Search Results

Search found 23207 results on 929 pages for 'node form'.

Page 487/929 | < Previous Page | 483 484 485 486 487 488 489 490 491 492 493 494  | Next Page >

  • Complex Forms Generating Error

    - by user1648020
    I am working on an application that allows students to create a catalog of courses they are taking for a semester. I have created models for user; course; subject and category. Users can have many courses. Each course can have many subjects and categories. The tables for courses, subjects and categories include the following: Catalog: user_id; subject_id, category_id and course_id Courses: user_id; coursedetail_id Coursedetail: name; description Subject: name; description Category: name; description The idea is that an Admin can create a list of courses; subjects and categories and that the user can select the courses they want to add to their catalog. I have seperated courses and coursedetails because I envision that the coursedetails will grow overtime and the courses table will allow me to join the user_id and cousres details to rreport on if necessary. I attempted to follow Ryan's railscast on Complex Forms thinking that that I should use a complex form and has many relationship to get things working -- but I get an error in the catalog controller - cannot locate catalog_id which I know is in the table. I am now not sure if complex forms is the way to go or I should be looking at another direction to get the appropriate form in place. Any assistance would be appreciated.

    Read the article

  • getting (this) at different function

    - by twen_ta
    I have couple of input fields with the class "link". All of them should start the jqueryUI dialog so this is why I bind the method to a class and not an single id. The difficulty is now that i can't use the (this) in line 12, because that gives me the identity of the dialog and not the input element. As I am an beginner I don't know how to pass a variable to this event with the element of the input field. What I want to archive is that the dialog should start from the input field and should write the result back to that input field. 1. // this is the click event for the input-field class called "link" 2. $('.link') 3. .button() 4. .click(function() { 5. $('#dialog-form').dialog('open'); 6. 7. }); 8. 9. //this is an excerpt from the opened dialog box and the write back to the input field 10. $("#dialog-form").dialog({ 11. if (bValid) { 12. $('.link').val('' + 14. name.val() + ''); 15. $(this).dialog('close'); 16. } 17. });

    Read the article

  • rails restful select_tag with :on_change

    - by Sam
    So I'm finally starting to use rest in rails. I want to have a select_tag with product categories and when one of the categories is selected I want it to update the products on change. I did this before with <% form_for :category, :url => { :action => "show" } do |f| %> <%= select_tag :id, options_from_collection_for_select(Category.find(:all), :id, :name), { :onchange => "this.form.submit();"} %> <% end %> however now it doesn't work because it tries to do the show action. I have two controllers 1) products 2) product_categories products belongs_to product_categories with a has_many How should I do this. Since the products are listed on the products controller and index action should I use the products controller or should I use the product_categories controller to find the category such as in the show action and then render the product/index page. But the real problem I have is how to get this form or any other option to work with restful routes.

    Read the article

  • CSS: Why an input width:100% doesn't expand in an absolute box?

    - by Alessandro Vernet
    I have 2 inputs: they both have a width: 100%, and the second one is an absolute box: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <style type="text/css"> #box1 { position: absolute } #box1 { background: #666 } input { width: 100% } </style> </head> <body> <form> <input type="text"> <div id="box1"> <input type="text"> </div> </form> </body> </html> On standard-compliant browsers, the width: 100% seems to have no effect on the input inside the absolutely positioned box, but it does on the input which is not inside that absolutely absolute box. On IE7, both inputs take the whole width of the page. Two questions come to mind: Why does the width: 100% have no effect with standard-compliant browsers? I have to say that the way IE7 renders this feels more intuitive to me. How can I get IE7 to render things like the other browsers, if I can't remove the width: 100% and can't set a width on the absolutely positioned box?

    Read the article

  • WiX 3 Tutorial: Custom EULA License and MSI localization

    - by Mladen Prajdic
    In this part of the ongoing Wix tutorial series we’ll take a look at how to localize your MSI into different languages. We’re still the mighty SuperForm: Program that takes care of all your label color needs. :) Localizing the MSI With WiX 3.0 localizing an MSI is pretty much a simple and straightforward process. First let look at the WiX project Properties->Build. There you can see "Cultures to build" textbox. Put specific cultures to build into the testbox or leave it empty to build all of them. Cultures have to be in correct culture format like en-US, en-GB or de-DE. Next we have to tell WiX which cultures we actually have in our project. Take a look at the first post in the series about Solution/Project structure and look at the Lang directory in the project structure picture. There we have de-de and en-us subfolders each with its own localized stuff. In the subfolders pay attention to the WXL files Loc_de-de.wxl and Loc_en-us.wxl. Each one has a <String Id="LANG"> under the WixLocalization root node. By including the string with id LANG we tell WiX we want that culture built. For English we have <String Id="LANG">1033</String>, for German <String Id="LANG">1031</String> in Loc_de-de.wxl and for French we’d have to create another file Loc_fr-FR.wxl and put <String Id="LANG">1036</String>. WXL files are localization files. Any string we want to localize we have to put in there. To reference it we use loc keyword like this: !(loc.IdOfTheVariable) => !(loc.MustCloseSuperForm) This is our Loc_en-us.wxl. Note that German wxl has an identical structure but values are in German. <?xml version="1.0" encoding="utf-8"?><WixLocalization Culture="en-us" xmlns="http://schemas.microsoft.com/wix/2006/localization" Codepage="1252"> <String Id="LANG">1033</String> <String Id="ProductName">SuperForm</String> <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String> <String Id="ManufacturerName">My Company Name</String> <String Id="AppNotSupported">This application is is not supported on your current OS. Minimal OS supported is Windows XP SP2</String> <String Id="DotNetFrameworkNeeded">.NET Framework 3.5 is required. Please install the .NET Framework then run this installer again.</String> <String Id="MustCloseSuperForm">Must close SuperForm!</String> <String Id="SuperFormNewerVersionInstalled">A newer version of !(loc.ProductName) is already installed.</String> <String Id="ProductKeyCheckDialog_Title">!(loc.ProductName) setup</String> <String Id="ProductKeyCheckDialogControls_Title">!(loc.ProductName) Product check</String> <String Id="ProductKeyCheckDialogControls_Description">Plese Enter following information to perform the licence check.</String> <String Id="ProductKeyCheckDialogControls_FullName">Full Name:</String> <String Id="ProductKeyCheckDialogControls_Organization">Organization:</String> <String Id="ProductKeyCheckDialogControls_ProductKey">Product Key:</String> <String Id="ProductKeyCheckDialogControls_InvalidProductKey">The product key you entered is invalid. Please call user support.</String> </WixLocalization>   As you can see from the file we can use localization variables in other variables like we do for SuperFormNewerVersionInstalled string. ProductKeyCheckDialog* strings are to localize a custom dialog for Product key check which we’ll look at in the next post. Built in dialog text localization Under the de-de folder there’s also the WixUI_de-de.wxl file. This files contains German translations of all texts that are in WiX built in dialogs. It can be downloaded from WiX 3.0.5419.0 Source Forge site. Download the wix3-sources.zip and go to \src\ext\UIExtension\wixlib. There you’ll find already translated all WiX texts in 12 Languages. Localizing the custom EULA license Here it gets ugly. We can override the default EULA license easily by overriding WixUILicenseRtf WiX variable like this: <WixVariable Id="WixUILicenseRtf" Value="License.rtf" /> where License.rtf is the name of your custom EULA license file. The downside of this method is that you can only have one license file which means no localization for it. That’s why we need to make a workaround. License is checked on a dialog name LicenseAgreementDialog. What we have to do is overwrite that dialog and insert the functionality for localization. This is a code for LicenseAgreementDialogOverwritten.wxs, an overwritten LicenseAgreementDialog that supports localization. LicenseAcceptedOverwritten replaces the LicenseAccepted built in variable. <?xml version="1.0" encoding="UTF-8" ?><Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <Fragment> <UI> <Dialog Id="LicenseAgreementDialogOverwritten" Width="370" Height="270" Title="!(loc.LicenseAgreementDlg_Title)"> <Control Id="LicenseAcceptedOverwrittenCheckBox" Type="CheckBox" X="20" Y="207" Width="330" Height="18" CheckBoxValue="1" Property="LicenseAcceptedOverwritten" Text="!(loc.LicenseAgreementDlgLicenseAcceptedCheckBox)" /> <Control Id="Back" Type="PushButton" X="180" Y="243" Width="56" Height="17" Text="!(loc.WixUIBack)" /> <Control Id="Next" Type="PushButton" X="236" Y="243" Width="56" Height="17" Default="yes" Text="!(loc.WixUINext)"> <Publish Event="SpawnWaitDialog" Value="WaitForCostingDlg">CostingComplete = 1</Publish> <Condition Action="disable"> <![CDATA[ LicenseAcceptedOverwritten <> "1" ]]> </Condition> <Condition Action="enable">LicenseAcceptedOverwritten = "1"</Condition> </Control> <Control Id="Cancel" Type="PushButton" X="304" Y="243" Width="56" Height="17" Cancel="yes" Text="!(loc.WixUICancel)"> <Publish Event="SpawnDialog" Value="CancelDlg">1</Publish> </Control> <Control Id="BannerBitmap" Type="Bitmap" X="0" Y="0" Width="370" Height="44" TabSkip="no" Text="!(loc.LicenseAgreementDlgBannerBitmap)" /> <Control Id="LicenseText" Type="ScrollableText" X="20" Y="60" Width="330" Height="140" Sunken="yes" TabSkip="no"> <!-- This is original line --> <!--<Text SourceFile="!(wix.WixUILicenseRtf=$(var.LicenseRtf))" />--> <!-- To enable EULA localization we change it to this --> <Text SourceFile="$(var.ProjectDir)\!(loc.LicenseRtf)" /> <!-- In each of localization files (wxl) put line like this: <String Id="LicenseRtf" Overridable="yes">\Lang\en-us\EULA_en-us.rtf</String>--> </Control> <Control Id="Print" Type="PushButton" X="112" Y="243" Width="56" Height="17" Text="!(loc.WixUIPrint)"> <Publish Event="DoAction" Value="WixUIPrintEula">1</Publish> </Control> <Control Id="BannerLine" Type="Line" X="0" Y="44" Width="370" Height="0" /> <Control Id="BottomLine" Type="Line" X="0" Y="234" Width="370" Height="0" /> <Control Id="Description" Type="Text" X="25" Y="23" Width="340" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgDescription)" /> <Control Id="Title" Type="Text" X="15" Y="6" Width="200" Height="15" Transparent="yes" NoPrefix="yes" Text="!(loc.LicenseAgreementDlgTitle)" /> </Dialog> </UI> </Fragment></Wix>   Look at the Control with Id "LicenseText” and read the comments. We’ve changed the original license text source to "$(var.ProjectDir)\!(loc.LicenseRtf)". var.ProjectDir is the directory of the project file. The !(loc.LicenseRtf) is where the magic happens. Scroll up and take a look at the wxl localization file example. We have the LicenseRtf declared there and it’s been made overridable so developers can change it if they want. The value of the LicenseRtf is the path to our localized EULA relative to the WiX project directory. With little hacking we’ve achieved a fully localizable installer package.   The final step is to insert the extended LicenseAgreementDialogOverwritten license dialog into the installer GUI chain. This is how it’s done under the <UI> node of course.   <UI> <!-- code to be discussed in later posts –> <!-- BEGIN UI LOGIC FOR CLEAN INSTALLER --> <Publish Dialog="WelcomeDlg" Control="Next" Event="NewDialog" Value="LicenseAgreementDialogOverwritten">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Back" Event="NewDialog" Value="WelcomeDlg">1</Publish> <Publish Dialog="LicenseAgreementDialogOverwritten" Control="Next" Event="NewDialog" Value="ProductKeyCheckDialog">LicenseAcceptedOverwritten = "1" AND NOT OLDER_VERSION_FOUND</Publish> <Publish Dialog="InstallDirDlg" Control="Back" Event="NewDialog" Value="ProductKeyCheckDialog">1</Publish> <!-- END UI LOGIC FOR CLEAN INSTALLER –> <!-- code to be discussed in later posts --></UI> For a thing that should be simple for the end developer to do, localization can be a bit advanced for the novice WiXer. Hope this post makes the journey easier and that next versions of WiX improve this process. WiX 3 tutorial by Mladen Prajdic navigation WiX 3 Tutorial: Solution/Project structure and Dev resources WiX 3 Tutorial: Understanding main wxs and wxi file WiX 3 Tutorial: Generating file/directory fragments with Heat.exe  WiX 3 Tutorial: Custom EULA License and MSI localization WiX 3 Tutorial: Product Key Check custom action WiX 3 Tutorial: Building an updater WiX 3 Tutorial: Icons and installer pictures WiX 3 Tutorial: Creating a Bootstrapper

    Read the article

  • SQL SERVER – Standard Reports from SQL Server Management Studio – SQL in Sixty Seconds #016 – Video

    - by pinaldave
    SQL Server management Studio 2012 is wonderful tool and has many different features. Many times, an average user does not use them as they are not aware about these features. Today, we will learn one such feature. SSMS comes with many inbuilt performance and activity reports, but we do not use it to the full potential. Connect to SQL Server Node >> Right Click on it >> Go to Reports >> Click on Standard Reports >> Pick Any Report. Please note that some of the reports can be IO intensive and not suggested to run during business hours! More on Standard Reports: SQL SERVER – Out of the Box – Activity and Performance Reports from SSSMS SQL SERVER – Generate Report for Index Physical Statistics – SSMS SQL SERVER – Configure Management Data Collection in Quick Steps I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • Upgrade Your Existing BI Publisher 11g (11.1.1.3) to 11.1.1.5

    - by Kan Nishida
    It’s already more than a month now since BI Publisher 11.1.1.5 was released at beginning of May. Have you already tried out many of the great new features? If you are already running on the first version of BI Publisher 11g (11.1.1.3) you might wonder how to upgrade the existing BI Publisher to the 11.1.1.5 version. There are two ways to do this, one is ‘Out-Place’ and another is ‘In-Place’. The ‘Out-Place’ would be quite simple. Basically you will need to install the whole BI or just BI Publisher standalone R11.1.1.5 at a different location then you can switch the catalog to the existing one so that all the reports will be there in the new 11.1.1.5 environment. But sometimes things are not that simple, you might have some custom applications or configuration on the original environment and you want to keep all of them with the upgraded environment. For such scenarios, there is the ‘In-Place’ upgrade, which overrides on top of the original environment only the parts relevant for BI and BI Publisher, and that’s what I’m going to talk about today. Here is the basic steps of the ‘In-Place’ upgrade. Upgrade WebLogic Server to 10.3.5 Upgrade BI System to 11.1.1.5 Upgrade Database Schema Re-register BI Components Upgrade FMW (Fusion Middleware) Configuration Upgrade BI Catalog There is a section that talks about this upgrade from 11.1.1.3 to 11.1.1.5 as part of the overall upgrade document. But I hope my blog post summarized it and made it simple for you to cover only what’s necessary. Upgrade Document: http://download.oracle.com/docs/cd/E21764_01/bi.1111/e16452/bi_plan.htm#BABECJJH Before You Start Stop BI System and Backup I can’t emphasize enough, but before you start PLEASE make sure you take a backup of the existing environments first. You want to stop all WebLogic Servers, Node Manager, OPMN, and OPMN-managed system components that are part of your Oracle BI domains. If you’re on Windows you can do this by simply selecting ‘Stop BI Services’ menu. Then backup the whole system. Upgrade WebLogic Server to 10.3.5 Download WebLogic Server 10.3.5 Upgrade Installer With BI 11.1.1.3 installation your WebLogic Server (WLS) is 10.3.3 and you need to upgrade this to 10.3.5 before upgrading the BI part. In order to upgrade you will need this 10.3.5 upgrade version of WLS, which you can download from our support web site (https://support.oracle.com) You can find the detail information about the installation and the patch numbers for the WLS upgrade installer on this document. Just for your short cut, if you are running on Windows or Linux (x86) here is the patch number for your platform. Windows 32 bit: 12395517: Linux: 12395517 Upgrade WebLogic Server 1. After unzip the downloaded file, launch wls1035_upgrade_win32.exe if you’re on Windows. 2. Accept all the default values and keep ‘Next’ till end, and start the upgrade. Once the upgrade process completes you’ll see the following window. Now let’s move to the BI upgrade. Upgrade BI Platform to 11.1.1.5 with Software Only Install Download BI 11.1.1.5 You can download the 11.1.1.5 version from our OTN page for your evaluation or development. For the production use it’s recommended to download from eDelivery. 1. Launch the installer by double click ‘setup.exe’ (for Windows) 2. Select ‘Software Only Install’ option 3. Select your original Oracle Home where you installed BI 11.1.1.3. 4. Click ‘Install’ button to start the installation. And now the software part of the BI has been upgraded to 11.1.1.5. Now let’s move to the database schema upgrade. Upgrade Database Schema with Patch Assistant You need to upgrade the BIPLATFORM and MDS Schemas. You can use the Patch Assistant utility to do this, and here is an example assuming you’ve created the schema with ‘DEV’ prefix, otherwise change it with yours accordingly. Upgrade BIPLATFORM schema (if you created this schema with DEV_ prev) psa.bat -dbConnectString localhost:1521:orcl -dbaUserName sys -schemaUserName DEV_BIPLATFORM Upgrade MDS schema (if you created this schema with DEV_ prev) psa.bat -dbConnectString localhost:1521:orcl -dbaUserName sys -schemaUserName DEV_MDS Re-register BI System components Now you need to re-register your BI system components such as BI Server, BI Presentation Server, etc to the Fusion Middleware system. You can do this by running ‘upgradenonj2eeapp.bat (or .sh)’ command, which can be found at %ORACLE_HOME%/opmn/bin. Before you run, you need to start the WLS Server and make sure your WLS environment is not locked. If it’s locked then you need to release the system from the Fusion Middleware console before you run the following command. Here is the syntax for the ‘upgradenonj2eeapp.bat (or .sh) command.  upgradenonj2eeapp.bat    -oracleInstance Instance_Home_Location    -adminHost WebLogic_Server_Host_Name    -adminPort administration_server_port_number    -adminUsername administration_server_user And here is an example: cd %BI_HOME%\opmn\bin upgradenonj2eeapp.bat -oracleInstance C:\biee11\instances\instance1 -adminHost localhost -adminPort 7001 -adminUsername weblogic Upgrade Fusion Middleware Configuration There are a couple things on the Fusion Middleware need to be upgraded for the BI system to work. Here is a list of the components to upgrade. Upgrade Shared Library (JRF) Upgrade Fusion Middleware Security (OPSS) Upgrade Code Grants Upgrade OWSM Policy Repository Before moving forward, you need to stop the WebLogic Server. Here is an example. cd %MW_HOME%user_projects\domains\bifoundation_domain\binstopWebLogic.cmd And, let’s start with ‘Upgrade Shared Library (JRF)’. Upgrade Shared Library (JRF) You can use updateJRF() WLST command to upgrade the shared libraries in your domain. Before you do this, you need to stop all running instances, Managed Servers, Administration Server, and Node Manager in the domain. Here is an example of the ‘upgradeJRF()’ command: cd %MW_HOME%\oracle_common\common\bin wlst.cmd upgradeJRF('C:/biee11/user_projects/domains/bifoundation_domain') Upgrade Fusion Middleware Security (OPSS) This step is to upgrade the Fusion Middleware security piece. You can use ‘upgradeOpss()’ WLST command. Here is a syntax for the command. upgradeOpss(jpsConfig="existing_jps_config_file", jaznData="system_jazn_data_file") The ‘existing jps-config.xml file can be found under %DOMAIN_HOME%/config/fmwconfig/jps-config.xml and the ‘system_jazn_data_file’ can be found under %MW_HOME%/oracle_common/modules/oracle.jps_11.1.1/domain_config/system-jazn-data.xml. And here is an example: cd %MW_HOME%\oracle_common\common\bin wlst.cmd upgradeOpss(jpsConfig="c:/biee11/user_projects/domains/bifoundation_domain/config/fmwconfig/jps-config.xml", jaznData="c:/biee11/oracle_common/modules/oracle.jps_11.1.1/domain_config/system-jazn-data.xml") exit() Upgrade Code Grants for Oracle BI Domain And this is the last step for the Fusion Middleware platform upgrade task. You need to run this python script ‘bi-upgrade.py‘ script to configure the code grants necessary to ensure that SSL works correctly for Oracle BI. However, even if you don’t use SSL, you still need to run this script. And if you have multiple BI domains (Enterprise deployment) then you need to run this on each domain. Here is an example: cd %MW_HOME%\oracle_common\common\bin wlst c:\biee11\Oracle_BI1\bin\bi-upgrade.py --bioraclehome c:\biee11\Oracle_BI1 --domainhome c:\biee11\user_projects\domains\bifoundation_domain Upgrade OWSM Policy Repository This is to upgrade OWSM (Oracle Web Service Manager) policy repository, you can use WLST command ‘upgradeWSMPolicyRepository()’. In order to run this command you need to have your WebLogic Server up-and-running. Here is an example. cd %MW_HOME%user_projects\domains\bifoundation_domain\binstopWebLogic.cmd cd %MW_HOME%\oracle_common\common\bin wlst.cmd connect ('weblogic','welcome1','t3://localhost:7001') upgradeWSMPolicyRepository() exit() Upgrade BI Catalogs This step is required only when you have your BI Publisher integrated with BIEE. If your BI Publisher is deployed as a standalone then you don’t need to follow this step. Now finally, you can upgrade the BI catalog. This won’t upgrade your BI Publisher reports themselves, but it just upgrades some attributes information inside the catalog. Before you do this upgrade, make sure the BI system components are not running. You can check the status by the command below. opmnctl status You can do the upgrade by updating a configuration file ‘instanceconfig.xml’, which can be found at %BI_HOME%\instances\instance1\config\coreapplication_obips1, and change the value of ‘UpgradeAndExit’ to be ‘true’. Here is an example: <ps:Catalog xmlns:ps="oracle.bi.presentation.services/config/v1.1"> <ps:UpgradeAndExit>true</ps:UpgradeAndExit> </ps:Catalog> After you made the change and save the file, you need to start the BI Presentation Server. This time you want to start only the BI Presentation Server instead of starting all the servers. You can use ‘opmnctl’ to do so, and here is an example. cd %ORACLE_INSTANCE%\bin opmnctl startproc ias-component=coreapplication_obips1 This would upgrade your BI Catalog to be 11.1.1.5. After the catalog is updated, you can stop the BI Presentation Server so that you can modify the instanceconfig.xml file again to revert the upgradeAndExit value back to ‘false’. Start Explore BI Publisher 11.1.1.5 After all the above steps, you can start all the BI Services, access to the same URL, now you have your BI Publisher and/or BI 11.1.1.5 in your hands. Have fun exploring all the new features of R11.1.1.5!

    Read the article

  • SQL SERVER – Find Max Worker Count using DMV – 32 Bit and 64 Bit

    - by pinaldave
    During several recent training courses, I found it very interesting that Worker Thread is not quite known to everyone despite the fact that it is a very important feature. At some point in the discussion, one of the attendees mentioned that we can double the Worker Thread if we double the CPU (add the same number of CPU that we have on current system). The same discussion has triggered this quick article. Here is the DMV which can be used to find out Max Worker Count SELECT max_workers_count FROM sys.dm_os_sys_info Let us run the above query on my system and find the results. As my system is 32 bit and I have two CPU, the Max Worker Count is displayed as 512. To address the previous discussion, adding more CPU does not necessarily double the Worker Count. In fact, the logic behind this simple principle is as follows: For x86 (32-bit) upto 4 logical processors  max worker threads = 256 For x86 (32-bit) more than 4 logical processors  max worker threads = 256 + ((# Procs – 4) * 8) For x64 (64-bit) upto 4 logical processors  max worker threads = 512 For x64 (64-bit) more than 4 logical processors  max worker threads = 512+ ((# Procs – 4) * 8) In addition to this, you can configure the Max Worker Thread by using SSMS. Go to Server Node >> Right Click and Select Property >> Select Process and modify setting under Worker Threads. According to Book On Line, the default Worker Thread settings are appropriate for most of the systems. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL System Table, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

  • Host AngularJS (Html5Mode) in ASP.NET vNext

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/06/10/host-angularjs-html5mode-in-asp.net-vnext.aspxMicrosoft had announced ASP.NET vNext in BUILD and TechED recently and as a developer, I found that we can add features into one ASP.NET vNext application such as MVC, WebAPI, SignalR, etc.. Also it's cross platform which means I can host ASP.NET on Windows, Linux and OS X.   If you are following my blog you should knew that I'm currently working on a project which uses ASP.NET WebAPI, SignalR and AngularJS. Currently the AngularJS part is hosted by Express in Node.js while WebAPI and SignalR are hosted in ASP.NET. I was looking for a solution to host all of them in one platform so that my SignalR can utilize WebSocket. Currently AngularJS and SignalR are hosted in the same domain but different port so it has to use ServerSendEvent. It can be upgraded to WebSocket if I host both of them in the same port.   Host AngularJS in ASP.NET vNext Static File Middleware ASP.NET vNext utilizes middleware pattern to register feature it uses, which is very similar as Express in Node.js. Since AngularJS is a pure client side framework in theory what I need to do is to use ASP.NET vNext as a static file server. This is very easy as there's a build-in middleware shipped alone with ASP.NET vNext. Assuming I have "index.html" as below. 1: <html data-ng-app="demo"> 2: <head> 3: <script type="text/javascript" src="angular.js" /> 4: <script type="text/javascript" src="angular-ui-router.js" /> 5: <script type="text/javascript" src="app.js" /> 6: </head> 7: <body> 8: <h1>ASP.NET vNext with AngularJS</h1> 9: <div> 10: <a href="javascript:void(0)" data-ui-sref="view1">View 1</a> | 11: <a href="javascript:void(0)" data-ui-sref="view2">View 2</a> 12: </div> 13: <div data-ui-view></div> 14: </body> 15: </html> And the AngularJS JavaScript file as below. Notices that I have two views which only contains one line literal indicates the view name. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15: }]); 16:  17: app.controller('View1Ctrl', function ($scope) { 18: }); 19:  20: app.controller('View2Ctrl', function ($scope) { 21: }); All AngularJS files are located in "app" folder and my ASP.NET vNext files are besides it. The "project.json" contains all dependencies I need to host static file server. 1: { 2: "dependencies": { 3: "Helios" : "0.1-alpha-*", 4: "Microsoft.AspNet.FileSystems": "0.1-alpha-*", 5: "Microsoft.AspNet.Http": "0.1-alpha-*", 6: "Microsoft.AspNet.StaticFiles": "0.1-alpha-*", 7: "Microsoft.AspNet.Hosting": "0.1-alpha-*", 8: "Microsoft.AspNet.Server.WebListener": "0.1-alpha-*" 9: }, 10: "commands": { 11: "web": "Microsoft.AspNet.Hosting server=Microsoft.AspNet.Server.WebListener server.urls=http://localhost:22222" 12: }, 13: "configurations" : { 14: "net45" : { 15: }, 16: "k10" : { 17: "System.Diagnostics.Contracts": "4.0.0.0", 18: "System.Security.Claims" : "0.1-alpha-*" 19: } 20: } 21: } Below is "Startup.cs" which is the entry file of my ASP.NET vNext. What I need to do is to let my application use FileServerMiddleware. 1: using System; 2: using Microsoft.AspNet.Builder; 3: using Microsoft.AspNet.FileSystems; 4: using Microsoft.AspNet.StaticFiles; 5:  6: namespace Shaun.AspNet.Plugins.AngularServer.Demo 7: { 8: public class Startup 9: { 10: public void Configure(IBuilder app) 11: { 12: app.UseFileServer(new FileServerOptions() { 13: EnableDirectoryBrowsing = true, 14: FileSystem = new PhysicalFileSystem(System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "app")) 15: }); 16: } 17: } 18: } Next, I need to create "NuGet.Config" file in the PARENT folder so that when I run "kpm restore" command later it can find ASP.NET vNext NuGet package successfully. 1: <?xml version="1.0" encoding="utf-8"?> 2: <configuration> 3: <packageSources> 4: <add key="AspNetVNext" value="https://www.myget.org/F/aspnetvnext/api/v2" /> 5: <add key="NuGet.org" value="https://nuget.org/api/v2/" /> 6: </packageSources> 7: <packageSourceCredentials> 8: <AspNetVNext> 9: <add key="Username" value="aspnetreadonly" /> 10: <add key="ClearTextPassword" value="4d8a2d9c-7b80-4162-9978-47e918c9658c" /> 11: </AspNetVNext> 12: </packageSourceCredentials> 13: </configuration> Now I need to run "kpm restore" to resolve all dependencies of my application. Finally, use "k web" to start the application which will be a static file server on "app" sub folder in the local 22222 port.   Support AngularJS Html5Mode AngularJS works well in previous demo. But you will note that there is a "#" in the browser address. This is because by default AngularJS adds "#" next to its entry page so ensure all request will be handled by this entry page. For example, in this case my entry page is "index.html", so when I clicked "View 1" in the page the address will be changed to "/#/view1" which means it still tell the web server I'm still looking for "index.html". This works, but makes the address looks ugly. Hence AngularJS introduces a feature called Html5Mode, which will get rid off the annoying "#" from the address bar. Below is the "app.js" with Html5Mode enabled, just one line of code. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15:  16: // enable html5mode 17: $locationProvider.html5Mode(true); 18: }]); 19:  20: app.controller('View1Ctrl', function ($scope) { 21: }); 22:  23: app.controller('View2Ctrl', function ($scope) { 24: }); Then let's went to the root path of our website and click "View 1" you will see there's no "#" in the address. But the problem is, if we hit F5 the browser will be turn to blank. This is because in this mode the browser told the web server I want static file named "view1" but there's no file on the server. So underlying our web server, which is built by ASP.NET vNext, responded 404. To fix this problem we need to create our own ASP.NET vNext middleware. What it needs to do is firstly try to respond the static file request with the default StaticFileMiddleware. If the response status code was 404 then change the request path value to the entry page and try again. 1: public class AngularServerMiddleware 2: { 3: private readonly AngularServerOptions _options; 4: private readonly RequestDelegate _next; 5: private readonly StaticFileMiddleware _innerMiddleware; 6:  7: public AngularServerMiddleware(RequestDelegate next, AngularServerOptions options) 8: { 9: _next = next; 10: _options = options; 11:  12: _innerMiddleware = new StaticFileMiddleware(next, options.FileServerOptions.StaticFileOptions); 13: } 14:  15: public async Task Invoke(HttpContext context) 16: { 17: // try to resolve the request with default static file middleware 18: await _innerMiddleware.Invoke(context); 19: Console.WriteLine(context.Request.Path + ": " + context.Response.StatusCode); 20: // route to root path if the status code is 404 21: // and need support angular html5mode 22: if (context.Response.StatusCode == 404 && _options.Html5Mode) 23: { 24: context.Request.Path = _options.EntryPath; 25: await _innerMiddleware.Invoke(context); 26: Console.WriteLine(">> " + context.Request.Path + ": " + context.Response.StatusCode); 27: } 28: } 29: } We need an option class where user can specify the host root path and the entry page path. 1: public class AngularServerOptions 2: { 3: public FileServerOptions FileServerOptions { get; set; } 4:  5: public PathString EntryPath { get; set; } 6:  7: public bool Html5Mode 8: { 9: get 10: { 11: return EntryPath.HasValue; 12: } 13: } 14:  15: public AngularServerOptions() 16: { 17: FileServerOptions = new FileServerOptions(); 18: EntryPath = PathString.Empty; 19: } 20: } We also need an extension method so that user can append this feature in "Startup.cs" easily. 1: public static class AngularServerExtension 2: { 3: public static IBuilder UseAngularServer(this IBuilder builder, string rootPath, string entryPath) 4: { 5: var options = new AngularServerOptions() 6: { 7: FileServerOptions = new FileServerOptions() 8: { 9: EnableDirectoryBrowsing = false, 10: FileSystem = new PhysicalFileSystem(System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, rootPath)) 11: }, 12: EntryPath = new PathString(entryPath) 13: }; 14:  15: builder.UseDefaultFiles(options.FileServerOptions.DefaultFilesOptions); 16:  17: return builder.Use(next => new AngularServerMiddleware(next, options).Invoke); 18: } 19: } Now with these classes ready we will change our "Startup.cs", use this middleware replace the default one, tell the server try to load "index.html" file if it cannot find resource. The code below is just for demo purpose. I just tried to load "index.html" in all cases once the StaticFileMiddleware returned 404. In fact we need to validation to make sure this is an AngularJS route request instead of a normal static file request. 1: using System; 2: using Microsoft.AspNet.Builder; 3: using Microsoft.AspNet.FileSystems; 4: using Microsoft.AspNet.StaticFiles; 5: using Shaun.AspNet.Plugins.AngularServer; 6:  7: namespace Shaun.AspNet.Plugins.AngularServer.Demo 8: { 9: public class Startup 10: { 11: public void Configure(IBuilder app) 12: { 13: app.UseAngularServer("app", "/index.html"); 14: } 15: } 16: } Now let's run "k web" again and try to refresh our browser and we can see the page loaded successfully. In the console window we can find the original request got 404 and we try to find "index.html" and return the correct result.   Summary In this post I introduced how to use ASP.NET vNext to host AngularJS application as a static file server. I also demonstrated how to extend ASP.NET vNext, so that it supports AngularJS Html5Mode. You can download the source code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • SignalR Auto Disconnect when Page Changed in AngularJS

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/30/signalr-auto-disconnect-when-page-changed-in-angularjs.aspxIf we are using SignalR, the connection lifecycle was handled by itself very well. For example when we connect to SignalR service from browser through SignalR JavaScript Client the connection will be established. And if we refresh the page, close the tab or browser, or navigate to another URL then the connection will be closed automatically. This information had been well documented here. In a browser, SignalR client code that maintains a SignalR connection runs in the JavaScript context of a web page. That's why the SignalR connection has to end when you navigate from one page to another, and that's why you have multiple connections with multiple connection IDs if you connect from multiple browser windows or tabs. When the user closes a browser window or tab, or navigates to a new page or refreshes the page, the SignalR connection immediately ends because SignalR client code handles that browser event for you and calls the "Stop" method. But unfortunately this behavior doesn't work if we are using SignalR with AngularJS. AngularJS is a single page application (SPA) framework created by Google. It hijacks browser's address change event, based on the route table user defined, launch proper view and controller. Hence in AngularJS we address was changed but the web page still there. All changes of the page content are triggered by Ajax. So there's no page unload and load events. This is the reason why SignalR cannot handle disconnect correctly when works with AngularJS. If we dig into the source code of SignalR JavaScript Client source code we will find something below. It monitors the browser page "unload" and "beforeunload" event and send the "stop" message to server to terminate connection. But in AngularJS page change events were hijacked, so SignalR will not receive them and will not stop the connection. 1: // wire the stop handler for when the user leaves the page 2: _pageWindow.bind("unload", function () { 3: connection.log("Window unloading, stopping the connection."); 4:  5: connection.stop(asyncAbort); 6: }); 7:  8: if (isFirefox11OrGreater) { 9: // Firefox does not fire cross-domain XHRs in the normal unload handler on tab close. 10: // #2400 11: _pageWindow.bind("beforeunload", function () { 12: // If connection.stop() runs runs in beforeunload and fails, it will also fail 13: // in unload unless connection.stop() runs after a timeout. 14: window.setTimeout(function () { 15: connection.stop(asyncAbort); 16: }, 0); 17: }); 18: }   Problem Reproduce In the codes below I created a very simple example to demonstrate this issue. Here is the SignalR server side code. 1: public class GreetingHub : Hub 2: { 3: public override Task OnConnected() 4: { 5: Debug.WriteLine(string.Format("Connected: {0}", Context.ConnectionId)); 6: return base.OnConnected(); 7: } 8:  9: public override Task OnDisconnected() 10: { 11: Debug.WriteLine(string.Format("Disconnected: {0}", Context.ConnectionId)); 12: return base.OnDisconnected(); 13: } 14:  15: public void Hello(string user) 16: { 17: Clients.All.hello(string.Format("Hello, {0}!", user)); 18: } 19: } Below is the configuration code which hosts SignalR hub in an ASP.NET WebAPI project with IIS Express. 1: public class Startup 2: { 3: public void Configuration(IAppBuilder app) 4: { 5: app.Map("/signalr", map => 6: { 7: map.UseCors(CorsOptions.AllowAll); 8: map.RunSignalR(new HubConfiguration() 9: { 10: EnableJavaScriptProxies = false 11: }); 12: }); 13: } 14: } Since we will host AngularJS application in Node.js in another process and port, the SignalR connection will be cross domain. So I need to enable CORS above. In client side I have a Node.js file to host AngularJS application as a web server. You can use any web server you like such as IIS, Apache, etc.. Below is the "index.html" page which contains a navigation bar so that I can change the page/state. As you can see I added jQuery, AngularJS, SignalR JavaScript Client Library as well as my AngularJS entry source file "app.js". 1: <html data-ng-app="demo"> 2: <head> 3: <script type="text/javascript" src="jquery-2.1.0.js"></script> 1:  2: <script type="text/javascript" src="angular.js"> 1: </script> 2: <script type="text/javascript" src="angular-ui-router.js"> 1: </script> 2: <script type="text/javascript" src="jquery.signalR-2.0.3.js"> 1: </script> 2: <script type="text/javascript" src="app.js"></script> 4: </head> 5: <body> 6: <h1>SignalR Auto Disconnect with AngularJS by Shaun</h1> 7: <div> 8: <a href="javascript:void(0)" data-ui-sref="view1">View 1</a> | 9: <a href="javascript:void(0)" data-ui-sref="view2">View 2</a> 10: </div> 11: <div data-ui-view></div> 12: </body> 13: </html> Below is the "app.js". My SignalR logic was in the "View1" page and it will connect to server once the controller was executed. User can specify a user name and send to server, all clients that located in this page will receive the server side greeting message through SignalR. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15:  16: $locationProvider.html5Mode(true); 17: }]); 18:  19: app.value('$', $); 20: app.value('endpoint', 'http://localhost:60448'); 21: app.value('hub', 'GreetingHub'); 22:  23: app.controller('View1Ctrl', function ($scope, $, endpoint, hub) { 24: $scope.user = ''; 25: $scope.response = ''; 26:  27: $scope.greeting = function () { 28: proxy.invoke('Hello', $scope.user) 29: .done(function () {}) 30: .fail(function (error) { 31: console.log(error); 32: }); 33: }; 34:  35: var connection = $.hubConnection(endpoint); 36: var proxy = connection.createHubProxy(hub); 37: proxy.on('hello', function (response) { 38: $scope.$apply(function () { 39: $scope.response = response; 40: }); 41: }); 42: connection.start() 43: .done(function () { 44: console.log('signlar connection established'); 45: }) 46: .fail(function (error) { 47: console.log(error); 48: }); 49: }); 50:  51: app.controller('View2Ctrl', function ($scope, $) { 52: }); When we went to View1 the server side "OnConnect" method will be invoked as below. And in any page we send the message to server, all clients will got the response. If we close one of the client, the server side "OnDisconnect" method will be invoked which is correct. But is we click "View 2" link in the page "OnDisconnect" method will not be invoked even though the content and browser address had been changed. This might cause many SignalR connections remain between the client and server. Below is what happened after I clicked "View 1" and "View 2" links four times. As you can see there are 4 live connections.   Solution Since the reason of this issue is because, AngularJS hijacks the page event that SignalR need to stop the connection, we can handle AngularJS route or state change event and stop SignalR connect manually. In the code below I moved the "connection" variant to global scope, added a handler to "$stateChangeStart" and invoked "stop" method of "connection" if its state was not "disconnected". 1: var connection; 2: app.run(['$rootScope', function ($rootScope) { 3: $rootScope.$on('$stateChangeStart', function () { 4: if (connection && connection.state && connection.state !== 4 /* disconnected */) { 5: console.log('signlar connection abort'); 6: connection.stop(); 7: } 8: }); 9: }]); Now if we refresh the page and navigated to View 1, the connection will be opened. At this state if we clicked "View 2" link the content will be changed and the SignalR connection will be closed automatically.   Summary In this post I demonstrated an issue when we are using SignalR with AngularJS. The connection cannot be closed automatically when we navigate to other page/state in AngularJS. And the solution I mentioned below is to move the SignalR connection as a global variant and close it manually when AngularJS route/state changed. You can download the full sample code here. Moving the SignalR connection as a global variant might not be a best solution. It's just for easy to demo here. In production code I suggest wrapping all SignalR operations into an AngularJS factory. Since AngularJS factory is a singleton object, we can safely put the connection variant in the factory function scope.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • error X3501: 'main': entrypoint not found

    - by Pasha
    I am trying to learn DX10 by following this tutorial. However, my shader won't compile. Below is the detailed error message. Build started 9/10/2012 10:22:46 PM. 1>Project "D:\code\dx\Engine\Engine\Engine.vcxproj" on node 2 (Build target(s)). C:\Program Files (x86)\Windows Kits\8.0\bin\x86\fxc.exe /nologo /E"main" /Fo "D:\code\dx\Engine\Debug\color.cso" /Od /Zi color.fx 1>FXC : error X3501: 'main': entrypoint not found compilation failed; no code produced 1>Done Building Project "D:\code\dx\Engine\Engine\Engine.vcxproj" (Build target(s)) -- FAILED. Build FAILED. Time Elapsed 00:00:00.05 I can easily compile the downloaded code, but I want to know how to fix this error myself. My color.fx looks like this //////////////////////////////////////////////////////////////////////////////// // Filename: color.fx //////////////////////////////////////////////////////////////////////////////// ///////////// // GLOBALS // ///////////// matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; ////////////// // TYPEDEFS // ////////////// struct VertexInputType { float4 position : POSITION; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Vertex Shader //////////////////////////////////////////////////////////////////////////////// PixelInputType ColorVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the input color for the pixel shader to use. output.color = input.color; return output; } //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 ColorPixelShader(PixelInputType input) : SV_Target { return input.color; } //////////////////////////////////////////////////////////////////////////////// // Technique //////////////////////////////////////////////////////////////////////////////// technique10 ColorTechnique { pass pass0 { SetVertexShader(CompileShader(vs_4_0, ColorVertexShader())); SetPixelShader(CompileShader(ps_4_0, ColorPixelShader())); SetGeometryShader(NULL); } }

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Parsing HTML Documents with the Html Agility Pack

    Screen scraping is the process of programmatically accessing and processing information from an external website. For example, a price comparison website might screen scrape a variety of online retailers to build a database of products and what various retailers are selling them for. Typically, screen scraping is performed by mimicking the behavior of a browser - namely, by making an HTTP request from code and then parsing and analyzing the returned HTML. The .NET Framework offers a variety of classes for accessing data from a remote website, namely the WebClient class and the HttpWebRequest class. These classes are useful for making an HTTP request to a remote website and pulling down the markup from a particular URL, but they offer no assistance in parsing the returned HTML. Instead, developers commonly rely on string parsing methods like String.IndexOf, String.Substring, and the like, or through the use of regular expressions. Another option for parsing HTML documents is to use the Html Agility Pack, a free, open-source library designed to simplify reading from and writing to HTML documents. The Html Agility Pack constructs a Document Object Model (DOM) view of the HTML document being parsed. With a few lines of code, developers can walk through the DOM, moving from a node to its children, or vice versa. Also, the Html Agility Pack can return specific nodes in the DOM through the use of XPath expressions. (The Html Agility Pack also includes a class for downloading an HTML document from a remote website; this means you can both download and parse an external web page using the Html Agility Pack.) This article shows how to get started using the Html Agility Pack and includes a number of real-world examples that illustrate this library's utility. A complete, working demo is available for download at the end of this article. Read on to learn more! Read More >

    Read the article

  • Create my own database system

    - by Xananax
    Ok so before I get bashed: I know it's something huge for one person; I don't care if the end product can actually be used or not. I need to learn how databases work in order to use them more efficiently, and my way of learning is by doing. So I want to create my own database system. I am not referring to creating a pseudo-database that would use query to parse files; this would simply be a filesystem interface with a query language. I am talking about the actual structure of a database engine. And since what I have in mind is neither relational nor document-oriented (it's "node-oriented", if that even exists), I would need any resource to be as abstract and high-level as possible. So how would I go about creating that? What resources/tutorials/books can I read to understand? The language does not matter in the slightest. Ideally, the code would be pseudo-code to illustrate the concept, not tied to a particular language, but anything would do. I was not able to find anything on the matter on google (since I am so illiterate on the subject, maybe I am just not entering the right search). If such resources are not available, then I guess something about how to create a client would at least be a step in the right direction.

    Read the article

  • Oracle Announces Oracle Big Data Appliance X3-2 and Enhanced Oracle Big Data Connectors

    - by jgelhaus
    Enables Customers to Easily Harness the Business Value of Big Data at Lower Cost Engineered System Simplifies Big Data for the Enterprise Oracle Big Data Appliance X3-2 hardware features the latest 8-core Intel® Xeon E5-2600 series of processors, and compared with previous generation, the 18 compute and storage servers with 648 TB raw storage now offer: 33 percent more processing power with 288 CPU cores; 33 percent more memory per node with 1.1 TB of main memory; and up to a 30 percent reduction in power and cooling Oracle Big Data Appliance X3-2 further simplifies implementation and management of big data by integrating all the hardware and software required to acquire, organize and analyze big data. It includes: Support for CDH4.1 including software upgrades developed collaboratively with Cloudera to simplify NameNode High Availability in Hadoop, eliminating the single point of failure in a Hadoop cluster; Oracle NoSQL Database Community Edition 2.0, the latest version that brings better Hadoop integration, elastic scaling and new APIs, including JSON and C support; The Oracle Enterprise Manager plug-in for Big Data Appliance that complements Cloudera Manager to enable users to more easily manage a Hadoop cluster; Updated distributions of Oracle Linux and Oracle Java Development Kit; An updated distribution of open source R, optimized to work with high performance multi-threaded math libraries Read More   Data sheet: Oracle Big Data Appliance X3-2 Oracle Big Data Appliance: Datacenter Network Integration Big Data and Natural Language: Extracting Insight From Text Thomson Reuters Discusses Oracle's Big Data Platform Connectors Integrate Hadoop with Oracle Big Data Ecosystem Oracle Big Data Connectors is a suite of software built by Oracle to integrate Apache Hadoop with Oracle Database, Oracle Data Integrator, and Oracle R Distribution. Enhancements to Oracle Big Data Connectors extend these data integration capabilities. With updates to every connector, this release includes: Oracle SQL Connector for Hadoop Distributed File System, for high performance SQL queries on Hadoop data from Oracle Database, enhanced with increased automation and querying of Hive tables and now supported within the Oracle Data Integrator Application Adapter for Hadoop; Transparent access to the Hive Query language from R and introduction of new analytic techniques executing natively in Hadoop, enabling R developers to be more productive by increasing access to Hadoop in the R environment. Read More Data sheet: Oracle Big Data Connectors High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database

    Read the article

  • Code snippets for ASP.NET MVC2 in VS 2010

    - by rajbk
    VS 2010 comes with ready made snippets which helps you save time while coding. You insert a snippet by typing the name of the code snippet and hitting the Tab key twice. You can also use the following method if you wish to see a listing of snippets available. Press Ctrl + K, Ctrl + X Select ASP.NET MVC2 with the arrow keys and hit enter to see a list of snippets available.   The MVC related snippets you get out of the box (for C#) are listed below: HTML actionlink Markup snippet for an ASP.NET MVC action link helper <%= Html.ActionLink("linktext", "actionname") %>   beginformajaxcs Markup snippet for an ASP.NET MVC AJAX-enabled form helper in C# <% using (Ajax.BeginForm("actionname", new AjaxOptions {UpdateTargetId= "elementid" })) { %> <% } %>   beginformcs Markup snippet for an ASP.NET MVC form helper in C# <% using (Html.BeginForm()) { %> <% } %>   displayforcs Markup snippet for an ASP.NET MVC templated helper. <%= Html.DisplayFor(x => x.Property) %>   editorforcs Markup snippet for an ASP.NET MVC templated helper. <%= Html.EditorFor(x => x.Property) %>   foreachcs Markup snippet for an ASP.NET MVC foreach statement in C# <% foreach (var item in collection) { %> <% } %>   ifcs Markup snippet for a code-nugget if else statement in C# <% if (true) { %> <% } %>   ifelsecs Markup snippet for a code-nugget if else statement in C# <% if (true) { %> <% } else { %> <% } %>   renderpartialcs Markup snippet for an ASP.NET MVC partial view rendering in C# <% Html.RenderPartial("viewname"); %>   textboxmvc Markup snippet for an ASP.NET MVC textbox helper <%= Html.TextBox("name") %>   validationsummarymvc Markup snippet for an ASP.NET MVC validation summary helper <%= Html.ValidationSummary() %> CS mvcaction Code snippet for an action. public ActionResult Action() {     return View(); }   mvcpostaction Code snippet for an action via http post. [HttpPost] public ActionResult Action() {     return View(); }   Enjoy!

    Read the article

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

  • Communication Between Your PC and Azure VM via Windows Azure Connect

    - by Shaun
    With the new release of the Windows Azure platform there are a lot of new features available. In my previous post I introduced a little bit about one of them, the remote desktop access to azure virtual machine. Now I would like to talk about another cool stuff – Windows Azure Connect.   What’s Windows Azure Connect I would like to quote the definition of the Windows Azure Connect in MSDN With Windows Azure Connect, you can use a simple user interface to configure IP-sec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. IP-sec protects communications over Internet Protocol (IP) networks through the use of cryptographic security services. There’s an image available at the MSDN as well that I would like to forward here As we can see, using the Windows Azure Connect the Worker Role 1 and Web Role 1 are connected with the development machines and database servers which some of them are inside the organization some are not. With the Windows Azure Connect, the roles deployed on the cloud could consume the resource which located inside our Intranet or anywhere in the world. That means the roles can connect to the local database, access the local shared resource such as share files, folders and printers, etc.   Difference between Windows Azure Connect and AppFabric It seems that the Windows Azure Connect are duplicated with the Windows Azure AppFabric. Both of them are aiming to solve the problem on how to communication between the resource in the cloud and inside the local network. The table below lists the differences in my understanding. Category Windows Azure Connect Windows Azure AppFabric Purpose An IP-sec connection between the local machines and azure roles. An application service running on the cloud. Connectivity IP-sec, Domain-joint Net Tcp, Http, Https Components Windows Azure Connect Driver Service Bus, Access Control, Caching Usage Azure roles connect to local database server Azure roles use local shared files,  folders and printers, etc. Azure roles join the local AD. Expose the local service to Internet. Move the authorization process to the cloud. Integrate with existing identities such as Live ID, Google ID, etc. with existing local services. Utilize the distributed cache.   And also some scenarios on which of them should be used. Scenario Connect AppFabric I have a service deployed in the Intranet and I want the people can use it from the Internet.   Y I have a website deployed on Azure and need to use a database which deployed inside the company. And I don’t want to expose the database to the Internet. Y   I have a service deployed in the Intranet and is using AD authorization. I have a website deployed on Azure which needs to use this service. Y   I have a service deployed in the Intranet and some people on the Internet can use it but need to be authorized and authenticated.   Y I have a service in Intranet, and a website deployed on Azure. This service can be used from Internet and that website should be able to use it as well by AD authorization for more functionalities. Y Y   How to Enable Windows Azure Connect OK we talked a lot information about the Windows Azure Connect and differences with the Windows Azure AppFabric. Now let’s see how to enable and use the Windows Azure Connect. First of all, since this feature is in CTP stage we should apply before use it. On the Windows Azure Portal we can see our CTP features status under Home, Beta Program page. You can send the apply to join the Beta Programs to Microsoft in this page. After a few days the Microsoft will send an email to you (the email of your Live ID) when it’s available. In my case we can see that the Windows Azure Connect had been activated by Microsoft and then we can click the Connect button on top, or we can click the Virtual Network item from the left navigation bar.   The first thing we need, if it’s our first time to enter the Connect page, is to enable the Windows Azure Connect. After that we can see our Windows Azure Connect information in this page.   Add a Local Machine to Azure Connect As we explained below the Windows Azure Connect can make an IP-sec connection between the local machines and azure role instances. So that we firstly add a local machine into our Azure Connect. To do this we will click the Install Local Endpoint button on top and then the portal will give us an URL. Copy this URL to the machine we want to add and it will download the software to us. This software will be installed in the local machines which we want to join the Connect. After installed there will be a tray-icon appeared to indicate this machine had been joint our Connect. The local application will be refreshed to the Windows Azure Platform every 5 minutes but we can click the Refresh button to let it retrieve the latest status at once. Currently my local machine is ready for connect and we can see my machine in the Windows Azure Portal if we switched back to the portal and selected back Activated Endpoints node.   Add a Windows Azure Role to Azure Connect Let’s create a very simple azure project with a basic ASP.NET web role inside. To make it available on Windows Azure Connect we will open the azure project property of this role from the solution explorer in the Visual Studio, and select the Virtual Network tab, check the Activate Windows Azure Connect. The next step is to get the activation token from the Windows Azure Portal. In the same page there is a button named Get Activation Token. Click this button then the portal will display the token to me. We copied this token and pasted to the box in the Visual Studio tab. Then we deployed this application to azure. After completed the deployment we can see the role instance was listed in the Windows Azure Portal - Virtual Connect section.   Establish the Connect Group The final task is to create a connect group which contains the machines and role instances need to be connected each other. This can be done in the portal very easy. The machines and instances will NOT be connected until we created the group for them. The machines and instances can be used in one or more groups. In the Virtual Connect section click the Groups and Roles node from the left side navigation bar and clicked the Create Group button on top. This will bring up a dialog to us. What we need to do is to specify a group name, description; and then we need to select the local computers and azure role instances into this group. After the Azure Fabric updated the group setting we can see the groups and the endpoints in the page. And if we switch back to the local machine we can see that the tray-icon have been changed and the status turned connected. The Windows Azure Connect will update the group information every 5 minutes. If you find the status was still in Disconnected please right-click the tray-icon and select the Refresh menu to retrieve the latest group policy to make it connected.   Test the Azure Connect between the Local Machine and the Azure Role Instance Now our local machine and azure role instance had been connected. This means each of them can communication to others in IP level. For example we can open the SQL Server port so that our azure role can connect to it by using the machine name or the IP address. The Windows Azure Connect uses IPv6 to connect between the local machines and role instances. You can get the IP address from the Windows Azure Portal Virtual Network section when select an endpoint. I don’t want to take a full example for how to use the Connect but would like to have two very simple tests. The first one would be PING.   When a local machine and role instance are connected through the Windows Azure Connect we can PING any of them if we opened the ICMP protocol in the Filewall setting. To do this we need to run a command line before test. Open the command window on the local machine and the role instance, execute the command as following netsh advfirewall firewall add rule name="ICMPv6" dir=in action=allow enable=yes protocol=icmpv6 Thanks to Jason Chen, Patriek van Dorp, Anton Staykov and Steve Marx, they helped me to enable  the ICMPv6 setting. For the full discussion we made please visit here. You can use the Remote Desktop Access feature to logon the azure role instance. Please refer my previous blog post to get to know how to use the Remote Desktop Access in Windows Azure. Then we can PING the machine or the role instance by specifying its name. Below is the screen I PING my local machine from my azure instance. We can use the IPv6 address to PING each other as well. Like the image following I PING to my role instance from my local machine thought the IPv6 address.   Another example I would like to demonstrate here is folder sharing. I shared a folder in my local machine and then if we logged on the role instance we can see the folder content from the file explorer window.   Summary In this blog post I introduced about another new feature – Windows Azure Connect. With this feature our local resources and role instances (virtual machines) can be connected to each other. In this way we can make our azure application using our local stuff such as database servers, printers, etc. without expose them to Internet.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • BizTalk 2009 - The Scope of the Table Looping Functoid

    - by StuartBrierley
    When mapping in BizTalk you will find there are times when you need to map from flat and dispersed elemements in your source schema to a repeated record with child elements in your destination schema.  Below is an example of how you can make use of the Table Looping Functoid to bring together these flat elements and create your repeated group.  Although this example is purposely simple, I have previsouly encounted this issue on a much more complex scale when mapping the response from a credit scoring agency where all the applicant details were supplied in separate parts of a very flat schema. Consider the source and destination schemas as follows:   Although the Table Looping Functoid states that the first input must be a scoping element linked from a repeating group, you can actually also make use of a constant value.  In this case I know that the source schema always contains two people, so I set this to two. Then you need to set the number of columns in your table, in this case 2 (name and sex) and link all the required fields from the source schema. Following this you can configure the table. You can then add the Table Extractor functoids and complete the map. If you now validate this map you will see that BizTalk will warn you about the scoping link for the Table Looping Functoid, but this can be safely ignored. C:\Code\Developer Folders\Stuart Brierley\Test Mapping\TableLooping.btm: warning btm1071: A first input of the Table-Looping functoid must be a link from a Source Tree Node which acts as the scoping parameter. Testing the map will produce the following output:

    Read the article

  • Mount SMB / AFP 13.10

    - by Jeffery
    I cannot seem to get Ubuntu to mount a mac share via SMB or AFP. I've tried the following... AFP: apt-get install afpfs-ng-utils mount_afp afp://user:password@localip/share /mnt/share Error given: "Could not connect, never got a reponse to getstatus, Connection timed out". Which is odd as I can access the share just fine via Mac. SMB: apt-get install cifs-utils nano /etc/fstab added the following line "//localip/share /mnt/share cifs username=user,password=pass,iocharset=utf8,sec=nltm 0 0" mount -a Error given: root@Asrock:~# mount -a -vvv mount: fstab path: "/etc/fstab" mount: mtab path: "/etc/mtab" mount: lock path: "/etc/mtab~" mount: temp path: "/etc/mtab.tmp" mount: UID: 0 mount: eUID: 0 mount: spec: "//10.0.1.3/NAS" mount: node: "/mnt/NAS" mount: types: "cifs" mount: opts: "username=user,password=pass,iocharset=utf8,sec=nltm" mount: external mount: argv[0] = "/sbin/mount.cifs" mount: external mount: argv[1] = "//10.0.1.3/NAS" mount: external mount: argv[2] = "/mnt/NAS" mount: external mount: argv[3] = "-v" mount: external mount: argv[4] = "-o" mount: external mount: argv[5] = "rw,username=user,password=pass,iocharset=utf8,sec=nltm" mount.cifs kernel mount options: ip=10.0.1.3,unc=\\10.0.1.3\NAS,iocharset=utf8,sec=nltm,user=user,pass=* mount error(22): Invalid argument Refer to the mount.cifs(8) manual page (e.g. man mount.cifs) I don't really care which it uses I just want it to work! Am I doing something wrong?

    Read the article

  • Keep a Window on top with a handy AutoHotkey script

    - by Matthew Guay
    Are you tired of shuffling back and forth between windows to get your work done?  Here’s a handy tool that lets you keep any window always on top when you need it. There are many ways to use multiple windows efficiently, but sometimes it seems you need to keep a smaller one in front of a larger window and they never quite fit right.  Whether you’re trying to use Calculator and a web form at the same time, or see what music is playing while you’re catching up on your news, there’s many scenarios where it can be useful to keep one window always on top.  There are many utilities to do this, but they are often needlessly complicated and bloated.  Here we look at a better solution from Amit, our friend at Digital Inspiration. Always on Top Thanks to AutoHotkey, you can easily always keep any window on top of all the others on your screen.  You can download this as a small exe and run it directly, or can create it with a simple script in AutoHotkey.  For simplicity, we simply downloaded the application and ran it directly. To do this, download Always on Top (link below), and unzip the file. Once you’ve launched it, simply select the window you want to keep on top and press Ctrl+Space.  This program will now stay in front, even when it is not the active window.  Here’s a screenshot of a Hotmail signup dialog in Chrome with Notepad kept on top.  Notice Notepad isn’t the active application, but it is still on top. If you wish to un-pin the window from being on top, simply select the window and press Ctrl+space again.  You can keep multiple windows pinned at once, too, though you may clutter your desktop quickly! Always on Top will keep running in your system tray, and you can exit or suspend it by right-clicking on its tray icon and selecting exit or suspend, respectively. Create Your Own Always on Top Utility with AutoHotkey If you’re a fan of AutoHotkey, you can create your own AutoHotkey script to keep windows on top simply and easily with only one line of code: ^SPACE:: Winset, Alwaysontop, , A Simply create a new file, insert the code, and save it as plaintext with the .ahk file extension.  If you have AutoHotkey installed, simply double-click this file for the exact same functionality as the premade version. Conclusion This is a great way to keep a window handy, and it can be beneficial in many scenarios.  For instance you can use it to copy data from a PDF or image into a form or spreadsheet, and it saves a lot of clicks and time.  Links: Download Always on Top from Digital Inspiration Download AutoHotkey if you want to make it yourself Similar Articles Productive Geek Tips Get the Linux Alt+Window Drag Functionality in WindowsGet Mac’s Hide Others (cmd+opt+H) Keyboard Shortcut for WindowsAdd "Run as Administrator" for AutoHotkey Scripts in Windows 7 or VistaKeyboard Ninja: Pop Up the Vista Calendar with a Single HotkeyKeyboard Ninja: Assign a Hotkey to any Window TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional OutSync will Sync Photos of your Friends on Facebook and Outlook Windows 7 Easter Theme YoWindoW, a real time weather screensaver Optimize your computer the Microsoft way Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7?

    Read the article

  • Best of "The Moth" 2009

    Not wanting to break the tradition (2004, 2005, 2006, 2007, 2008) below are some blog posts I picked from my blogging last year. As you can see by comparing with the links above, 2009 marks my lowest output yet with only 64 posts, but hopefully the quality has not been lowered ;-) 1. Parallel Computing was a strong focus of course. You can find links to most of that content aggregated in the post where I shared my entire parallelism session. Related to that was the link to the screencast I shared of the Parallel Computing Features Tour.2. Parallel Debugging is obviously part of the parallel computing links above, but I created more in depth content around that area of Visual Studio 2010 since it is the one I directly own. I aggregated all the links to that content in my post: Parallel Debugging.3. High Performance Computing through clusters is an area I'll be focusing more next year (besides parallelism on a single node on the client captured above) and I started introducing the topic on my blog this year. Read the (currently) 6 posts bottom up from my category on HPC.4. Windows 7 Task Manager. In April I shared a screenshot which was the most "borrowed" item from my blog (I should have watermarked it ;-)5. Windows Phone non-support in VS2010. Did my bit to spread clarification of the story.6. Window positions in Visual Studio is a long post, but one that I strongly advise all VS users to read and benefit from.7. Bug Triage gives you a glimpse into one thing all (Microsoft) product teams do.If you haven't yet, you can subscribe via one of the options on the left. Either way, thank you for staying tuned… Happy New Year! Comments about this post welcome at the original blog.

    Read the article

  • Localization with ASP.NET MVC ModelMetadata

    - by kazimanzurrashid
    When using the DisplayFor/EditorFor there has been built-in support in ASP.NET MVC to show localized validation messages, but no support to show the associate label in localized text, unless you are using the .NET 4.0 with Mvc Future. Lets a say you are creating a create form for Product where you have support both English and German like the following. English German I have recently added few helpers for localization in the MvcExtensions, lets see how we can use it to localize the form. As mentioned in the past that I am not a big fan when it comes to decorate class with attributes which is the recommended way in ASP.NET MVC. Instead, we will use the fluent configuration (Similar to FluentNHibernate or EF CodeFirst) of MvcExtensions to configure our View Models. For example for the above we will using: public class ProductEditModelConfiguration : ModelMetadataConfiguration<ProductEditModel> { public ProductEditModelConfiguration() { Configure(model => model.Id).Hide(); Configure(model => model.Name).DisplayName(() => LocalizedTexts.Name) .Required(() => LocalizedTexts.NameCannotBeBlank) .MaximumLength(64, () => LocalizedTexts.NameCannotBeMoreThanSixtyFourCharacters); Configure(model => model.Category).DisplayName(() => LocalizedTexts.Category) .Required(() => LocalizedTexts.CategoryMustBeSelected) .AsDropDownList("categories", () => LocalizedTexts.SelectCategory); Configure(model => model.Supplier).DisplayName(() => LocalizedTexts.Supplier) .Required(() => LocalizedTexts.SupplierMustBeSelected) .AsListBox("suppliers"); Configure(model => model.Price).DisplayName(() => LocalizedTexts.Price) .FormatAsCurrency() .Required(() => LocalizedTexts.PriceCannotBeBlank) .Range(10.00m, 1000.00m, () => LocalizedTexts.PriceMustBeBetweenTenToThousand); } } As you can we are using Func<string> to set the localized text, this is just an overload with the regular string method. There are few more methods in the ModelMetadata which accepts this Func<string> where localization can applied like Description, Watermark, ShortDisplayName etc. The LocalizedTexts is just a regular resource, we have both English and German:   Now lets see the view markup: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<Demo.Web.ProductEditModel>" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> <%= LocalizedTexts.Create %> </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <h2><%= LocalizedTexts.Create %></h2> <%= Html.ValidationSummary(false, LocalizedTexts.CreateValidationSummary)%> <% Html.EnableClientValidation(); %> <% using (Html.BeginForm()) {%> <fieldset> <%= Html.EditorForModel() %> <p> <input type="submit" value="<%= LocalizedTexts.Create %>" /> </p> </fieldset> <% } %> <div> <%= Html.ActionLink(LocalizedTexts.BackToList, "Index")%> </div> </asp:Content> As we can see that we are using the same LocalizedTexts for the other parts of the view which is not included in the ModelMetadata like the Page title, button text etc. We are also using EditorForModel instead of EditorFor for individual field and both are supported. One of the added benefit of the fluent syntax based configuration is that we will get full compile type checking for our resource as we are not depending upon the string based resource name like the ASP.NET MVC. You will find the complete localized CRUD example in the MvcExtensions sample folder. That’s it for today.

    Read the article

  • Start Debugging in Visual Studio

    - by Daniel Moth
    Every developer is familiar with hitting F5 and debugging their application, which starts their app with the Visual Studio debugger attached from the start (instead of attaching later). This is one way to achieve step 1 of the Live Debugging process. Hitting F5, F11, Ctrl+F10 and the other ways to start the process under the debugger is covered in this MSDN "How To". The way you configure the debugging experience, before you hit F5, is by selecting the "Project" and then the "Properties" menu (Alt+F7 on my keyboard bindings). Dependent on your project type there are different options, but if you browse to the Debug (or Debugging) node in the properties page you'll have a way to select local or remote machine debugging, what debug engines to use, command line arguments to use during debugging etc. Currently the .NET and C++ project systems are different, but one would hope that one day they would be unified to use the same mechanism and UI (I don't work on that product team so I have no knowledge of whether that is a goal or if it will ever happen). Personally I like the C++ one better, here is what it looks like (and it is described on this MSDN page): If you were following along in the "Attach to Process" blog post, the equivalent to the "Select Code Type" dialog is the "Debugger Type" dropdown: that is how you change the debug engine. Some of the debugger properties options appear on the standard toolbar in VS. With Visual Studio 11, the Debug Type option has been added to the toolbar If you don't see that in your installation, customize the toolbar to show it - VS 11 tends to be conservative in what you see by default, especially for the non-C++ Visual Studio profiles. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Calling Web Services in classic ASP

    - by cabhilash
      Last day my colleague asked me the provide her a solution to call the Web service from classic ASP. (Yes Classic ASP. still people are using this :D ) We can call web service SOAP toolkit also. But invoking the service using the XMLHTTP object was more easier & fast. To create the Service I used the normal Web Service in .Net 2.0 with [Webmethod] public class WebService1 : System.Web.Services.WebService { [WebMethod] public string HelloWorld(string name){return name + " Pay my dues :) "; // a reminder to pay my consultation fee :D} } In Web.config add the following entry in System.web<webServices><protocols><add name="HttpGet"/><add name="HttpPost"/></protocols></webServices> Alternatively, you can enable these protocols for all Web services on the computer by editing the <protocols> section in Machine.config. The following example enables HTTP GET, HTTP POST, and also SOAP and HTTP POST from localhost: <protocols> <add name="HttpSoap"/> <add name="HttpPost"/> <add name="HttpGet"/> <add name="HttpPostLocalhost"/> <!-- Documentation enables the documentation/test pages --> <add name="Documentation"/> </protocols> By adding these entries I am enabling the HTTPGET & HTTPPOST (After .Net 1.1 by default HTTPGET & HTTPPOST is disabled because of security concerns)The .NET Framework 1.1 defines a new protocol that is named HttpPostLocalhost. By default, this new protocol is enabled. This protocol permits invoking Web services that use HTTP POST requests from applications on the same computer. This is true provided the POST URL uses http://localhost, not http://hostname. This permits Web service developers to use the HTML-based test form to invoke the Web service from the same computer where the Web service resides. Classic ASP Code to call Web service <%Option Explicit Dim objRequest, objXMLDoc, objXmlNode Dim strRet, strError, strNome Dim strName strName= "deepa" Set objRequest = Server.createobject("MSXML2.XMLHTTP") With objRequest .open "GET", "http://localhost:3106/WebService1.asmx/HelloWorld?name=" & strName, False .setRequestHeader "Content-Type", "text/xml" .setRequestHeader "SOAPAction", "http://localhost:3106/WebService1.asmx/HelloWorld" .send End With Set objXMLDoc = Server.createobject("MSXML2.DOMDocument") objXmlDoc.async = false Response.ContentType = "text/xml" Response.Write(objRequest.ResponseText) %> In Line 6 I created an MSXML XMLHTTP object. Line 9 Using the HTTPGET protocol I am openinig connection to WebService Line 10:11 – setting the Header for the service In line 15, I am getting the output from the webservice in XML Doc format & reading the responseText(line 18). In line 9 if you observe I am passing the parameter strName to the Webservice You can pass multiple parameters to the Web service by just like any other QueryString Parameters. In similar fashion you can invoke the Web service using HTTPPost. Only you have to ensure that the form contains all th required parameters for webmethod.  Happy coding !!!!!!!

    Read the article

< Previous Page | 483 484 485 486 487 488 489 490 491 492 493 494  | Next Page >