Search Results

Search found 37966 results on 1519 pages for 'string compare'.

Page 486/1519 | < Previous Page | 482 483 484 485 486 487 488 489 490 491 492 493  | Next Page >

  • SQL SERVER – Quiz and Video – Introduction to Hierarchical Query using a Recursive CTE

    - by pinaldave
    This blog post is inspired from SQL Queries Joes 2 Pros: SQL Query Techniques For Microsoft SQL Server 2008 – SQL Exam Prep Series 70-433 – Volume 2.[Amazon] | [Flipkart] | [Kindle] | [IndiaPlaza] This is follow up blog post of my earlier blog post on the same subject - SQL SERVER – Introduction to Hierarchical Query using a Recursive CTE – A Primer. In the article we discussed various basics terminology of the CTE. The article further covers following important concepts of common table expression. What is a Common Table Expression (CTE) Building a Recursive CTE Identify the Anchor and Recursive Query Add the Anchor and Recursive query to a CTE Add an expression to track hierarchical level Add a self-referencing INNER JOIN statement Above six are the most important concepts related to CTE and SQL Server.  There are many more things one has to learn but without beginners fundamentals one can’t learn the advanced  concepts. Let us have small quiz and check how many of you get the fundamentals right. Quiz 1) You have an employee table with the following data. EmpID FirstName LastName MgrID 1 David Kennson 11 2 Eric Bender 11 3 Lisa Kendall 4 4 David Lonning 11 5 John Marshbank 4 6 James Newton 3 7 Sally Smith NULL You need to write a recursive CTE that shows the EmpID, FirstName, LastName, MgrID, and employee level. The CEO should be listed at Level 1. All people who work for the CEO will be listed at Level 2. All of the people who work for those people will be listed at Level 3. Which CTE code will achieve this result? WITH EmpList AS (SELECT Boss.EmpID, Boss.FName, Boss.LName, Boss.MgrID, 1 AS Lvl FROM Employee AS Boss WHERE Boss.MgrID IS NULL UNION ALL SELECT E.EmpID, E.FirstName, E.LastName, E.MgrID, EmpList.Lvl + 1 FROM Employee AS E INNER JOIN EmpList ON E.MgrID = EmpList.EmpID) SELECT * FROM EmpList WITH EmpListAS (SELECT EmpID, FirstName, LastName, MgrID, 1 as Lvl FROM Employee WHERE MgrID IS NULL UNION ALL SELECT EmpID, FirstName, LastName, MgrID, 2 as Lvl ) SELECT * FROM BossList WITH EmpList AS (SELECT EmpID, FirstName, LastName, MgrID, 1 as Lvl FROM Employee WHERE MgrID is NOT NULL UNION SELECT EmpID, FirstName, LastName, MgrID, BossList.Lvl + 1 FROM Employee INNER JOIN EmpList BossList ON Employee.MgrID = BossList.EmpID) SELECT * FROM EmpList 2) You have a table named Employee. The EmployeeID of each employee’s manager is in the ManagerID column. You need to write a recursive query that produces a list of employees and their manager. The query must also include the employee’s level in the hierarchy. You write the following code segment: WITH EmployeeList (EmployeeID, FullName, ManagerName, Level) AS ( –PICK ANSWER CODE HERE ) SELECT EmployeeID, FullName, ” AS [ManagerID], 1 AS [Level] FROM Employee WHERE ManagerID IS NULL UNION ALL SELECT emp.EmployeeID, emp.FullName mgr.FullName, 1 + 1 AS [Level] FROM Employee emp JOIN Employee mgr ON emp.ManagerID = mgr.EmployeeId SELECT EmployeeID, FullName, ” AS [ManagerID], 1 AS [Level] FROM Employee WHERE ManagerID IS NULL UNION ALL SELECT emp.EmployeeID, emp.FullName, mgr.FullName, mgr.Level + 1 FROM EmployeeList mgr JOIN Employee emp ON emp.ManagerID = mgr.EmployeeId Now make sure that you write down all the answers on the piece of paper. Watch following video and read earlier article over here. If you want to change the answer you still have chance. Solution 1) 1 2) 2 Now compare let us check the answers and compare your answers to following answers. I am very confident you will get them correct. Available at USA: Amazon India: Flipkart | IndiaPlaza Volume: 1, 2, 3, 4, 5 Please leave your feedback in the comment area for the quiz and video. Did you know all the answers of the quiz? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • System.Threading.ThreadAbortException executing WCF service

    - by SURESH GIRIRAJAN
    In one of our prod server we recently ran into issue when we went and update the web.config and try to browse the service. We started seeing the service was not responding and getting the following warning in the application log. Our service is WCF service, BizTalk orchestration exposed as service. We have other prod server where we never ran into this issue, so what’s different with this server. After going thru lot of forum and came up on some Microsoft service pack and hot fix which related to FCN. But I don’t want to apply any patch on this server then we need to do on all the other servers too. So solution is simple, I dropped the existing website, created a new site with different name with updated web.config browse the service. Then dropped that site and recreate the original web site and it worked fine without any issue. Event Viewer:  Event Type:        Warning Event Source:    ASP.NET 2.0.50727.0 Event Category:                Web Event Event ID:              1309 Date:                     6/6/2011 Time:                    5:41:42 PM User:                     N/A Computer:          PRODP02 Description: Event code: 3005 Event message: An unhandled exception has occurred. Event time: 6/6/2011 5:41:42 PM Event time (UTC): 6/6/2011 9:41:42 PM Event ID: a71769f42b304355a58c482bfec267f2 Event sequence: 3 Event occurrence: 1 Event detail code: 0  Application information:     Application domain: /LM/W3SVC/518296899/ROOT/PortArrivals-2-129518698821558995     Trust level: Full     Application Virtual Path: /TESTSVC     Application Path: D:\inetpub\wwwroot\RFID\TESTSVC\     Machine name: PRODP02  Process information:     Process ID: 8752     Process name: w3wp.exe     Account name: domain\BizTalk_Svc_Hostlso  Exception information:     Exception type: ThreadAbortException     Exception message: Thread was being aborted.  Request information:     Request URL: http://localhost:81/TESTSVC/TESTSVCS.svc     Request path: /TESTSVC/TESTSVCS.svc     User host address: 127.0.0.1     User:      Is authenticated: False     Authentication Type:      Thread account name: domain\BizTalk_Svc_Hostlso  Thread information:     Thread ID: 22     Thread account name: domain\BizTalk_Svc_Hostlso     Is impersonating: False     Stack trace:    at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously)    at System.Web.HttpApplication.ApplicationStepManager.ResumeSteps(Exception error)  at System.Web.HttpApplication.System.Web.IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb, Object extraData)    at System.Web.HttpRuntime.ProcessRequestInternal(HttpWorkerRequest wr)  <Description>Handling an exception.</Description> <AppDomain>/LM/W3SVC/518296899/ROOT/TESTSVC-6-129518741899334691</AppDomain> <Exception> <ExceptionType>System.Threading.ThreadAbortException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</ExceptionType> <Message>Thread was being aborted.</Message> <StackTrace> at System.Threading.Monitor.Enter(Object obj) at System.ServiceModel.ServiceHostingEnvironment.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath) at System.ServiceModel.ServiceHostingEnvironment.EnsureServiceAvailableFast(String relativeVirtualPath) at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.HandleRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.BeginRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.OnBeginRequest(Object state) at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.WorkItem.Invoke2() at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.WorkItem.Invoke() at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.ProcessCallbacks() at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.CompletionCallback(Object state) at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.ScheduledOverlapped.IOCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* nativeOverlapped) at System.ServiceModel.Diagnostics.Utility.IOCompletionThunk.UnhandledExceptionFrame(UInt32 error, UInt32 bytesRead, NativeOverlapped* nativeOverlapped) </StackTrace> <ExceptionString>System.Threading.ThreadAbortException: Thread was being aborted.    at System.Threading.Monitor.Enter(Object obj)    at System.ServiceModel.ServiceHostingEnvironment.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath)    at System.ServiceModel.ServiceHostingEnvironment.EnsureServiceAvailableFast(String relativeVirtualPath)    at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.HandleRequest()    at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.BeginRequest()    at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.OnBeginRequest(Object state)    at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.WorkItem.Invoke2()    at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.WorkItem.Invoke()    at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.ProcessCallbacks()    at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.CompletionCallback(Object state)    at System.ServiceModel.Channels.IOThreadScheduler.CriticalHelper.ScheduledOverlapped.IOCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* nativeOverlapped)    at System.ServiceModel.Diagnostics.Utility.IOCompletionThunk.UnhandledExceptionFrame(UInt32 error, UInt32 bytesRead, NativeOverlapped* nativeOverlapped)</ExceptionString>

    Read the article

  • Nagios notifications definitions

    - by Colin
    I am trying to monitor a web server in such a way that I want to search for a particular string on a page via http. The command is defined in command.cfg as follows # 'check_http-mysite command definition' define command { command_name check_http-mysite command_line /usr/lib/nagios/plugins/check_http -H mysite.example.com -s "Some text" } # 'notify-host-by-sms' command definition define command { command_name notify-host-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$ :Host$HOSTALIAS$ is $HOSTSTATE$ ($OUTPUT$)" } # 'notify-service-by-sms' command definition define command { command_name notify-service-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ ($OUTPUT$)" } Now if nagios doesn't find "Some text" on the home page mysite.example.com, nagios should notify a contact via sms through the Clickatell http API which I have a script for that that I have tested and found that it works fine. Whenever I change the command definition to search for a string which is not on the page, and restart nagios, I can see on the web interface that the string was not found. What I don't understand is why isn't the notification sent though I have defined the host, hostgroup, contact, contactgroup and service and so forth. What I'm I missing, these are my definitions, In my web access through the cgi I can see that I have notifications have been defined and enabled though I don't get both email and sms notifications during hard status changes. host.cfg define host { use generic-host host_name HAL alias IBM-1 address xxx.xxx.xxx.xxx check_command check_http-mysite } *hostgroups_nagios2.cfg* # my website define hostgroup{ hostgroup_name my-servers alias All My Servers members HAL } *contacts_nagios2.cfg* define contact { contact_name colin alias Colin Y service_notification_period 24x7 host_notification_period 24x7 service_notification_options w,u,c,r,f,s host_notification_options d,u,r,f,s service_notification_commands notify-service-by-email,notify-service-by-sms host_notification_commands notify-host-by-email,notify-host-by-sms email [email protected] pager +254xxxxxxxxx } define contactgroup{ contactgroup_name site_admin alias Site Administrator members colin } *services_nagios2.cfg* # check for particular string in page via http define service { hostgroup_name my-servers service_description STRING CHECK check_command check_http-mysite use generic-service notification_interval 0 ; set > 0 if you want to be renotified contacts colin contact_groups site_admin } Could someone please tell me where I'm going wrong. Here are the generic-host and generic-service definitions *generic-service_nagios2.cfg* # generic service template definition define service{ name generic-service ; The 'name' of this service template active_checks_enabled 1 ; Active service checks are enabled passive_checks_enabled 1 ; Passive service checks are enabled/accepted parallelize_check 1 ; Active service checks should be parallelized (disabling this can lead to major performance problems) obsess_over_service 1 ; We should obsess over this service (if necessary) check_freshness 0 ; Default is to NOT check service 'freshness' notifications_enabled 1 ; Service notifications are enabled event_handler_enabled 1 ; Service event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts notification_interval 0 ; Only send notifications on status change by default. is_volatile 0 check_period 24x7 normal_check_interval 5 retry_check_interval 1 max_check_attempts 4 notification_period 24x7 notification_options w,u,c,r contact_groups site_admin register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE! } *generic-host_nagios2.cfg* define host{ name generic-host ; The name of this host template notifications_enabled 1 ; Host notifications are enabled event_handler_enabled 1 ; Host event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts max_check_attempts 10 notification_interval 0 notification_period 24x7 notification_options d,u,r contact_groups site_admin register 1 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE! }

    Read the article

  • Monitor and Control Memory Usage in Google Chrome

    - by Asian Angel
    Do you want to know just how much memory Google Chrome and any installed extensions are using at a given moment? With just a few clicks you can see just what is going on under the hood of your browser. How Much Memory are the Extensions Using? Here is our test browser with a new tab and the Extensions Page open, five enabled extensions, and one disabled at the moment. You can access Chrome’s Task Manager using the Page Menu, going to Developer, and selecting Task manager… Or by right clicking on the Tab Bar and selecting Task manager. There is also a keyboard shortcut (Shift + Esc) available for the “keyboard ninjas”. Sitting idle as shown above here are the stats for our test browser. All of the extensions are sitting there eating memory even though some of them are not available/active for use on our new tab and Extensions Page. Not so good… If the default layout is not to your liking then you can easily modify the information that is available by right clicking and adding/removing extra columns as desired. For our example we added Shared Memory & Private Memory. Using the about:memory Page to View Memory Usage Want even more detail? Type about:memory into the Address Bar and press Enter. Note: You can also access this page by clicking on the Stats for nerds Link in the lower left corner of the Task Manager Window. Focusing on the four distinct areas you can see the exact version of Chrome that is currently installed on your system… View the Memory & Virtual Memory statistics for Chrome… Note: If you have other browsers running at the same time you can view statistics for them here too. See a list of the Processes currently running… And the Memory & Virtual Memory statistics for those processes. The Difference with the Extensions Disabled Just for fun we decided to disable all of the extension in our test browser… The Task Manager Window is looking rather empty now but the memory consumption has definitely seen an improvement. Comparing Memory Usage for Two Extensions with Similar Functions For our next step we decided to compare the memory usage for two extensions with similar functionality. This can be helpful if you are wanting to keep memory consumption trimmed down as much as possible when deciding between similar extensions. First up was Speed Dial”(see our review here). The stats for Speed Dial…quite a change from what was shown above (~3,000 – 6,000 K). Next up was Incredible StartPage (see our review here). Surprisingly both were nearly identical in the amount of memory being used. Purging Memory Perhaps you like the idea of being able to “purge” some of that excess memory consumption. With a simple command switch modification to Chrome’s shortcut(s) you can add a Purge Memory Button to the Task Manager Window as shown below.  Notice the amount of memory being consumed at the moment… Note: The tutorial for adding the command switch can be found here. One quick click and there is a noticeable drop in memory consumption. Conclusion We hope that our examples here will prove useful to you in managing the memory consumption in your own Google Chrome installation. If you have a computer with limited resources every little bit definitely helps out. Similar Articles Productive Geek Tips Stupid Geek Tricks: Compare Your Browser’s Memory Usage with Google ChromeMonitor CPU, Memory, and Disk IO In Windows 7 with Taskbar MetersFix for Firefox memory leak on WindowsHow to Purge Memory in Google ChromeHow to Make Google Chrome Your Default Browser TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs

    Read the article

  • AppKata - Enter the next level of programming exercises

    - by Ralf Westphal
    Doing CodeKatas is all the rage lately. That´s great since widely accepted exercises are important to further the art. They provide a means of communication across platforms and allow to compare results which is part of any deliberate practice. But CodeKatas suffer from their size. They are intentionally small, so they can be done again and again. Repetition helps to build habit and to dig deeper. Over time ever new nuances of the problem or one´s approach become visible. On the other hand, though, their small size limits the methods, techniques, technologies that can be applied. To improve your TDD skills doing CodeKatas might be enough. But what about other skills? Developing on a software in a team, designing larger pieces of software, iteratively releasing software… all this and more is kinda hard to train using the tiny CodeKata problems. That´s why I´d like to present here another kind of kata I call Application Kata (or just AppKata). AppKatas are larger programming problems. They require the development of “whole” applications, i.e. not just one class or method, but bunches of classes accessible through a user interface. Also AppKata problems always are split into iterations. To get the most out of them, just look at the requirements of one iteration at a time. This way you´re closer to reality where requirements evolve in unexpected ways. So if you´re looking for more of a challenge for your software development skills, check out these AppKatas – or invent your own. AppKatas are platform independent like CodeKatas. Use whatever programming language and IDE you like. Also use whatever approach to software development you like. Just be sensitive to how easy it is to evolve your code across iterations. Reflect on what went well and what not. Compare your solutions with others. Or – for even more challenge – go for the “Coding Carousel” (see below). CSV Viewer An application to view CSV files. Sounds easy, but watch out! Requirements sometimes drastically change if the customer is happy with what you delivered. Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 (to come) Questionnaire If you like GUI programming, this AppKata might be for you. It´s about an app to let people fill out questionnaires. Also this problem might be interestin for you, if you´re into DDD. Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Tic Tac Toe For developers who like game programming. Although Tic Tac Toe is a trivial game, this AppKata poses some interesting infrastructure challenges. The GUI, however, stays simple; leave any 3D ambitions at home ;-) Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Iteration 5 (to come) Coding Carousel There are many ways you can do AppKatas. Work on them alone or in a team, pitch several devs against each other in an AppKata contest – or go around in a Coding Carousel. For the Coding Carousel you need at least 3 dev teams (regardless of size). All teams work on the same iteration at the same time. But here´s the trick: After each iteration the teams swap their code. Whatever they did for iteration n will be the basis for changes another team has to apply in iteration n+1. The code is going around the teams like in a carousel. I promise you, that´s gonna be fun! :-)

    Read the article

  • Improving WIF&rsquo;s Claims-based Authorization - Part 1

    - by Your DisplayName here!
    As mentioned in my last post, I made several additions to WIF’s built-in authorization infrastructure to make it more flexible and easy to use. The foundation for all this work is that you have to be able to directly call the registered ClaimsAuthorizationManager. The following snippet is the universal way to get to the WIF configuration that is currently in effect: public static ServiceConfiguration ServiceConfiguration {     get     {         if (OperationContext.Current == null)         {             // no WCF             return FederatedAuthentication.ServiceConfiguration;         }         // search message property         if (OperationContext.Current.IncomingMessageProperties. ContainsKey("ServiceConfiguration"))         {             var configuration = OperationContext.Current. IncomingMessageProperties["ServiceConfiguration"] as ServiceConfiguration;             if (configuration != null)             {                 return configuration;             }         }         // return configuration from configuration file         return new ServiceConfiguration();     } }   From here you can grab ServiceConfiguration.ClaimsAuthoriationManager which give you direct access to the CheckAccess method (and thus control over claim types and values). I then created the following wrapper methods: public static bool CheckAccess(string resource, string action) {     return CheckAccess(resource, action, Thread.CurrentPrincipal as IClaimsPrincipal); } public static bool CheckAccess(string resource, string action, IClaimsPrincipal principal) {     var context = new AuthorizationContext(principal, resource, action);     return AuthorizationManager.CheckAccess(context); } public static bool CheckAccess(Collection<Claim> actions, Collection<Claim> resources) {     return CheckAccess(new AuthorizationContext(         Thread.CurrentPrincipal.AsClaimsPrincipal(), resources, actions)); } public static bool CheckAccess(AuthorizationContext context) {     return AuthorizationManager.CheckAccess(context); } I also created the same set of methods but called DemandAccess. They internally use CheckAccess and will throw a SecurityException when false is returned. All the code is part of Thinktecture.IdentityModel on Codeplex – or via NuGet (Install-Package Thinktecture.IdentityModel).

    Read the article

  • Acr.ExtDirect &ndash; Part 1 &ndash; Method Resolvers

    - by Allan Ritchie
    One of the most important things of any open source libraries in my opinion is to be as open as possible while avoiding having your library become invasive to your code/business model design.  I personally could never stand marking my business and/or data access code with attributes everywhere.  XML also isn’t really a fav with too many people these days since it comes with a startup performance hit and requires runtime compiling.  I find that there is a whole ton of communication libraries out there currently requiring this (ie. WCF, RIA, etc).  Even though Acr.ExtDirect comes with its own set of attributes, you can piggy-back the [ServiceContract] & [OperationContract] attributes from WCF if you choose.  It goes beyond that though, there are 2 others “out-of-the-box” implementations – Convention based & XML Configuration.    Convention – I don’t actually recommend using this one since it opens up all of your public instance methods to remote execution calls. XML Configuration – This isn’t so bad but requires you enter all of your methods and there operation types into the Castle XML configuration & as I said earlier, XML isn’t the fav these days.   So what are your options if you don’t like attributes, convention, or XML Configuration?  Well, Acr.ExtDirect has its own extension base to give the API a list of methods and components to make available for remote execution.  1: public interface IDirectMethodResolver { 2:   3: bool IsServiceType(ComponentModel model, Type type); 4: string GetNamespace(ComponentModel model); 5: string[] GetDirectMethodNames(ComponentModel model); 6: DirectMethodType GetMethodType(ComponentModel model, MethodInfo method); 7: }   Now to implement our own method resolver:   1: public class TestResolver : IDirectMethodResolver { 2:   3: #region IDirectMethodResolver Members 4:   5: /// <summary> 6: /// Determine if you are calling a service 7: /// </summary> 8: /// <param name="model"></param> 9: /// <param name="type"></param> 10: /// <returns></returns> 11: public bool IsServiceType(ComponentModel model, Type type) { 12: return (type.Namespace == "MyBLL.Data"); 13: } 14:   15: /// <summary> 16: /// Return the calling name for the client side 17: /// </summary> 18: /// <param name="model"></param> 19: /// <returns></returns> 20: public string GetNamespace(ComponentModel model) { 21: return model.Name; 22: } 23:   24: public string[] GetDirectMethodNames(ComponentModel model) { 25: switch (model.Name) { 26: case "Products" : 27: return new [] { 28: "GetProducts", 29: "LoadProduct", 30: "Save", 31: "Update" 32: }; 33:   34: case "Categories" : 35: return new [] { 36: "GetProducts" 37: }; 38:   39: default : 40: throw new ArgumentException("Invalid type"); 41: } 42: } 43:   44: public DirectMethodType GetMethodType(ComponentModel model, MethodInfo method) { 45: if (method.Name.StartsWith("Save") || method.Name.StartsWith("Update")) 46: return DirectMethodType.FormSubmit; 47: 48: else if (method.Name.StartsWith("Load")) 49: return DirectMethodType.FormLoad; 50:   51: else 52: return DirectMethodType.Direct; 53: } 54:   55: #endregion 56: }   And there you have it, your own custom method resolver.  Pretty easy and pretty open ended!

    Read the article

  • MVC Portable Areas &ndash; Deploying Static Files

    - by Steve Michelotti
    This is the second post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources As I’ve been digging more into portable areas, one of the things I’ve liked best is the deployment story which enables my *.aspx, *.ascx pages to be compiled into the assembly as embedded resources rather than having to maintain all those files separately. In traditional web forms, that was always the thing to prevented developers from utilizing *.ascx user controls across projects (see this post for using portable areas in web forms).  However, though the aspx pages are embedded, the supporting static files (e.g., images, css, javascript) are *not*. Most of the demos available online today tend to brush over this issue and focus solely on the aspx side of things. But to create truly robust portable areas, it’s important to have a good story for these supporting files as well.  I’ve been working with two different approaches so far (of course I’d really like to hear if other people are using alternatives). Scenario For the approaches below, the scenario really isn’t that important. It could be something as trivial as this partial view: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <img src="<%: Url.Content("~/images/arrow.gif") %>" /> Hello World! The point is that there needs to be careful consideration for *any* scenario that links to an external file such as an image, *.css, *.js, etc. In the example shown above, it uses the Url.Content() method to convert to a relative path. But this method won’t necessary work depending on how you deploy your portable area. One approach to address this issue is to build your portable area project with MSDeploy/WebDeploy so that it is packaged properly before incorporating into the host application. All of the *.cs files are removed and the project is ready for xcopy deployment – however, I do *not* need the “Views” folder since all of the mark up has been compiled into the assembly as embedded resources. Now in the host application we create a folder called “Modules” and deploy any portable areas as sub-folders under that: At this point we can add a simple assembly reference to the Widget1.dll sitting in the Modules\Widget1\bin folder. I can now render the portable image in my view like any other portable area. However, the problem with that is that the view results in this:   It couldn’t find arrow.gif because it looked for /images/arrow.gif and it was *actually* located at /images/Modules/Widget1/images/arrow.gif. One solution is to make the physical location of the portable configurable from the perspective of the host like this: 1: <appSettings> 2: <add key="Widget1" value="Modules\Widget1"/> 3: </appSettings> Using the <appSettings> section is a little cheesy but it could be better formalized into its own section. In fact, if were you willing to rely on conventions (e.g., “Modules\{areaName}”) then then config could be eliminated completely. With this config in place, we could create our own Html helper method called Url.AreaContent() that “wraps” the OOTB Url.Content() method while simply pre-pending the area location path: 1: public static string AreaContent(this UrlHelper urlHelper, string contentPath) 2: { 3: var areaName = (string)urlHelper.RequestContext.RouteData.DataTokens["area"]; 4: var areaPath = (string)ConfigurationManager.AppSettings[areaName]; 5:   6: return urlHelper.Content("~/" + areaPath + "/" + contentPath); With these two items in place, we just change our Url.Content() call to Url.AreaContent() like this: 1: <img src="<%: Url.AreaContent("/images/arrow.gif") %>" /> Hello World! and the arrow.gif now renders correctly:     Since we’re just using our own Url.AreaContent() rather than the built-in Url.Content(), this solution works for images, *.css, *.js, or any externally referenced files.  Additionally, any images referenced inside a css file will work provided it’s a relative reference and not an absolute reference. An alternative to this approach is to build the static file into the assembly as embedded resources themselves. I’ll explore this in another post (linked at the top).

    Read the article

  • Unit Testing Framework for XQuery

    - by Knut Vatsendvik
    This posting provides a unit testing framework for XQuery using Oracle Service Bus. It allows you to write a test case to run your XQuery transformations in an automated fashion. When the test case is run, the framework returns any differences found in the response. The complete code sample with install instructions can be downloaded from here. Writing a Unit Test You start a new Test Case by creating a Proxy Service from Workshop that comes with Oracle Service Bus. In the General Configuration page select Service Type to be Messaging Service           In the Message Type Configuration page link both the Request & Response Message Type to the TestCase element of the UnitTest.xsd schema                 The TestCase element consists of the following child elements The ID and optional Name element is simply used for reference. The Transformation element is the XQuery resource to be executed. The Input elements represents the input to run the XQuery with. The Output element represents the expected output. These XML documents are “also” represented as an XQuery resource where the XQuery function takes no arguments and returns the XML document. Why not pass the test data with the TestCase? Passing an XML structure in another XML structure is not very easy or at least not very human readable. Therefore it was chosen to represent the test data as an loadable resource in the OSB. However you are free to go ahead with another approach on this if wanted. The XMLDiff elements represents any differences found. A sample on input is shown here. Modeling the Message Flow Then the next step is to model the message flow of the Proxy Service. In the Request Pipeline create a stage node that loads the test case input data.      For this, specify a dynamic XQuery expression that evaluates at runtime to the name of a pre-registered XQuery resource. The expression is of course set by the input data from the test case.           Add a Run stage node. Assign the result of the XQuery, that is to be run, to a context variable. Define a mapping for each of the input variables added in previous stage.     Add a Compare stage. Like with the input data, load the expected output data. Do a compare using XMLDiff XQuery provided where the first argument is the loaded output test data, and the second argument the result from the Run stage. Any differences found is replaced back into the test case XMLDiff element. In case of any unexpected failure while processing, add an Error Handler to the Pipeline to capture the fault. To pass back the result add the following Insert action In the Response Pipeline. A sample on output is shown here.

    Read the article

  • Handling null values and missing object properties in Silverlight 4

    - by PeterTweed
    Before Silverlight 4 to bind a data object to the UI and display a message associated with either a null value or if the binding path was wrong, you would need to write a Converter.  In Silverlight 4 we find the addition of the markup extensions TargetNullValue and FallbackValue that allows us to display a value when a null value is found in the bound to property and display a value when the property being bound to is not found. This post will show you how to use both markup extensions. Steps: 1. Create a new Silverlight 4 application 2. In the body of the MainPage.xaml.cs file replace the MainPage class with the following code:     public partial class MainPage : UserControl     {         public MainPage()         {             InitializeComponent();             this.Loaded += new RoutedEventHandler(MainPage_Loaded);         }           void MainPage_Loaded(object sender, RoutedEventArgs e)         {             person p = new person() { NameValue = "Peter Tweed" };             this.DataContext = p;         }     }       public class person     {         public string NameValue { get; set; }         public string TitleValue { get; set; }     } This code defines a class called person with two properties.  A new instance of the class is created, only defining the value for one of the properties and bound to the DataContext of the page. 3.  In the MainPage.xaml file copy the following XAML into the LayoutRoot grid:         <Grid.RowDefinitions>             <RowDefinition Height="60*" />             <RowDefinition Height="28*" />             <RowDefinition Height="28*" />             <RowDefinition Height="30*" />             <RowDefinition Height="154*" />         </Grid.RowDefinitions>         <Grid.ColumnDefinitions>             <ColumnDefinition Width="86*" />             <ColumnDefinition Width="314*" />         </Grid.ColumnDefinitions>         <TextBlock Grid.Row="1" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock1" Text="Name Value:" VerticalAlignment="Top" />         <TextBlock Grid.Row="2" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock2" Text="Title Value:" VerticalAlignment="Top" />         <TextBlock Grid.Row="3" Height="23" HorizontalAlignment="Left" Margin="32,0,0,0" Name="textBlock3" Text="Non Existant Value:" VerticalAlignment="Top" />         <TextBlock Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left" Name="textBlock4" Text="{Binding NameValue, TargetNullValue='No Name!!!!!!!'}" VerticalAlignment="Top" Margin="6,0,0,0" />         <TextBlock Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left" Name="textBlock5" Text="{Binding TitleValue, TargetNullValue='No Title!!!!!!!'}" VerticalAlignment="Top" Margin="6,0,0,0" />         <TextBlock Grid.Column="1" Grid.Row="3" Height="23" HorizontalAlignment="Left" Margin="6,0,0,0" Name="textBlock6" Text="{Binding AgeValue, FallbackValue='No such property!'}" VerticalAlignment="Top" />    This XAML defines three textblocks – two of which use the TargetNull and one that uses the FallbackValue markup extensions.  4. Run the application and see the person name displayed as defined for the person object, the expected string displayed for the TargetNullValue when no value exists for the boudn property and the expected string displayed for the FallbackValue when the property bound to is not found on the bound object. It's that easy!

    Read the article

  • Unity GUI not in build, but works fine in editor

    - by Darren
    I have: GUITexture attached to an object A script that has GUIStyles created for the Textfield and Buttons that are created in OnGUI(). This script is attached to the same object in number 1 3 GUIText objects each separate from the above. A script that enables the GUITexture and the script in number 1 and 2 respectively This is how it is supposed to work: When I cross the finish line, number 4 script enables number 1 GUITexture component and number 2 script component. The script component uses one of number 3's GUIText objects to show you your best lap time, and also makes a GUI.Textfield for name entry and 2 GUI.Buttons for "Submit" and "Skip". If you hit "Submit" the script will submit the time. No matter which button you press, The remaining 2 GUIText objects from number 3 will show you the top 10 best times. For some reason, when I run it in editor, everything works 100%, but when I'm in different kinds of builds, the results vary. When I am in a webplayer, The GUITexture and the textfield and buttons appear, but the textfield and buttons are plain and have no evidence of GUIStyles. When I click one of the buttons, the score gets submitted but I do not get the fastest times showing. When I am in a standalone build, the GUITexture shows up, but nothing else does. If I remove the GUIStyle parameter of the GUI.Textfield and GUI.Button, they show up. Why am I getting these variations and how can I fix it? Code below: void Start () { Names.text = ""; Times.text = ""; YourBestTime.text = "Your Best Lap: " + bestTime + "\nEnter your name:"; //StartCoroutine(GetTimes("Test")); } void Update() { if (!ShowButtons && !GettingTimes) { StartCoroutine(GetTimes()); GettingTimes = true; } } IEnumerator GetTimes () { Debug.Log("Getting times"); YourBestTime.text = "Loading Best Lap Times"; WWW times_get = new WWW(GetTimesUrl); yield return times_get; WWW names_get = new WWW(GetNamesUrl); yield return names_get; if(times_get.error != null || names_get.error != null) { print("There was an error retrieiving the data: " + names_get.error + times_get.error); } else { Times.text = times_get.text; Names.text = names_get.text; YourBestTime.text = "Your Best Lap: " + bestTime; } } IEnumerator PostLapTime (string Name, string LapTime) { string hash= MD5.Md5Sum(Name + LapTime + secretKey); string bestTime_url = SubmitTimeUrl + "&Name=" + WWW.EscapeURL(Name) + "&LapTime=" + LapTime + "&hash=" + hash; Debug.Log (bestTime_url); // Post the URL to the site and create a download object to get the result. WWW hs_post = new WWW(bestTime_url); //label = "Submitting..."; yield return hs_post; // Wait until the download is done if (hs_post.error != null) { print("There was an error posting the lap time: " + hs_post.error); //label = "Error: " + hs_post.error; //show = false; } else { Debug.Log("Posted: " + hs_post.text); ShowButtons = false; PostingTime = false; } } void OnGUI() { if (ShowButtons) { //makes text box nameString = GUI.TextField( new Rect((Screen.width/2)-111, (Screen.height/2)-130, 222, 25), nameString, 20, TextboxStyle); if (GUI.Button( new Rect( (Screen.width/2-74.0f), (Screen.height/2)- 90, 64, 32), "Submit", ButtonStyle)) { //SUBMIT TIME if (nameString == "") { nameString = "Player"; } if (!PostingTime) { StartCoroutine(PostLapTime(nameString, bestTime)); PostingTime = true; } } else if (GUI.Button( new Rect( (Screen.width/2+10.0f), (Screen.height/2)- 90, 64, 32), "Skip", ButtonStyle)) { ShowButtons = false; } } } }

    Read the article

  • Exploring TCP throughput with DTrace

    - by user12820842
    One key measure to use when assessing TCP throughput is assessing the amount of unacknowledged data in the pipe. This is sometimes termed the Bandwidth Delay Product (BDP) (note that BDP is often used more generally as the product of the link capacity and the end-to-end delay). In DTrace terms, the amount of unacknowledged data in bytes for the connection is the different between the next sequence number to send and the lowest unacknoweldged sequence number (tcps_snxt - tcps_suna). According to the theory, when the number of unacknowledged bytes for the connection is less than the receive window of the peer, the path bandwidth is the limiting factor for throughput. In other words, if we can fill the pipe without the peer TCP complaining (by virtue of its window size reaching 0), we are purely bandwidth-limited. If the peer's receive window is too small however, the sending TCP has to wait for acknowledgements before it can send more data. In this case the round-trip time (RTT) limits throughput. In such cases the effective throughput limit is the window size divided by the RTT, e.g. if the window size is 64K and the RTT is 0.5sec, the throughput is 128K/s. So a neat way to visually determine if the receive window of clients may be too small should be to compare the distribution of BDP values for the server versus the client's advertised receive window. If the BDP distribution overlaps the send window distribution such that it is to the right (or lower down in DTrace since quantizations are displayed vertically), it indicates that the amount of unacknowledged data regularly exceeds the client's receive window, so that it is possible that the sender may have more data to send but is blocked by a zero-window on the client side. In the following example, we compare the distribution of BDP values to the receive window advertised by the receiver (10.175.96.92) for a large file download via http. # dtrace -s tcp_tput.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 6 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 9 4096 | 14 8192 | 27 16384 | 67 32768 |@@ 1464 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32396 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 16384 | 0 32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 17067 65536 | 0 Here we have a puzzle. We can see that the receiver's advertised window is in the 32768-65535 range, while the amount of unacknowledged data in the pipe is largely in the 65536-131071 range. What's going on here? Surely in a case like this we should see zero-window events, since the amount of data in the pipe regularly exceeds the window size of the receiver. We can see that we don't see any zero-window events since the SWND distribution displays no 0 values - it stays within the 32768-65535 range. The explanation is straightforward enough. TCP Window scaling is in operation for this connection - the Window Scale TCP option is used on connection setup to allow a connection to advertise (and have advertised to it) a window greater than 65536 bytes. In this case the scaling shift is 1, so this explains why the SWND values are clustered in the 32768-65535 range rather than the 65536-131071 range - the SWND value needs to be multiplied by two since the reciever is also scaling its window by a shift factor of 1. Here's the simple script that compares BDP and SWND distributions, fixed to take account of window scaling. #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @bdp["BDP(bytes)", args[2]-ip_daddr, args[4]-tcp_sport] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); } tcp:::receive / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @swnd["SWND(bytes)", args[2]-ip_saddr, args[4]-tcp_dport] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } And here's the fixed output. # dtrace -s tcp_tput_scaled.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 39 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 22 16384 | 37 32768 |@ 99 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3858 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 512 | 0 1024 | 1 2048 | 0 4096 | 2 8192 | 4 16384 | 7 32768 | 14 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1956 131072 | 0

    Read the article

  • Hey Retailers, Are You Ready For The Holiday Season?

    - by Jeri Kelley
    With online holiday spending reaching $35.3 billion in 2011 and American shoppers spending just under $750 on average on their holiday purchases this year, how ready is your business for the 2012 holiday season?   ?? Today’s shoppers do not take their purchases lightly.  They are more connected, interact with more resources to make decisions, diligently compare products and services, seek out the best deals, and ask for input from friends and family.   This holiday season, as consumers browse for apparel, tablets, toys, and much more, they will be bombarded with retailer communication - from emails and commercials to countless search engine results and social recommendations.  With a flurry of activity coming at consumers from every channel and competitor, your success this year will rely on communicating a consistent, personalized message no matter where your customers are shopping.  Here are a few ideas to help with your commerce strategy this holiday season: CONSISTENCY COUNTS FOR MULTICHANNEL SHOPPERS??According to a November 2011 study commissioned by Oracle, “Channel Commerce 2011: The Consumer View,” 54% of consumers in the U.S. and Canada regularly employ two or more channels before they make a purchase.  While each channel has its own unique benefit, user profile, and purpose, it’s critical that your shoppers have a consistent core experience wherever they’re looking for information or making a purchase.  Be sure consumers can consistently search and browse the same product information and receive the same promotions online, on their mobile devices, and in-store.? USE YOUR CUSTOMER’S CONTEXT TO SURFACE RELEVANT CONTENTYour Web site is likely the hub of your holiday activity.  According to a Monetate infographic, 39% of shoppers will visit your Web site directly to find out about the best holiday deals.   Use everything you know about your customers from past purchase data to browsing history to provide a relevant experience at every click, and assemble content in a context that entices shoppers to buy online, or influences an offline purchase.? TAKE ADVANTAGE OF MOBILE BEHAVIOR?Having a mobile program is no longer a choice.   Armed with smartphones and tablets, consumers now have access to more and more product information and can compare products and prices from anywhere.  In fact, approximately 52% of smartphone users will use their device to research products, redeem coupons and use apps to assist in their holiday gift purchase.  At a minimum, be sure your mobile environment has store information, consistent pricing and promotions, and simple checkout capabilities. ARM IN-STORE ASSOCIATES WITH TABLETS?According to RISNews.com, 31% of retailers plan to begin testing tablets in stores in 2012, 22% have already begun such testing and 6% had fully deployed tablets within stores.   Take advantage of this compelling sales tool to get shoppers interacting with videos, user reviews, how-to guides, side-by-side product comparisons, and specs.  Automatically trigger upsell and cross sell suggestions for store associates to recommend for each product or category, build in alerts for promotions, and allow associates to place orders and check inventory from their tablet.  ? WISDOM OF THE CROWDS IS GOOD, BUT WISDOM FROM FRIENDS IS BETTER?Shoppers who grapple with options are looking for recommendations; they’d rather get advice from friends, and they’re more likely to spend more while doing so.    In fact, according to an infographic by Mr. Youth, 66% of social media users made a purchase on Black Friday or Cyber Monday as a direct result of social media interactions with brands or family.   This holiday season, be sure you are leveraging your social channels from Facebook to Pinterest to drive consistent promotions and help your brand to become part of the conversation. So, are you ready for the holidays this year?  

    Read the article

  • Design pattern for logging changes in parent/child objects saved to database

    - by andrew
    I’ve got a 2 database tables in parent/child relationship as one-many. I’ve got three classes representing the data in these two tables: Parent Class { Public int ID {get; set;} .. other properties } Child Class { Public int ID {get;set;} Public int ParentID {get; set;} .. other properties } TogetherClass { Public Parent Parent; Public List<Child> ChildList; } Lastly I’ve got a client and server application – I’m in control of both ends so can make changes to both programs as I need to. Client makes a request for ParentID and receives a Together Class for the matching parent, and all of the child records. The client app may make changes to the children – add new children, remove or modify existing ones. Client app then sends the Together Class back to the server app. Server app needs to update the parent and child records in the database. In addition I would like to be able to log the changes – I’m doing this by having 2 separate tables one for Parent, one for child; each containing the same columns as the original plus date time modified, by whom and a list of the changes. I’m unsure as to the best approach to detect the changes in records – new records, records to be deleted, records with no fields changed, records with some fields changed. I figure I need to read the parent & children records and compare those to the ones in the Together Class. Strategy A: If Together class’s child record has an ID of say 0, that indicates a new record; insert. Any deleted child records are no longer in the Together Class; see if any of the comparison child records are not found in the Together class and delete if not found (Compare using ID). Check each child record for changes and if changed log. Strategy B: Make a new Updated TogetherClass UpdatedClass { Public Parent Parent {get; set} Public List<Child> ListNewChild {get;set;} Public List<Child> DeletedChild {get;set;} Public List<Child> ExistingChild {get;set;} // used for no changes and modified rows } And then process as per the list. The reason why I’m asking for ideas is that both of these solutions don’t seem optimal to me and I suspect this problem has been solved already – some kind of design pattern ? I am aware of one potential problem in this general approach – that where Client App A requests a record; App B requests same record; A then saves changes; B then saves changes which may overwrite changes A made. This is a separate locking issue which I’ll raise a separate question for if I’ve got trouble implementing. The actual implementation is c#, SQL Server and WCF between client and server - sharing a library containing the class implementations. Apologies if this is a duplicate post – I tried searching various terms without finding a match though.

    Read the article

  • Oracle Fusion Supply Chain Management (SCM) Designs May Improve End User Productivity

    - by Applications User Experience
    By Applications User Experience on March 10, 2011 Michele Molnar, Senior Usability Engineer, Applications User Experience The Challenge: The SCM User Experience team, in close collaboration with product management and strategy, completely redesigned the user experience for Oracle Fusion applications. One of the goals of this redesign was to increase end user productivity by applying design patterns and guidelines and incorporating findings from extensive usability research. But a question remained: How do we know that the Oracle Fusion designs will actually increase end user productivity? The Test: To answer this question, the SCM Usability Engineers compared Oracle Fusion designs to their corresponding existing Oracle applications using the workflow time analysis method. The workflow time analysis method breaks tasks into a sequence of operators. By applying standard time estimates for all of the operators in the task, an estimate of the overall task time can be calculated. The workflow time analysis method has been recently adopted by the Applications User Experience group for use in predicting end user productivity. Using this method, a design can be tested and refined as needed to improve productivity even before the design is coded. For the study, we selected some of our recent designs for Oracle Fusion Product Information Management (PIM). The designs encompassed tasks performed by Product Managers to create, manage, and define products for their organization. (See Figure 1 for an example.) In applying this method, the SCM Usability Engineers collaborated with Product Management to compare the new Oracle Fusion Applications designs against Oracle’s existing applications. Together, we performed the following activities: Identified the five most frequently performed tasks Created detailed task scenarios that provided the context for each task Conducted task walkthroughs Analyzed and documented the steps and flow required to complete each task Applied standard time estimates to the operators in each task to estimate the overall task completion time Figure 1. The interactions on each Oracle Fusion Product Information Management screen were documented, as indicated by the red highlighting. The task scenario and script provided the context for each task.  The Results: The workflow time analysis method predicted that the Oracle Fusion Applications designs would result in productivity gains in each task, ranging from 8% to 62%, with an overall productivity gain of 43%. All other factors being equal, the new designs should enable these tasks to be completed in about half the time it takes with existing Oracle Applications. Further analysis revealed that these performance gains would be achieved by reducing the number of clicks and screens needed to complete the tasks. Conclusions: Using the workflow time analysis method, we can expect the Oracle Fusion Applications redesign to succeed in improving end user productivity. The workflow time analysis method appears to be an effective and efficient tool for testing, refining, and retesting designs to optimize productivity. The workflow time analysis method does not replace usability testing with end users, but it can be used as an early predictor of design productivity even before designs are coded. We are planning to conduct usability tests later in the development cycle to compare actual end user data with the workflow time analysis results. Such results can potentially be used to validate the productivity improvement predictions. Used together, the workflow time analysis method and usability testing will enable us to continue creating, evaluating, and delivering Oracle Fusion designs that exceed the expectations of our end users, both in the quality of the user experience and in productivity. (For more information about studying productivity, refer to the Measuring User Productivity blog.)

    Read the article

  • Simple Merging Of PDF Documents with iTextSharp 5.4.5.0

    - by Mladen Prajdic
    As we were working on our first SQL Saturday in Slovenia, we came to a point when we had to print out the so-called SpeedPASS's for attendees. This SpeedPASS file is a PDF and contains thier raffle, lunch and admission tickets. The problem is we have to download one PDF per attendee and print that out. And printing more than 10 docs at once is a pain. So I decided to make a little console app that would merge multiple PDF files into a single file that would be much easier to print. I used an open source PDF manipulation library called iTextSharp version 5.4.5.0 This is a console program I used. It’s brilliantly named MergeSpeedPASS. It only has two methods and is really short. Don't let the name fool you It can be used to merge any PDF files. The first parameter is the name of the target PDF file that will be created. The second parameter is the directory containing PDF files to be merged into a single file. using iTextSharp.text; using iTextSharp.text.pdf; using System; using System.IO; namespace MergeSpeedPASS { class Program { static void Main(string[] args) { if (args.Length == 0 || args[0] == "-h" || args[0] == "/h") { Console.WriteLine("Welcome to MergeSpeedPASS. Created by Mladen Prajdic. Uses iTextSharp 5.4.5.0."); Console.WriteLine("Tool to create a single SpeedPASS PDF from all downloaded generated PDFs."); Console.WriteLine(""); Console.WriteLine("Example: MergeSpeedPASS.exe targetFileName sourceDir"); Console.WriteLine(" targetFileName = name of the new merged PDF file. Must include .pdf extension."); Console.WriteLine(" sourceDir = path to the dir containing downloaded attendee SpeedPASS PDFs"); Console.WriteLine(""); Console.WriteLine(@"Example: MergeSpeedPASS.exe MergedSpeedPASS.pdf d:\Downloads\SQLSaturdaySpeedPASSFiles"); } else if (args.Length == 2) CreateMergedPDF(args[0], args[1]); Console.WriteLine(""); Console.WriteLine("Press any key to exit..."); Console.Read(); } static void CreateMergedPDF(string targetPDF, string sourceDir) { using (FileStream stream = new FileStream(targetPDF, FileMode.Create)) { Document pdfDoc = new Document(PageSize.A4); PdfCopy pdf = new PdfCopy(pdfDoc, stream); pdfDoc.Open(); var files = Directory.GetFiles(sourceDir); Console.WriteLine("Merging files count: " + files.Length); int i = 1; foreach (string file in files) { Console.WriteLine(i + ". Adding: " + file); pdf.AddDocument(new PdfReader(file)); i++; } if (pdfDoc != null) pdfDoc.Close(); Console.WriteLine("SpeedPASS PDF merge complete."); } } } } Hope it helps you and have fun.

    Read the article

  • How much is a subscriber worth?

    - by Tom Lewin
    This year at Red Gate, we’ve started providing a way to back up SQL Azure databases and Azure storage. We decided to sell this as a service, instead of a product, which means customers only pay for what they use. Unfortunately for us, it makes figuring out revenue much trickier. With a product like SQL Compare, a customer pays for it, and it’s theirs for good. Sure, we offer support and upgrades, but, fundamentally, the sale is a simple, upfront transaction: we’ve made this product, you need this product, we swap product for money and everyone is happy. With software as a service, it isn’t that easy. The money and product don’t change hands up front. Instead, we provide a service in exchange for a recurring fee. We know someone buying SQL Compare will pay us $X, but we don’t know how long service customers will stay with us, or how much they will spend. How do we find this out? We use lifetime value analysis. What is lifetime value? Lifetime value, or LTV, is how much a customer is worth to the business. For Entrepreneurs has a brilliant write up that we followed to conduct our analysis. Basically, it all boils down to this equation: LTV = ARPU x ALC To make it a bit less of an alphabet-soup and a bit more understandable, we can write it out in full: The lifetime value of a customer equals the average revenue per customer per month, times the average time a customer spends with the service Simple, right? A customer is worth the average spend times the average stay. If customers pay on average $50/month, and stay on average for ten months, then a new customer will, on average, bring in $500 over the time they are a customer! Average spend is easy to work out; it’s revenue divided by customers. The problem comes when we realise that we don’t know exactly how long a customer will stay with us. How can we figure out the average lifetime of a customer, if we only have six months’ worth of data? The answer lies in the fact that: Average Lifetime of a Customer = 1 / Churn Rate The churn rate is the percentage of customers that cancel in a month. If half of your customers cancel each month, then your average customer lifetime is two months. The problem we faced was that we didn’t have enough data to make an estimate of one month’s cancellations reliable (because barely anybody cancels)! To deal with this data problem, we can take data from the last three months instead. This means we have more data to play with. We can still use the equation above, we just need to multiply the final result by three (as we worked out how many three month periods customers stay for, and we want our answer to be in months). Now these estimates are likely to be fairly unreliable; when there’s not a lot of data it pays to be cautious with inference. That said, the numbers we have look fairly consistent, and it’s super easy to revise our estimates when new data comes in. At the very least, these numbers give us a vague idea of whether a subscription business is viable. As far as Cloud Services goes, the business looks very viable indeed, and the low cancellation rates are much more than just data points in LTV equations; they show that the product is working out great for our customers, which is exactly what we’re looking for!

    Read the article

  • how to write the code for this program specially in mathematica? [closed]

    - by asd
    I implemented a solution to the problem below in Mathematica, but it takes a very long time (hours) to compute f of kis or the set B for large numbers. Somebody suggested that implementing this in C++ resulted in a solution in less than 10 minutes. Would C++ be a good language to learn to solve these problems, or can my Mathematica code be improved to fix the performance issues? I don't know anything about C or C++ and it should be difficult to start to learn this languages. I prefer to improve or write new code in mathematica. Problem Description Let $f$ be an arithmetic function and A={k1,k2,...,kn} are integers in increasing order. Now I want to start with k1 and compare f(ki) with f(k1). If f(ki)f(k1), put ki as k1. Now start with ki, and compare f(kj) with f(ki), for ji. If f(kj)f(ki), put kj as ki, and repeat this procedure. At the end we will have a sub sequence B={L1,...,Lm} of A by this property: f(L(i+1))f(L(i)), for any 1<=i<=m-1 For example, let f is the divisor function of integers. Here I put some part of my code and this is just a sample and the question in my program could be more larger than these: «««««««««««««««««««««««««««««««««««« f[n_] := DivisorSigma[0, n]; g[n_] := Product[Prime[i], {i, 1, PrimePi[n]}]; k1 = g[67757] g[353] g[59] g[19] g[11] g[7] g[5]^2 6^3 2^7; k2 = g[67757] g[353] g[59] g[19] g[11] g[7] g[5] 6^5 2^7; k3 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^7; k4 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5] 6^5 2^6; k5 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^8; k6 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^7; k7 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^5 2^6; k8 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^4 2^9; k9 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^7; k10 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5] 6^5 2^7; k11 = g[67759] g[349] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^6; k12 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^8; k13 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^6; k14 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^3 2^9; k15 = g[67757] g[359] g[53] g[19] g[11] g[7] g[5]^2 6^4 2^7; k16 = g[67757] g[359] g[53] g[23] g[11] g[7] g[5] 6^4 2^8; k17 = g[67757] g[359] g[59] g[19] g[11] g[7] g[5] 6^4 2^7; k18 = g[67757] g[359] g[53] g[23] g[11] g[7] g[5] 6^4 2^9; k19 = g[67759] g[353] g[53] g[19] g[11] g[7] g[5] 6^4 2^6; k20 = g[67763] g[347] g[53] g[19] g[11] g[7] g[5] 6^4 2^7; k = Table[k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20]; i = 1; count = 0; For[j = i, j <= 20, j++, If[f[k[[j]]] - f[k[[i]]] > 0, i = j; Print["k",i]; count = count + 1]]; Print["count= ", count] ««««««««««««««««««««««««««««««««««««

    Read the article

  • NHibernate Pitfalls: Custom Types and Detecting Changes

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. NHibernate supports the declaration of properties of user-defined types, that is, not entities, collections or primitive types. These are used for mapping a database columns, of any type, into a different type, which may not even be an entity; think, for example, of a custom user type that converts a BLOB column into an Image. User types must implement interface NHibernate.UserTypes.IUserType. This interface specifies an Equals method that is used for comparing two instances of the user type. If this method returns false, the entity is marked as dirty, and, when the session is flushed, will trigger an UPDATE. So, in your custom user type, you must implement this carefully so that it is not mistakenly considered changed. For example, you can cache the original column value inside of it, and compare it with the one in the other instance. Let’s see an example implementation of a custom user type that converts a Byte[] from a BLOB column into an Image: 1: [Serializable] 2: public sealed class ImageUserType : IUserType 3: { 4: private Byte[] data = null; 5: 6: public ImageUserType() 7: { 8: this.ImageFormat = ImageFormat.Png; 9: } 10: 11: public ImageFormat ImageFormat 12: { 13: get; 14: set; 15: } 16: 17: public Boolean IsMutable 18: { 19: get 20: { 21: return (true); 22: } 23: } 24: 25: public Object Assemble(Object cached, Object owner) 26: { 27: return (cached); 28: } 29: 30: public Object DeepCopy(Object value) 31: { 32: return (value); 33: } 34: 35: public Object Disassemble(Object value) 36: { 37: return (value); 38: } 39: 40: public new Boolean Equals(Object x, Object y) 41: { 42: return (Object.Equals(x, y)); 43: } 44: 45: public Int32 GetHashCode(Object x) 46: { 47: return ((x != null) ? x.GetHashCode() : 0); 48: } 49: 50: public override Int32 GetHashCode() 51: { 52: return ((this.data != null) ? this.data.GetHashCode() : 0); 53: } 54: 55: public override Boolean Equals(Object obj) 56: { 57: ImageUserType other = obj as ImageUserType; 58: 59: if (other == null) 60: { 61: return (false); 62: } 63: 64: if (Object.ReferenceEquals(this, other) == true) 65: { 66: return (true); 67: } 68: 69: return (this.data.SequenceEqual(other.data)); 70: } 71: 72: public Object NullSafeGet(IDataReader rs, String[] names, Object owner) 73: { 74: Int32 index = rs.GetOrdinal(names[0]); 75: Byte[] data = rs.GetValue(index) as Byte[]; 76: 77: this.data = data as Byte[]; 78: 79: if (data == null) 80: { 81: return (null); 82: } 83: 84: using (MemoryStream stream = new MemoryStream(this.data ?? new Byte[0])) 85: { 86: return (Image.FromStream(stream)); 87: } 88: } 89: 90: public void NullSafeSet(IDbCommand cmd, Object value, Int32 index) 91: { 92: if (value != null) 93: { 94: Image data = value as Image; 95: 96: using (MemoryStream stream = new MemoryStream()) 97: { 98: data.Save(stream, this.ImageFormat); 99: value = stream.ToArray(); 100: } 101: } 102: 103: (cmd.Parameters[index] as DbParameter).Value = value ?? DBNull.Value; 104: } 105: 106: public Object Replace(Object original, Object target, Object owner) 107: { 108: return (original); 109: } 110: 111: public Type ReturnedType 112: { 113: get 114: { 115: return (typeof(Image)); 116: } 117: } 118: 119: public SqlType[] SqlTypes 120: { 121: get 122: { 123: return (new SqlType[] { new SqlType(DbType.Binary) }); 124: } 125: } 126: } In this case, we need to cache the original Byte[] data because it’s not easy to compare two Image instances, unless, of course, they are the same.

    Read the article

  • Designing An ACL Based Permission System

    - by ryanzec
    I am trying to create a permissions system where everything is going to be stored in MySQL (or some database) and pulled using PHP for a project management system I am building.  I am right now trying to do it is an ACL kind of way.  There are a number key features I want to be able to support: 1.  Being able to assign permissions without being tied to a specific object. The reason for this is that I want to be able to selectively show/hide elements of the UI based on permissions at a point where I am not directly looking at a domain object instance.  For instance, a button to create a new project should only should only be shown to users that have the pm.project.create permission but obviously you can assign a create permission to an domain object instance (as it is already created). 2.  Not have to assign permissions for every single object. Obviously creating permissions entries for every single object (projects, tickets, comments, etc…) would become a nightmare to maintain so I want to have some level of permission inheritance. *3.  Be able to filter queries based on permissions. This would be a really nice to have but I am not sure if it is possible.  What I mean by this is say I have a page that list all projects.  I want the query that pulls all projects to incorporate the ACL so that it would not show projects that the current user does not have pm.project.read access to.  This would have to be incorporated into the main query as if it is a process that is done after that main query (which I know I could do) certain features like pagination become much more difficult. Right now this is my basic design for the tables: AclEntities id - the primary key key - the unique identifier for the domain object (usually the primary key of that object) parentId - the parent of the domain object (like the project object if this was a ticket object) aclDomainObjectId - metadata about the domain object AclDomainObjects id - primary key title - simple string to unique identify the domain object(ie. project, ticket, comment, etc…) fullyQualifiedClassName - the fully qualified class name for use in code (I am using namespaces) There would also be tables mapping AclEntities to Users and UserGroups. I also have this interface that all acl entity based object have to implement: IAclEntity getAclKey() - to the the unique key for this specific instance of the acl domain object (generally return the primary key or a concatenated string of a composite primary key) getAclTitle() - to get the unique title for the domain object (generally just returning a static string) getAclDisplayString() - get the string that represents this entity (generally one or more field on the object) getAclParentEntity() - get the parent acl entity object (or null if no parent) getAclEntity() - get the acl enitty object for this instance of the domain object (or null if one has not been created yet) hasPermission($permissionString, $user = null) - whether or not the user has the permission for this instance of the domain object static getFromAclEntityId($aclEntityId) - get a specific instance of the domain object from an acl entity id. Do any of these features I am looking for seems hard to support or are just way off base? Am I missing or not taking in account anything in my implementation? Is performance something I should keep in mind?

    Read the article

  • I am trying to figure out the best way to understand how to cache domain objects

    - by Brett Ryan
    I've always done this wrong, I'm sure a lot of others have too, hold a reference via a map and write through to DB etc.. I need to do this right, and I just don't know how to go about it. I know how I want my objects to be cached but not sure on how to achieve it. What complicates things is that I need to do this for a legacy system where the DB can change without notice to my application. So in the context of a web application, let's say I have a WidgetService which has several methods: Widget getWidget(); Collection<Widget> getAllWidgets(); Collection<Widget> getWidgetsByCategory(String categoryCode); Collection<Widget> getWidgetsByContainer(Integer parentContainer); Collection<Widget> getWidgetsByStatus(String status); Given this, I could decide to cache by method signature, i.e. getWidgetsByCategory("AA") would have a single cache entry, or I could cache widgets individually, which would be difficult I believe; OR, a call to any method would then first cache ALL widgets with a call to getAllWidgets() but getAllWidgets() would produce caches that match all the keys for the other method invocations. For example, take the following untested theoretical code. Collection<Widget> getAllWidgets() { Entity entity = cache.get("ALL_WIDGETS"); Collection<Widget> res; if (entity == null) { res = loadCache(); } else { res = (Collection<Widget>) entity.getValue(); } return res } Collection<Widget> loadCache() { // Get widgets from underlying DB Collection<Widget> res = db.getAllWidgets(); cache.put("ALL_WIDGETS", res); Map<String, List<Widget>> byCat = new HashMap<>(); for (Widget w : res) { // cache by different types of method calls, i.e. by category if (!byCat.containsKey(widget.getCategory()) { byCat.put(widget.getCategory(), new ArrayList<Widget>); } byCat.get(widget.getCatgory(), widget); } cacheCategories(byCat); return res; } Collection<Widget> getWidgetsByCategory(String categoryCode) { CategoryCacheKey key = new CategoryCacheKey(categoryCode); Entity ent = cache.get(key); if (entity == null) { loadCache(); } ent = cache.get(key); return ent == null ? Collections.emptyList() : (Collection<Widget>)ent.getValue(); } NOTE: I have not worked with a cache manager, the above code illustrates cache as some object that may hold caches by key/value pairs, though it's not modelled on any specific implementation. Using this I have the benefit of being able to cache all objects in the different ways they will be called with only single objects on the heap, whereas if I were to cache the method call invocation via say Spring It would (I believe) cache multiple copies of the objects. I really wish to try and understand the best ways to cache domain objects before I go down the wrong path and make it harder for myself later. I have read the documentation on the Ehcache website and found various articles of interest, but nothing to give a good solid technique. Since I'm working with an ERP system, some DB calls are very complicated, not that the DB is slow, but the business representation of the domain objects makes it very clumsy, coupled with the fact that there are actually 11 different DB's where information can be contained that this application is consolidating in a single view, this makes caching quite important.

    Read the article

  • Server-Sent Events using GlassFish (TOTD #179)

    - by arungupta
    Bhakti blogged about Server-Sent Events on GlassFish and I've been planning to try it out for past some days. Finally, I took some time out today to learn about it and build a simplistic example showcasing the touch points. Server-Sent Events is developed as part of HTML5 specification and provides push notifications from a server to a browser client in the form of DOM events. It is defined as a cross-browser JavaScript API called EventSource. The client creates an EventSource by requesting a particular URL and registers an onmessage event listener to receive the event notifications. This can be done as shown var url = 'http://' + document.location.host + '/glassfish-sse/simple';eventSource = new EventSource(url);eventSource.onmessage = function (event) { var theParagraph = document.createElement('p'); theParagraph.innerHTML = event.data.toString(); document.body.appendChild(theParagraph);} This code subscribes to a URL, receives the data in the event listener, adds it to a HTML paragraph element, and displays it in the document. This is where you'll parse JSON and other processing to display if some other data format is received from the URL. The URL to which the EventSource is subscribed to is updated on the server side and there are multipe ways to do that. GlassFish 4.0 provide support for Server-Sent Events and it can be achieved registering a handler as shown below: @ServerSentEvent("/simple")public class MySimpleHandler extends ServerSentEventHandler { public void sendMessage(String data) { try { connection.sendMessage(data); } catch (IOException ex) { . . . } }} And then events can be sent to this handler using a singleton session bean as shown: @Startup@Statelesspublic class SimpleEvent { @Inject @ServerSentEventContext("/simple") ServerSentEventHandlerContext<MySimpleHandler> simpleHandlers; @Schedule(hour="*", minute="*", second="*/10") public void sendDate() { for(MySimpleHandler handler : simpleHandlers.getHandlers()) { handler.sendMessage(new Date().toString()); } }} This stateless session bean injects ServerSentEventHandlers listening on "/simple" path. Note, there may be multiple handlers listening on this path. The sendDate method triggers every 10 seconds and send the current timestamp to all the handlers. The client side browser simply displays the string. The HTTP request headers look like: Accept: text/event-streamAccept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3Accept-Encoding: gzip,deflate,sdchAccept-Language: en-US,en;q=0.8Cache-Control: no-cacheConnection: keep-aliveCookie: JSESSIONID=97ff28773ea6a085e11131acf47bHost: localhost:8080Referer: http://localhost:8080/glassfish-sse/faces/index2.xhtmlUser-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.54 Safari/536.5 And the response headers as: Content-Type: text/event-streamDate: Thu, 14 Jun 2012 21:16:10 GMTServer: GlassFish Server Open Source Edition 4.0Transfer-Encoding: chunkedX-Powered-By: Servlet/3.0 JSP/2.2 (GlassFish Server Open Source Edition 4.0 Java/Apple Inc./1.6) Notice, the MIME type of the messages from server to the client is text/event-stream and that is defined by the specification. The code in Bhakti's blog can be further simplified by using the recently-introduced Twitter API for Java as shown below: @Schedule(hour="*", minute="*", second="*/10") public void sendTweets() { for(MyTwitterHandler handler : twitterHandler.getHandlers()) { String result = twitter.search("glassfish", String.class); handler.sendMessage(result); }} The complete source explained in this blog can be downloaded here and tried on GlassFish 4.0 build 34. The latest promoted build can be downloaded from here and the complete source code for the API and implementation is here. I tried this sample on Chrome Version 19.0.1084.54 on Mac OS X 10.7.3.

    Read the article

  • With a little effort you can &ldquo;SEMI&rdquo;-protect your C# assemblies with obfuscation.

    - by mbcrump
    This method will not protect your assemblies from a experienced hacker. Everyday we see new keygens, cracks, serials being released that contain ways around copy protection from small companies. This is a simple process that will make a lot of hackers quit because so many others use nothing. If you were a thief would you pick the house that has security signs and an alarm or one that has nothing? To so begin: Obfuscation is the concealment of meaning in communication, making it confusing and harder to interpret. Lets begin by looking at the cartoon below:     You are probably familiar with the term and probably ignored this like most programmers ignore user security. Today, I’m going to show you reflection and a way to obfuscate it. Please understand that I am aware of ways around this, but I believe some security is better than no security.  In this sample program below, the code appears exactly as it does in Visual Studio. When the program runs, you get either a true or false in a console window. Sample Program. using System; using System.Diagnostics; using System.Linq;   namespace ObfuscateMe {     class Program     {                static void Main(string[] args)         {               Console.WriteLine(IsProcessOpen("notepad")); //Returns a True or False depending if you have notepad running.             Console.ReadLine();         }             public static bool IsProcessOpen(string name)         {             return Process.GetProcesses().Any(clsProcess => clsProcess.ProcessName.Contains(name));         }     } }   Pretend, that this is a commercial application. The hacker will only have the executable and maybe a few config files, etc. After reviewing the executable, he can determine if it was produced in .NET by examing the file in ILDASM or Redgate’s Reflector. We are going to examine the file using RedGate’s Reflector. Upon launch, we simply drag/drop the exe over to the application. We have the following for the Main method:   and for the IsProcessOpen method:     Without any other knowledge as to how this works, the hacker could export the exe and get vs project build or copy this code in and our application would run. Using Reflector output. using System; using System.Diagnostics; using System.Linq;   namespace ObfuscateMe {     class Program     {                static void Main(string[] args)         {               Console.WriteLine(IsProcessOpen("notepad"));             Console.ReadLine();         }             public static bool IsProcessOpen(string name)         {             return Process.GetProcesses().Any<Process>(delegate(Process clsProcess)             {                 return clsProcess.ProcessName.Contains(name);             });         }       } } The code is not identical, but returns the same value. At this point, with a little bit of effort you could prevent the hacker from reverse engineering your code so quickly by using Eazfuscator.NET. Eazfuscator.NET is just one of many programs built for this. Visual Studio ships with a community version of Dotfoscutor. So download and load Eazfuscator.NET and drag/drop your exectuable/project into the window. It will work for a few minutes depending if you have a quad-core or not. After it finishes, open the executable in RedGate Reflector and you will get the following: Main After Obfuscation IsProcessOpen Method after obfuscation: As you can see with the jumbled characters, it is not as easy as the first example. I am aware of methods around this, but it takes more effort and unless the hacker is up for the challenge, they will just pick another program. This is also helpful if you are a consultant and make clients pay a yearly license fee. This would prevent the average software developer from jumping into your security routine after you have left. I hope this article helped someone. If you have any feedback, please leave it in the comments below.

    Read the article

  • The five steps of business intelligence adoption: where are you?

    - by Red Gate Software BI Tools Team
    When I was in Orlando and New York last month, I spoke to a lot of business intelligence users. What they told me suggested a path of BI adoption. The user’s place on the path depends on the size and sophistication of their organisation. Step 1: A company with a database of customer transactions will often want to examine particular data, like revenue and unit sales over the last period for each product and territory. To do this, they probably use simple SQL queries or stored procedures to produce data on demand. Step 2: The results from step one are saved in an Excel document, so business users can analyse them with filters or pivot tables. Alternatively, SQL Server Reporting Services (SSRS) might be used to generate a report of the SQL query for display on an intranet page. Step 3: If these queries are run frequently, or business users want to explore data from multiple sources more freely, it may become necessary to create a new database structured for analysis rather than CRUD (create, retrieve, update, and delete). For example, data from more than one system — plus external information — may be incorporated into a data warehouse. This can become ‘one source of truth’ for the business’s operational activities. The warehouse will probably have a simple ‘star’ schema, with fact tables representing the measures to be analysed (e.g. unit sales, revenue) and dimension tables defining how this data is aggregated (e.g. by time, region or product). Reports can be generated from the warehouse with Excel, SSRS or other tools. Step 4: Not too long ago, Microsoft introduced an Excel plug-in, PowerPivot, which allows users to bring larger volumes of data into Excel documents and create links between multiple tables.  These BISM Tabular documents can be created by the database owners or other expert Excel users and viewed by anyone with Excel PowerPivot. Sometimes, business users may use PowerPivot to create reports directly from the primary database, bypassing the need for a data warehouse. This can introduce problems when there are misunderstandings of the database structure or no single ‘source of truth’ for key data. Step 5: Steps three or four are often enough to satisfy business intelligence needs, especially if users are sophisticated enough to work with the warehouse in Excel or SSRS. However, sometimes the relationships between data are too complex or the queries which aggregate across periods, regions etc are too slow. In these cases, it can be necessary to formalise how the data is analysed and pre-build some of the aggregations. To do this, a business intelligence professional will typically use SQL Server Analysis Services (SSAS) to create a multidimensional model — or “cube” — that more simply represents key measures and aggregates them across specified dimensions. Step five is where our tool, SSAS Compare, becomes useful, as it helps review and deploy changes from development to production. For us at Red Gate, the primary value of SSAS Compare is to establish a dialog with BI users, so we can develop a portfolio of products that support creation and deployment across a range of report and model types. For example, PowerPivot and the new BISM Tabular model create a potential customer base for tools that extend beyond BI professionals. We’re interested in learning where people are in this story, so we’ve created a six-question survey to find out. Whether you’re at step one or step five, we’d love to know how you use BI so we can decide how to build tools that solve your problems. So if you have a sixty seconds to spare, tell us on the survey!

    Read the article

  • Executing Stored Procedures in Visual Studio LightSwitch.

    - by dataintegration
    A LightSwitch Project is very easy way to visualize and manipulate information directly from one of our ADO.NET Providers. But when it comes to executing the Stored Procedures, it can be a bit more complicated. In this article, we will demonstrate how to execute a Stored Procedure in LightSwitch. For the purposes of this article, we will be using the RSSBus Email Data Provider, but the same process will work with any of our ADO.NET Providers. Creating the RIA Service. Step 1: Open Visual Studio and create a new WCF RIA Service Class Project. Step 2:Add the reference to the RSSBus Email Data Provider dll in the (ProjectName).Web project. Step 3: Add a new Domain Service Class to the (ProjectName).Web project. Step 4: In the new Domain Service Class, create a new class with the attributes needed for the Stored Procedure's parameters. In this demo, the Stored Procedure we are executing is called SendMessage. The parameters we will need are as follows: public class NewMessage{ [Key] public int ID { get; set; } public string FromEmail { get; set; } public string ToEmail { get; set; } public string Subject { get; set; } public string Text { get; set; } } Note: The created class must have an ID which will serve as the key value. Step 5: Create a new method that will executed when the insert event fires. Inside this method you can use the standards ADO.NET code which will execute the stored procedure. [Insert] public void SendMessage(NewMessage newMessage) { try { EmailConnection conn = new EmailConnection(connectionString); EmailCommand comm = new EmailCommand("SendMessage", conn); comm.CommandType = System.Data.CommandType.StoredProcedure; if (!newMessage.FromEmail.Equals("")) comm.Parameters.Add(new EmailParameter("@From", newMessage.FromEmail)); if (!newMessage.ToEmail.Equals("")) comm.Parameters.Add(new EmailParameter("@To", newMessage.ToEmail)); if (!newMessage.Subject.Equals("")) comm.Parameters.Add(new EmailParameter("@Subject", newMessage.Subject)); if (!newMessage.Text.Equals("")) comm.Parameters.Add(new EmailParameter("@Text", newMessage.Text)); comm.ExecuteNonQuery(); } catch (Exception exc) { Console.WriteLine(exc.Message); } } Step 6: Create a query method. We are not going to be using getNewMessages(), so it does not matter what it returns for the purpose of our example, but you will need to create a method for the query event as well. [Query(IsDefault=true)] public IEnumerable<NewMessage> getNewMessages() { return null; } Step 7: Rebuild the whole solution. Creating the LightSwitch Project. Step 8: Open Visual Studio and create a new LightSwitch Application Project. Step 9: On the Data Sources, add a new data source. Choose a WCF RIA Service Step 10: Choose to add a new reference and select the (Project Name).Web.dll generated from the RIA Service. Step 11: Select the entities you would like to import. In this case, we are using the recently created NewMessage entity. Step 13: On the Screens section, create a new screen and select the NewMessage entity as the Screen Data. Step 14: After you run the project, you will be able to add a new record and save it. This will execute the Stored Procedure and send the new message. If you create a screen to check the sent messages, you can refresh this screen to see the mail you sent. Sample Project To help you with get started using stored procedures in LightSwitch, download the fully functional sample project. You will also need the RSSBus Email Data Provider to make the connection. You can download a free trial here.

    Read the article

< Previous Page | 482 483 484 485 486 487 488 489 490 491 492 493  | Next Page >