use to solve some useful scenarios by taking advantage of NuGet packages and template code. If you create a new ASP.NET MVC application using one of the new templates, you'll see that it's using the ASP.NET MVC 4 RTM NuGet package (4.0.20710.0): This means you can install and use the Fall Update without any impact on your existing projects and no worries about upgrading or compatibility. New Facebook Application Template ASP.NET MVC 4 (and ASP.NET 4.5 Web Forms) included the ability to authenticate your users via OAuth and OpenID, so you could let users log in to your site using a Facebook account. One of the new changes in the Fall Update is a new template that makes it really easy to create full Facebook applications. You could create Facebook application in ASP.NET already, you'd just need to go through a few steps: Search around to find a good Facebook NuGet package, like the Facebook C# SDK (written by my friend Nathan Totten and some other Facebook SDK brainiacs). Read the Facebook developer documentation to figure out how to authenticate and integrate with them. Write some code, debug it and repeat until you got something working. Get started with the application you'd originally wanted to write. What this template does for you: eliminate steps 1-3. Erik Porter, Nathan and some other experts built out the Facebook Application template so it automatically pulls in and configures the Facebook NuGet package and makes it really easy to take advantage of it in an ASP.NET MVC application. One great example is the the way you access a Facebook user's information. Take a look at the following code in a File / New / MVC / Facebook Application site. First, the Home Controller Index action: [FacebookAuthorize(Permissions = "email")] public ActionResult Index(MyAppUser user, FacebookObjectList<MyAppUserFriend> userFriends) { ViewBag.Message = "Modify this template to jump-start your Facebook application using ASP.NET MVC."; ViewBag.User = user; ViewBag.Friends = userFriends.Take(5); return View(); } First, notice that there's a FacebookAuthorize attribute which requires the user is authenticated via Facebook and requires permissions to access their e-mail address. It binds to two things: a custom MyAppUser object and a list of friends. Let's look at the MyAppUser code: using Microsoft.AspNet.Mvc.Facebook.Attributes; using Microsoft.AspNet.Mvc.Facebook.Models; // Add any fields you want to be saved for each user and specify the field name in the JSON coming back from Facebook // https://developers.facebook.com/docs/reference/api/user/ namespace MvcApplication3.Models { public class MyAppUser : FacebookUser { public string Name { get; set; } [FacebookField(FieldName = "picture", JsonField = "picture.data.url")] public string PictureUrl { get; set; } public string Email { get; set; } } } You can add in other custom fields if you want, but you can also just bind to a FacebookUser and it will automatically pull in the available fields. You can even just bind directly to a FacebookUser and check for what's available in debug mode, which makes it really easy to explore. For more information and some walkthroughs on creating Facebook applications, see: Deploying your first Facebook App on Azure using ASP.NET MVC Facebook Template (Yao Huang Lin) Facebook Application Template Tutorial (Erik Porter) Single Page Application template Early releases of ASP.NET MVC 4 included a Single Page Application template, but it was removed for the official release. There was a lot of interest in it, but it was kind of complex, as it handled features for things like data management. The new Single Page Application template that ships with the Fall Update is more lightweight. It uses Knockout.js on the client and ASP.NET Web API on the server, and it includes a sample application that shows how they all work together. I think the real benefit of this application is that it shows a good pattern for using ASP.NET Web API and Knockout.js. For instance, it's easy to end up with a mess of JavaScript when you're building out a client-side application. This template uses three separate JavaScript files (delivered via a Bundle, of course): todoList.js - this is where the main client-side logic lives todoList.dataAccess.js - this defines how the client-side application interacts with the back-end services todoList.bindings.js - this is where you set up events and overrides for the Knockout bindings - for instance, hooking up jQuery validation and defining some client-side events This is a fun one to play with, because you can just create a new Single Page Application and hit F5. Quick, easy install (with one gotcha) One of the cool engineering changes for this release is a big update to the installer to make it more lightweight and efficient. I've been running nightly builds of this for a few weeks to prep for my BUILD demos, and the install has been really quick and easy to use. The install takes about 5 minutes, has never required a reboot for me, and the uninstall is just as simple. There's one gotcha, though. In this preview release, you may hit an issue that will require you to uninstall and re-install the NuGet VSIX package. The problem comes up when you create a new MVC application and see this dialog: The solution, as explained in the release notes, is to uninstall and re-install the NuGet VSIX package: Start Visual Studio 2012 as an Administrator Go to Tools->Extensions and Updates and uninstall NuGet. Close Visual Studio Navigate to the ASP.NET Fall 2012 Update installation folder: For Visual Studio 2012: Program Files\Microsoft ASP.NET\ASP.NET Web Stack\Visual Studio 2012 For Visual Studio 2012 Express for Web: Program Files\Microsoft ASP.NET\ASP.NET Web Stack\Visual Studio Express 2012 for Web Double click on the NuGet.Tools.vsix to reinstall NuGet This took me under a minute to do, and I was up and running. ASP.NET Web API Update Extravaganza! Uh, the Web API team is out of hand. They added a ton of new stuff: OData support, Tracing, and API Help Page generation. OData support Some people like OData. Some people start twitching when you mention it. If you're in the first group, this is for you. You can add a [Queryable] attribute to an API that returns an IQueryable<Whatever> and you get OData query support from your clients. Then, without any extra changes to your client or server code, your clients can send filters like this: /Suppliers?$filter=Name eq ‘Microsoft’ For more information about OData support in ASP.NET Web API, see Alex James' mega-post about it: OData support in ASP.NET Web API ASP.NET Web API Tracing Tracing makes it really easy to leverage the .NET Tracing system from within your ASP.NET Web API's. If you look at the \App_Start\WebApiConfig.cs file in new ASP.NET Web API project, you'll see a call to TraceConfig.Register(config). That calls into some code in the new \App_Start\TraceConfig.cs file: public static void Register(HttpConfiguration configuration) { if (configuration == null) { throw new ArgumentNullException("configuration"); } SystemDiagnosticsTraceWriter traceWriter = new SystemDiagnosticsTraceWriter() { MinimumLevel = TraceLevel.Info, IsVerbose = false }; configuration.Services.Replace(typeof(ITraceWriter), traceWriter); } As you can see, this is using the standard trace system, so you can extend it to any other trace listeners you'd like. To see how it works with the built in diagnostics trace writer, just run the application call some API's, and look at the Visual Studio Output window: iisexpress.exe Information: 0 : Request, Method=GET, Url=http://localhost:11147/api/Values, Message='http://localhost:11147/api/Values' iisexpress.exe Information: 0 : Message='Values', Operation=DefaultHttpControllerSelector.SelectController iisexpress.exe Information: 0 : Message='WebAPI.Controllers.ValuesController', Operation=DefaultHttpControllerActivator.Create iisexpress.exe Information: 0 : Message='WebAPI.Controllers.ValuesController', Operation=HttpControllerDescriptor.CreateController iisexpress.exe Information: 0 : Message='Selected action 'Get()'', Operation=ApiControllerActionSelector.SelectAction iisexpress.exe Information: 0 : Operation=HttpActionBinding.ExecuteBindingAsync iisexpress.exe Information: 0 : Operation=QueryableAttribute.ActionExecuting iisexpress.exe Information: 0 : Message='Action returned 'System.String[]'', Operation=ReflectedHttpActionDescriptor.ExecuteAsync iisexpress.exe Information: 0 : Message='Will use same 'JsonMediaTypeFormatter' formatter', Operation=JsonMediaTypeFormatter.GetPerRequestFormatterInstance iisexpress.exe Information: 0 : Message='Selected formatter='JsonMediaTypeFormatter', content-type='application/json; charset=utf-8'', Operation=DefaultContentNegotiator.Negotiate iisexpress.exe Information: 0 : Operation=ApiControllerActionInvoker.InvokeActionAsync, Status=200 (OK) iisexpress.exe Information: 0 : Operation=QueryableAttribute.ActionExecuted, Status=200 (OK) iisexpress.exe Information: 0 : Operation=ValuesController.ExecuteAsync, Status=200 (OK) iisexpress.exe Information: 0 : Response, Status=200 (OK), Method=GET, Url=http://localhost:11147/api/Values, Message='Content-type='application/json; charset=utf-8', content-length=unknown' iisexpress.exe Information: 0 : Operation=JsonMediaTypeFormatter.WriteToStreamAsync iisexpress.exe Information: 0 : Operation=ValuesController.Dispose API Help Page When you create a new ASP.NET Web API project, you'll see an API link in the header: Clicking the API link shows generated help documentation for your ASP.NET Web API controllers: And clicking on any of those APIs shows specific information: What's great is that this information is dynamically generated, so if you add your own new APIs it will automatically show useful and up to date help. This system is also completely extensible, so you can generate documentation in other formats or customize the HTML help as much as you'd like. The Help generation code is all included in an ASP.NET MVC Area: SignalR SignalR is a really slick open source project that was started by some ASP.NET team members in their spare time to add real-time communications capabilities to ASP.NET - and .NET applications in general. It allows you to handle long running communications channels between your server and multiple connected clients using the best communications channel they can both support - websockets if available, falling back all the way to old technologies like long polling if necessary for old browsers. SignalR remains an open source project, but now it's being included in ASP.NET (also open source, hooray!). That means there's real, official ASP.NET engineering work being put into SignalR, and it's even easier to use in an ASP.NET application. Now in any ASP.NET project type, you can right-click / Add / New Item... SignalR Hub or Persistent Connection. And much more... There's quite a bit more. You can find more info at http://asp.net/vnext, and we'll be adding more content as fast as we can. Watch my BUILD talk to see as I demonstrate these and other features in the ASP.NET Fall 2012 Update, as well as some other even futurey-er stuff!

    Read the article

  • Letter to Ballmer: Making Better Consumer Devices

    - by andrewbrust
    Last year, I wrote Steve Ballmer an email, and he was kind enough to write me back.  The email contained a scan of a column I wrote praising Microsoft’s BI strategy.  His reply contained three simple words: “Super nice  thanks.” Well, now I’d like to write to Steve again, in an open letter format, and this time the love may be a bit tougher.  But I’m still super earnest. The past two days have been eventful ones for Microsoft: The company announced the departure of company veterans Robbie Bach and J Allard and the market announced Apple is now besting Microsoft in market capitalization. Plus, announcements were made that make it plain that Ballmer will, in effect, be running Microsoft’s Entertainment & Devices division himself. With that in mind, I’d like to offer my list of a dozen things I think Microsoft’s CEO should do to improve that division’s offerings and, hopefully, its bottom line. So here goes:   1. On Windows Phone 7, Stay the Course The press is teeming with headlines and reader comments proclaiming the death-before-arrival of Windows Phone 7.  That’s plain silly.  You’ve got the makings of a great and unique SmartPhone platform, and you’re the only company (even considering RIM) that can offer full fidelity Exchange integration, not to mention implementing Office on the device.  Let the existing team finish this puppy and ship it. And then have them pump out a few updates, over-the-air, quickly.  Show them that Google Android’s not the only product that can do good, rapid dot releases. And another thing: make sure your OEMs’ devices have flawless touch screens.  If they don’t, then you shouldn’t certify them for delivery to customers.  Period. Oh, and kill the Kin, quietly.  It was DOA, and you know it.   2. Move Media Center to the Xbox Platform Media Center is, at its core, a good product.  But delivering a media distribution and DVR platform on a sophisticated PC operating system like Windows 7 just creates too many moving parts.  Xbox already functions as the best Media Center extender device – it should actually be the hub as well. Media Center is mostly based on .NET code – and XNA is a .NET environment for Xbox – find a way to bridge that small gap and make Media Center a joy to work with instead of a frustration.  Beating Apple TV out of this sub-market is the lowest hanging fruit on the tree (goofy pun, but it’s true).   3. Integrate Media Center with Mediaroom, or Kill the Latter You have two media products with almost identical names.  One is for standalone DVRs and the other is for IPTV cable set tops with DVR capabilities.  Can we merge these please?  My previous request of putting Media Center on Xbox would seem to tie into this nicely, since you’ve announced plans to do that with Mediaroom already.   4. Fix the Red Ring of Death People love the Xbox, but they really don’t love sending their consoles back every 18-24 months, when they get a bunch of red lights flashing on power up.  You’ve handled this defect about as gracefully as possible, but it’s been around for a long time now and it doesn’t seem to be fixed yet.  You can do better.  In fact, you must do better, or you insult your customers.   5. Add Blu Ray to Xbox I know, streaming movies are the future; physical media is legacy technology.  So if that’s true, why did you back HD DVD so hard?  You know why: for now, the film studios won’t allow a large selection of new release, HD, surround sound content be distributed on any medium other than Blu Ray or cable pay per view/on-demand.  Don’t you want home theater buffs to see the Xbox as a fantastic device for their rigs?  Don’t you want to put PlayStation 3 out of its misery?  And if you follow my suggestions above (move Media Center to the Xbox and fix the Red Ring problem), you’d have it all sewn up.  Do I think Blu Ray functionality will move a lot of units?  No.  Do I think that it would move more units with desperately needed influential home theater consumers?  You bet.  And you might sell more ZunePass subscriptions in the process. But while you’re at it, make the fan quieter, please.   6. Make More of Windows Home Server Home Server is a fantastic product.  And for reasons unknown to me, it seems like you’re letting it languish.  Development of the add-in ecosystem seems underfunded.  WHS’ unparalleled ease of use and reliability for home PC backup (and emergency restores) goes unsung.  Product cycles are slow.  Support for your OEMs, who are doing great work, especially in the green space with Atom CPUs, seems lacking.  You’ve married a trophy girl and you keep her cloistered at home!  That’s cruel, unusual and, um, incredibly ill-advised.  Make use of this ace card, and while you’re at it, give it real integration with Media Center.  The integration thus far proof-of-concept quality.  You should go way past that – both products will benefit immeasurably.   7. Set Up a Partner Platform for Custom Installers There’s a whole sub-industry of companies that install, integrate and configure home theater, security and connected home products.  They have an industry group. They are influential in the high-end of the consumer electronics industry, and so are their customers.  They love Media Center and they love Windows Home Server.  But I have talked to several of them at the Consumer Electronics Show and they tell me you don’t love them.  They find it very difficult to do business with Microsoft, even though they want nothing more than to sell and evangelize your platform.  This is a travesty.  Please fix it.  Get Allison Watson and the Microsoft Partner Network on board and have her hire someone who knows how to run a channel program for consumer electronics companies.  Problem solved.  Markets expanded.   8. Make Your Own Hardware In other areas, I know you love your partners.  I help run one, so I appreciate that.  But when it came to Xbox and Zune you built them it yourself (albeit on a contract basis, which is fine).  Windows Phone 7 has a chance to work as an OEM play, but it would work better if you produced the devices.  At least consider building a reference device that sells alongside your OEMs’ offerings.  That’s what Google did with the Nexxus One.  And while that phone was not itself a big seller, it catalyzed two wonderful things : (1) a quality bar was set and (2) partners exceeded it.  Before the Nexxus One, the best Android handset out there was the Motorola Droid. The Nexxus One was better, and the HTC Droid Incredible and Evo 4G are now even better than Google’s phone, which is why Verizon and Sprint decided not to carry it.  Imagine if all Windows Phone 6.x devices were on par with the HTC HD2.  I tend to believe you’d have a lot bigger market share than you do now.   9. Continue with Your Retail Initiative From what I hear, it sounds like it’s going well.  And this goes right along with making your own hardware.  When you build it, they will come.  And then it makes the likes of Best Buy and Staples do better.   10. Make an Acquisition (or Two) TiVo and/or Moxi look ripe for the picking.  With their ability to build stuff people love and your ability to run a business, you might just have something.  But do a better job than you did when you bought Danger.  Buy the ideas, not just the customers, eh?   11. Make Beautiful Stuff You’ve heard this one before, I know.  But I have some head-shrinking advice on this one.  You know that Apple obsesses over its industrial design.  You know that appeals to consumers.  But it seems you think doing so is Apple’s game exclusively and so you shouldn’t even try.  Bull dinky.  Come to New York and visit the Museum of Modern Art’s Architecture and Design gallery.  You’ll see that lots of companies and product categories have had very high design value well before Apple existed.  You can do this, and the Zune HD was a great start.  Now run with that.  Find those negative voices in your head that are telling you that you can’t and shut them up.  For good.   12. Burst the Bubble Some of the products you’ve built seem like they were conceived in a bizarro world.  That would appear to be the result of groupthink.  You must do better.  And there’s lots of people willing to advise you.  This includes just about everyone in the Regional Director program, and probably a bunch of MVPs.  Heck, I bet the guys at Engadget could help out too.  Imagine if you let them see the Kin before it shipped.  Talk to high-end gear consumers.  Talk to Best Buy and CostCo customers too.   Signing Off I hope this was of value to you.  As I wrote this I kept telling myself how obvious, even trite, some of these pieces of advice were and then, because of that, doubting they’d really help.  But I decided that they must not be obvious to Microsoft.  Sometimes when you get wrapped up in stuff, it’s hard to clear your head.  I think my head’s pretty clear here though (I’m wrapped up in other stuff), so maybe my perspective can help.  If not, well, then, I guess they all can’t be super nice.

    Read the article

  • SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28

    - by pinaldave
    This guest post is submitted by Feodor. Feodor Georgiev is a SQL Server database specialist with extensive experience of thinking both within and outside the box. He has wide experience of different systems and solutions in the fields of architecture, scalability, performance, etc. Feodor has experience with SQL Server 2000 and later versions, and is certified in SQL Server 2008. In this article Feodor explains the server-client-server process, and concentrated on the mutual waits between client and SQL Server. This is essential in grasping the concept of waits in a ‘global’ application plan. Recently I was asked to write a blog post about the wait statistics in SQL Server and since I had been thinking about writing it for quite some time now, here it is. It is a wide-spread idea that the wait statistics in SQL Server will tell you everything about your performance. Well, almost. Or should I say – barely. The reason for this is that SQL Server is always a part of a bigger system – there are always other players in the game: whether it is a client application, web service, any other kind of data import/export process and so on. In short, the SQL Server surroundings look like this: This means that SQL Server, aside from its internal waits, also depends on external waits and settings. As we can see in the picture above, SQL Server needs to have an interface in order to communicate with the surrounding clients over the network. For this communication, SQL Server uses protocol interfaces. I will not go into detail about which protocols are best, but you can read this article. Also, review the information about the TDS (Tabular data stream). As we all know, our system is only as fast as its slowest component. This means that when we look at our environment as a whole, the SQL Server might be a victim of external pressure, no matter how well we have tuned our database server performance. Let’s dive into an example: let’s say that we have a web server, hosting a web application which is using data from our SQL Server, hosted on another server. The network card of the web server for some reason is malfunctioning (think of a hardware failure, driver failure, or just improper setup) and does not send/receive data faster than 10Mbs. On the other end, our SQL Server will not be able to send/receive data at a faster rate either. This means that the application users will notify the support team and will say: “My data is coming very slow.” Now, let’s move on to a bit more exciting example: imagine that there is a similar setup as the example above – one web server and one database server, and the application is not using any stored procedure calls, but instead for every user request the application is sending 80kb query over the network to the SQL Server. (I really thought this does not happen in real life until I saw it one day.) So, what happens in this case? To make things worse, let’s say that the 80kb query text is submitted from the application to the SQL Server at least 100 times per minute, and as often as 300 times per minute in peak times. Here is what happens: in order for this query to reach the SQL Server, it will have to be broken into a of number network packets (according to the packet size settings) – and will travel over the network. On the other side, our SQL Server network card will receive the packets, will pass them to our network layer, the packets will get assembled, and eventually SQL Server will start processing the query – parsing, allegorizing, generating the query execution plan and so on. So far, we have already had a serious network overhead by waiting for the packets to reach our Database Engine. There will certainly be some processing overhead – until the database engine deals with the 80kb query and its 20 subqueries. The waits you see in the DMVs are actually collected from the point the query reaches the SQL Server and the packets are assembled. Let’s say that our query is processed and it finally returns 15000 rows. These rows have a certain size as well, depending on the data types returned. This means that the data will have converted to packages (depending on the network size package settings) and will have to reach the application server. There will also be waits, however, this time you will be able to see a wait type in the DMVs called ASYNC_NETWORK_IO. What this wait type indicates is that the client is not consuming the data fast enough and the network buffers are filling up. Recently Pinal Dave posted a blog on Client Statistics. What Client Statistics does is captures the physical flow characteristics of the query between the client(Management Studio, in this case) and the server and back to the client. As you see in the image, there are three categories: Query Profile Statistics, Network Statistics and Time Statistics. Number of server roundtrips–a roundtrip consists of a request sent to the server and a reply from the server to the client. For example, if your query has three select statements, and they are separated by ‘GO’ command, then there will be three different roundtrips. TDS Packets sent from the client – TDS (tabular data stream) is the language which SQL Server speaks, and in order for applications to communicate with SQL Server, they need to pack the requests in TDS packets. TDS Packets sent from the client is the number of packets sent from the client; in case the request is large, then it may need more buffers, and eventually might even need more server roundtrips. TDS packets received from server –is the TDS packets sent by the server to the client during the query execution. Bytes sent from client – is the volume of the data set to our SQL Server, measured in bytes; i.e. how big of a query we have sent to the SQL Server. This is why it is best to use stored procedures, since the reusable code (which already exists as an object in the SQL Server) will only be called as a name of procedure + parameters, and this will minimize the network pressure. Bytes received from server – is the amount of data the SQL Server has sent to the client, measured in bytes. Depending on the number of rows and the datatypes involved, this number will vary. But still, think about the network load when you request data from SQL Server. Client processing time – is the amount of time spent in milliseconds between the first received response packet and the last received response packet by the client. Wait time on server replies – is the time in milliseconds between the last request packet which left the client and the first response packet which came back from the server to the client. Total execution time – is the sum of client processing time and wait time on server replies (the SQL Server internal processing time) Here is an illustration of the Client-server communication model which should help you understand the mutual waits in a client-server environment. Keep in mind that a query with a large ‘wait time on server replies’ means the server took a long time to produce the very first row. This is usual on queries that have operators that need the entire sub-query to evaluate before they proceed (for example, sort and top operators). However, a query with a very short ‘wait time on server replies’ means that the query was able to return the first row fast. However a long ‘client processing time’ does not necessarily imply the client spent a lot of time processing and the server was blocked waiting on the client. It can simply mean that the server continued to return rows from the result and this is how long it took until the very last row was returned. The bottom line is that developers and DBAs should work together and think carefully of the resource utilization in the client-server environment. From experience I can say that so far I have seen only cases when the application developers and the Database developers are on their own and do not ask questions about the other party’s world. I would recommend using the Client Statistics tool during new development to track the performance of the queries, and also to find a synchronous way of utilizing resources between the client – server – client. Here is another example: think about similar setup as above, but add another server to the game. Let’s say that we keep our media on a separate server, and together with the data from our SQL Server we need to display some images on the webpage requested by our user. No matter how simple or complicated the logic to get the images is, if the images are 500kb each our users will get the page slowly and they will still think that there is something wrong with our data. Anyway, I don’t mean to get carried away too far from SQL Server. Instead, what I would like to say is that DBAs should also be aware of ‘the big picture’. I wrote a blog post a while back on this topic, and if you are interested, you can read it here about the big picture. And finally, here are some guidelines for monitoring the network performance and improving it: Run a trace and outline all queries that return more than 1000 rows (in Profiler you can actually filter and sort the captured trace by number of returned rows). This is not a set number; it is more of a guideline. The general thought is that no application user can consume that many rows at once. Ask yourself and your fellow-developers: ‘why?’. Monitor your network counters in Perfmon: Network Interface:Output queue length, Redirector:Network errors/sec, TCPv4: Segments retransmitted/sec and so on. Make sure to establish a good friendship with your network administrator (buy them coffee, for example J ) and get into a conversation about the network settings. Have them explain to you how the network cards are setup – are they standalone, are they ‘teamed’, what are the settings – full duplex and so on. Find some time to read a bit about networking. In this short blog post I hope I have turned your attention to ‘the big picture’ and the fact that there are other factors affecting our SQL Server, aside from its internal workings. As a further reading I would still highly recommend the Wait Stats series on this blog, also I would recommend you have the coffee break conversation with your network admin as soon as possible. This guest post is written by Feodor Georgiev. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL

    Read the article

  • Adventures in MVVM &ndash; My ViewModel Base

    - by Brian Genisio's House Of Bilz
    More Adventures in MVVM First, I’d like to say: THIS IS NOT A NEW MVVM FRAMEWORK. I tend to believe that MVVM support code should be specific to the system you are building and the developers working on it.  I have yet to find an MVVM framework that does everything I want it to without doing too much.  Don’t get me wrong… there are some good frameworks out there.  I just like to pick and choose things that make sense for me.  I’d also like to add that some of these features only work in WPF.  As of Silveright 4, they don’t support binding to dynamic properties, so some of the capabilities are lost. That being said, I want to share my ViewModel base class with the world.  I have had several conversations with people about the problems I have solved using this ViewModel base.  A while back, I posted an article about some experiments with a “Rails Inspired ViewModel”.  What followed from those ideas was a ViewModel base class that I take with me and use in my projects.  It has a lot of features, all designed to reduce the friction in writing view models. I have put the code out on Codeplex under the project: ViewModelSupport. Finally, this article focuses on the ViewModel and only glosses over the View and the Model.  Without all three, you don’t have MVVM.  But this base class is for the ViewModel, so that is what I am focusing on. Features: Automatic Command Plumbing Property Change Notification Strongly Typed Property Getter/Setters Dynamic Properties Default Property values Derived Properties Automatic Method Execution Command CanExecute Change Notification Design-Time Detection What about Silverlight? Automatic Command Plumbing This feature takes the plumbing out of creating commands.  The common pattern for commands in a ViewModel is to have an Execute method as well as an optional CanExecute method.  To plumb that together, you create an ICommand Property, and set it in the constructor like so: Before public class AutomaticCommandViewModel { public AutomaticCommandViewModel() { MyCommand = new DelegateCommand(Execute_MyCommand, CanExecute_MyCommand); } public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } public DelegateCommand MyCommand { get; private set; } } With the base class, this plumbing is automatic and the property (MyCommand of type ICommand) is created for you.  The base class uses the convention that methods be prefixed with Execute_ and CanExecute_ in order to be plumbed into commands with the property name after the prefix.  You are left to be expressive with your behavior without the plumbing.  If you are wondering how CanExecuteChanged is raised, see the later section “Command CanExecute Change Notification”. After public class AutomaticCommandViewModel : ViewModelBase { public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } }   Property Change Notification One thing that always kills me when implementing ViewModels is how to make properties that notify when they change (via the INotifyPropertyChanged interface).  There have been many attempts to make this more automatic.  My base class includes one option.  There are others, but I feel like this works best for me. The common pattern (without my base class) is to create a private backing store for the variable and specify a getter that returns the private field.  The setter will set the private field and fire an event that notifies the change, only if the value has changed. Before public class PropertyHelpersViewModel : INotifyPropertyChanged { private string text; public string Text { get { return text; } set { if(text != value) { text = value; RaisePropertyChanged("Text"); } } } protected void RaisePropertyChanged(string propertyName) { var handlers = PropertyChanged; if(handlers != null) handlers(this, new PropertyChangedEventArgs(propertyName)); } public event PropertyChangedEventHandler PropertyChanged; } This way of defining properties is error-prone and tedious.  Too much plumbing.  My base class eliminates much of that plumbing with the same functionality: After public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get<string>("Text"); } set { Set("Text", value);} } }   Strongly Typed Property Getters/Setters It turns out that we can do better than that.  We are using a strongly typed language where the use of “Magic Strings” is often frowned upon.  Lets make the names in the getters and setters strongly typed: A refinement public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get(() => Text); } set { Set(() => Text, value); } } }   Dynamic Properties In C# 4.0, we have the ability to program statically OR dynamically.  This base class lets us leverage the powerful dynamic capabilities in our ecosystem. (This is how the automatic commands are implemented, BTW)  By calling Set(“Foo”, 1), you have now created a dynamic property called Foo.  It can be bound against like any static property.  The opportunities are endless.  One great way to exploit this behavior is if you have a customizable view engine with templates that bind to properties defined by the user.  The base class just needs to create the dynamic properties at runtime from information in the model, and the custom template can bind even though the static properties do not exist. All dynamic properties still benefit from the notifiable capabilities that static properties do. For any nay-sayers out there that don’t like using the dynamic features of C#, just remember this: the act of binding the View to a ViewModel is dynamic already.  Why not exploit it?  Get over it :) Just declare the property dynamically public class DynamicPropertyViewModel : ViewModelBase { public DynamicPropertyViewModel() { Set("Foo", "Bar"); } } Then reference it normally <TextBlock Text="{Binding Foo}" />   Default Property Values The Get() method also allows for default properties to be set.  Don’t set them in the constructor.  Set them in the property and keep the related code together: public string Text { get { return Get(() => Text, "This is the default value"); } set { Set(() => Text, value);} }   Derived Properties This is something I blogged about a while back in more detail.  This feature came from the chaining of property notifications when one property affects the results of another, like this: Before public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); RaisePropertyChanged("Percentage"); RaisePropertyChanged("Output"); } } public int Percentage { get { return (int)(100 * Score); } } public string Output { get { return "You scored " + Percentage + "%."; } } } The problem is: The setter for Score has to be responsible for notifying the world that Percentage and Output have also changed.  This, to me, is backwards.    It certainly violates the “Single Responsibility Principle.” I have been bitten in the rear more than once by problems created from code like this.  What we really want to do is invert the dependency.  Let the Percentage property declare that it changes when the Score Property changes. After public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public int Percentage { get { return (int)(100 * Score); } } [DependsUpon("Percentage")] public string Output { get { return "You scored " + Percentage + "%."; } } }   Automatic Method Execution This one is extremely similar to the previous, but it deals with method execution as opposed to property.  When you want to execute a method triggered by property changes, let the method declare the dependency instead of the other way around. Before public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); WhenScoreChanges(); } } public void WhenScoreChanges() { // Handle this case } } After public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public void WhenScoreChanges() { // Handle this case } }   Command CanExecute Change Notification Back to Commands.  One of the responsibilities of commands that implement ICommand – it must fire an event declaring that CanExecute() needs to be re-evaluated.  I wanted to wait until we got past a few concepts before explaining this behavior.  You can use the same mechanism here to fire off the change.  In the CanExecute_ method, declare the property that it depends upon.  When that property changes, the command will fire a CanExecuteChanged event, telling the View to re-evaluate the state of the command.  The View will make appropriate adjustments, like disabling the button. DependsUpon works on CanExecute methods as well public class CanExecuteViewModel : ViewModelBase { public void Execute_MakeLower() { Output = Input.ToLower(); } [DependsUpon("Input")] public bool CanExecute_MakeLower() { return !string.IsNullOrWhiteSpace(Input); } public string Input { get { return Get(() => Input); } set { Set(() => Input, value);} } public string Output { get { return Get(() => Output); } set { Set(() => Output, value); } } }   Design-Time Detection If you want to add design-time data to your ViewModel, the base class has a property that lets you ask if you are in the designer.  You can then set some default values that let your designer see what things might look like in runtime. Use the IsInDesignMode property public DependantPropertiesViewModel() { if(IsInDesignMode) { Score = .5; } }   What About Silverlight? Some of the features in this base class only work in WPF.  As of version 4, Silverlight does not support binding to dynamic properties.  This, in my opinion, is a HUGE limitation.  Not only does it keep you from using many of the features in this ViewModel, it also keeps you from binding to ViewModels designed in IronRuby.  Does this mean that the base class will not work in Silverlight?  No.  Many of the features outlined in this article WILL work.  All of the property abstractions are functional, as long as you refer to them statically in the View.  This, of course, means that the automatic command hook-up doesn’t work in Silverlight.  You need to plumb it to a static property in order for the Silverlight View to bind to it.  Can I has a dynamic property in SL5?     Good to go? So, that concludes the feature explanation of my ViewModel base class.  Feel free to take it, fork it, whatever.  It is hosted on CodePlex.  When I find other useful additions, I will add them to the public repository.  I use this base class every day.  It is mature, and well tested.  If, however, you find any problems with it, please let me know!  Also, feel free to suggest patches to me via the CodePlex site.  :)

    Read the article

  • Using Razor together with ASP.NET Web API

    - by Fredrik N
    On the blog post “If Then, If Then, If Then, MVC” I found the following code example: [HttpGet]public ActionResult List() { var list = new[] { "John", "Pete", "Ben" }; if (Request.AcceptTypes.Contains("application/json")) { return Json(list, JsonRequestBehavior.AllowGet); } if (Request.IsAjaxRequest()) [ return PartialView("_List", list); } return View(list); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is a ASP.NET MVC Controller where it reuse the same “business” code but returns JSON if the request require JSON, a partial view when the request is an AJAX request or a normal ASP.NET MVC View. The above code may have several reasons to be changed, and also do several things, the code is not closed for modifications. To extend the code with a new way of presenting the model, the code need to be modified. So I started to think about how the above code could be rewritten so it will follow the Single Responsibility and open-close principle. I came up with the following result and with the use of ASP.NET Web API: public String[] Get() { return new[] { "John", "Pete", "Ben" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   It just returns the model, nothing more. The code will do one thing and it will do it well. But it will not solve the problem when it comes to return Views. If we use the ASP.NET Web Api we can get the result as JSON or XML, but not as a partial view or as a ASP.NET MVC view. Wouldn’t it be nice if we could do the following against the Get() method?   Accept: application/json JSON will be returned – Already part of the Web API   Accept: text/html Returns the model as HTML by using a View   The best thing, it’s possible!   By using the RazorEngine I created a custom MediaTypeFormatter (RazorFormatter, code at the end of this blog post) and associate it with the media type “text/html”. I decided to use convention before configuration to decide which Razor view should be used to render the model. To register the formatter I added the following code to Global.asax: GlobalConfiguration.Configuration.Formatters.Add(new RazorFormatter()); Here is an example of a ApiController that just simply returns a model: using System.Web.Http; namespace WebApiRazor.Controllers { public class CustomersController : ApiController { // GET api/values public Customer Get() { return new Customer { Name = "John Doe", Country = "Sweden" }; } } public class Customer { public string Name { get; set; } public string Country { get; set; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Because I decided to use convention before configuration I only need to add a view with the same name as the model, Customer.cshtml, here is the example of the View:   <!DOCTYPE html> <html> <head> <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.min.js" type="text/javascript"></script> </head> <body> <div id="body"> <section> <div> <hgroup> <h1>Welcome '@Model.Name' to ASP.NET Web API Razor Formatter!</h1> </hgroup> </div> <p> Using the same URL "api/values" but using AJAX: <button>Press to show content!</button> </p> <p> </p> </section> </div> </body> <script type="text/javascript"> $("button").click(function () { $.ajax({ url: '/api/values', type: "GET", contentType: "application/json; charset=utf-8", success: function(data, status, xhr) { alert(data.Name); }, error: function(xhr, status, error) { alert(error); }}); }); </script> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Now when I open up a browser and enter the following URL: http://localhost/api/customers the above View will be displayed and it will render the model the ApiController returns. If I use Ajax against the same ApiController with the content type set to “json”, the ApiController will now return the model as JSON. Here is a part of a really early prototype of the Razor formatter (The code is far from perfect, just use it for testing). I will rewrite the code and also make it possible to specify an attribute to the returned model, so it can decide which view to be used when the media type is “text/html”, but by default the formatter will use convention: using System; using System.Net.Http.Formatting; namespace WebApiRazor.Models { using System.IO; using System.Net; using System.Net.Http.Headers; using System.Reflection; using System.Threading.Tasks; using RazorEngine; public class RazorFormatter : MediaTypeFormatter { public RazorFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/html")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xhtml+xml")); } //... public override Task WriteToStreamAsync( Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { var task = Task.Factory.StartNew(() => { var viewPath = // Get path to the view by the name of the type var template = File.ReadAllText(viewPath); Razor.Compile(template, type, type.Name); var razor = Razor.Run(type.Name, value); var buf = System.Text.Encoding.Default.GetBytes(razor); stream.Write(buf, 0, buf.Length); stream.Flush(); }); return task; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using formatters and the ASP.NET Web API we can easily just extend our code without doing any changes to our ApiControllers when we want to return a new format. This blog post just showed how we can extend the Web API to use Razor to format a returned model into HTML.   If you want to know when I will post more blog posts, please feel free to follow me on twitter:   @fredrikn

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • New Skool Crosstabbing

    - by Tim Dexter
    A while back I spoke about having to go back to BIP's original crosstabbing solution to achieve a certain layout. Hok Min has provided a 'man' page for the new crosstab/pivot builder for 10.1.3.4.1 users. This will make the documentation drop but for now, get it here! The old, hand method is still available but this new approach, is more efficient and flexible. That said you may need to get into the crosstab code to tweak it where the crosstab dialog can not help. I had to do this, this week but more on that later. The following explains how the crosstab wizard builds the crosstab and what the fields inside the resulting template structure are there for. To create the crosstab a new XDO command "<?crosstab:...?>" has been created. XDO Command: <?crosstab: ctvarname; data-element; rows; columns; measures; aggregation?> Parameter Description Example Ctvarname Crosstab variable name. This is automatically generated by the Add-in. C123 data-element This is the XML data element that contains the data. "//ROW" Rows This contains a list of XML elements for row headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the row header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "Region{,o=a,t=t}, District{,o=a,t=t}" In the example, the first row header is "Region". It is sort by "Region", order is ascending, and type is text. The second row header is "District". It is sort by "District", order is ascending, and type is text. Columns This contains a list of XML elements for columns headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the column header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" In the example, the first column header is "ProductsBrand". It is sort by "ProductsBrand", order is ascending, and type is text. The second column header is "PeriodYear". It is sort by "District", order is ascending, and type is text. Measures This contains a list of XML elements for measures. "Revenue, PrevRevenue" Aggregation The aggregation function name. Currently, we only support "sum". "sum" Using the Oracle BI Publisher Template Builder for Word add-in, we are able to construct the following Pivot Table: The generated XDO command for this Pivot Table is as follow: <?crosstab:c547; "//ROW";"Region{,o=a,t=t}, District{,o=a,t=t}"; "ProductsBrand{,o=a,t=t},PeriodYear{,o=a,t=t}"; "Revenue, PrevRevenue";"sum"?> Running the command on the give XML data files generates this XML file "cttree.xml". Each XPath in the "cttree.xml" is described in the following table. Element XPath Count Description C0 /cttree/C0 1 This contains elements which are related to column. C1 /cttree/C0/C1 4 The first level column "ProductsBrand". There are four distinct values. They are shown in the label H element. CS /cttree/C0/C1/CS 4 The column-span value. It is used to format the crosstab table. H /cttree/C0/C1/H 4 The column header label. There are four distinct values "Enterprise", "Magicolor", "McCloskey" and "Valspar". T1 /cttree/C0/C1/T1 4 The sum for measure 1, which is Revenue. T2 /cttree/C0/C1/T2 4 The sum for measure 2, which is PrevRevenue. C2 /cttree/C0/C1/C2 8 The first level column "PeriodYear", which is the second group-by key. There are two distinct values "2001" and "2002". H /cttree/C0/C1/C2/H 8 The column header label. There are two distinct values "2001" and "2002". Since it is under C1, therefore the total number of entries is 4 x 2 => 8. T1 /cttree/C0/C1/C2/T1 8 The sum for measure 1 "Revenue". T2 /cttree/C0/C1/C2/T2 8 The sum for measure 2 "PrevRevenue". M0 /cttree/M0 1 This contains elements which are related to measures. M1 /cttree/M0/M1 1 This contains summary for measure 1. H /cttree/M0/M1/H 1 The measure 1 label, which is "Revenue". T /cttree/M0/M1/T 1 The sum of measure 1 for the entire xpath from "//ROW". M2 /cttree/M0/M2 1 This contains summary for measure 2. H /cttree/M0/M2/H 1 The measure 2 label, which is "PrevRevenue". T /cttree/M0/M2/T 1 The sum of measure 2 for the entire xpath from "//ROW". R0 /cttree/R0 1 This contains elements which are related to row. R1 /cttree/R0/R1 4 The first level row "Region". There are four distinct values, they are shown in the label H element. H /cttree/R0/R1/H 4 This is row header label for "Region". There are four distinct values "CENTRAL REGION", "EASTERN REGION", "SOUTHERN REGION" and "WESTERN REGION". RS /cttree/R0/R1/RS 4 The row-span value. It is used to format the crosstab table. T1 /cttree/R0/R1/T1 4 The sum of measure 1 "Revenue" for each distinct "Region" value. T2 /cttree/R0/R1/T2 4 The sum of measure 1 "Revenue" for each distinct "Region" value. R1C1 /cttree/R0/R1/R1C1 16 This contains elements from combining R1 and C1. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand". Therefore, the combination is 4 X 4 è 16. T1 /cttree/R0/R1/R1C1/T1 16 The sum of measure 1 "Revenue" for each combination of "Region" and "ProductsBrand". T2 /cttree/R0/R1/R1C1/T2 16 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "ProductsBrand". R1C2 /cttree/R0/R1/R1C1/R1C2 32 This contains elements from combining R1, C1 and C2. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand", and two distinct values of "PeriodYear". Therefore, the combination is 4 X 4 X 2 è 32. T1 /cttree/R0/R1/R1C1/R1C2/T1 32 The sum of measure 1 "Revenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". T2 /cttree/R0/R1/R1C1/R1C2/T2 32 The sum of measure 2 "PrevRevenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". R2 /cttree/R0/R1/R2 18 This contains elements from combining R1 "Region" and R2 "District". Since the list of values in R2 has dependency on R1, therefore the number of entries is not just a simple multiplication. H /cttree/R0/R1/R2/H 18 The row header label for R2 "District". R1N /cttree/R0/R1/R2/R1N 18 The R2 position number within R1. This is used to check if it is the last row, and draw table border accordingly. T1 /cttree/R0/R1/R2/T1 18 The sum of measure 1 "Revenue" for each combination "Region" and "District". T2 /cttree/R0/R1/R2/T2 18 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "District". R2C1 /cttree/R0/R1/R2/R2C1 72 This contains elements from combining R1, R2 and C1. T1 /cttree/R0/R1/R2/R2C1/T1 72 The sum of measure 1 "Revenue" for each combination of "Region", "District" and "ProductsBrand". T2 /cttree/R0/R1/R2/R2C1/T2 72 The sum of measure 2 "PrevRevenue" for each combination of "Region", "District" and "ProductsBrand". R2C2 /cttree/R0/R1/R2/R2C1/R2C2 144 This contains elements from combining R1, R2, C1 and C2, which gives the finest level of details. M1 /cttree/R0/R1/R2/R2C1/R2C2/M1 144 The sum of measure 1 "Revenue". M2 /cttree/R0/R1/R2/R2C1/R2C2/M2 144 The sum of measure 2 "PrevRevenue". Lots to read and digest I know! Customization One new feature I discovered this week is the ability to show one column and sort by another. I had a data set that was extracting month abbreviations, we wanted to show the months across the top and some row headers to the side. As you may know XSL is not great with dates, especially recognising month names. It just wants to sort them alphabetically, so Apr comes before Jan, etc. A way around this is to generate a month number alongside the month and use that to sort. We can do that in the crosstab, sadly its not exposed in the UI yet but its doable. Go back up and take a look a the initial crosstab command. especially the Rows and Columns entries. In there you will find the sort criteria. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" Notice those leading commas inside the curly braces? Because there is no field preceding them it means that the crosstab should sort on the column before the brace ie PeriodYear. But you can insert another column in the data set to sort by. To get my sort working how I needed. <?crosstab:c794;"current-group()";"_Fund_Type_._Fund_Type_Display_{_Fund_Type_._Fund_Type_Sort_,o=a,t=n}";"_Fiscal_Period__Amount__._Amt_Fm_Disp_Abbr_{_Fiscal_Period__Amount__._Amt_Fiscal_Month_Sort_,o=a,t=n}";"_Execution_Facts_._Amt_";"sum"?> Excuse the horribly verbose XML tags, good ol BIEE :0) The emboldened columns are not in the crosstab but are in the data set. I just opened up the field, dropped them in and changed the type(t) value to be 'n', for number, instead of the default 'a' and my crosstab started sorting how I wanted it. If you find other tips and tricks, please share in the comments.

    Read the article

< Previous Page | 464 465 466 467 468 469 470 471 472 473 474 475  | Next Page >