Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 496/1274 | < Previous Page | 492 493 494 495 496 497 498 499 500 501 502 503  | Next Page >

  • Illumination and Shading for computer graphics class

    - by Sam I Am
    I am preparing for my test tomorrow and this is one of the practice questions. I solved it partially but I am confused with the rest. Here is the problem: Consider a gray world with no ambient and specular lighting ( only diffuse lighting). The screen coordinates of a triangle P1,P2,P3, are P1=(100,100), P2= (300,150), P3 = (200, 200). The gray values at P!,P2,P3 are 1/2, 3/4, and 1/4 respectively. The light is at infinity and its direction and gray color are (1,1,1) and 1.0 respectively. The coefficients of diffused reflection is 1/2. The normals of P1,P2,P3 are N1= (0,0,1), N2 = (1,0,0), and N3 = (0,1,0) respectively. Consider the coordinates of three points P1,P2,P3 to be 0. Do not normalize the normals. I have computed that the illumination at the 3 vertices P1,P2,P3 is (1/4,3/8,1/8). Also I computed that interpolation coefficients of a point P inside the triangle whose coordinates are (220, 160) are given by (1/5,2/5,2/5). Now I have 4 more questions regarding this problem. 1) The illumination at P using Gouraud Shading is: i) 1/2 The answer is 1/2, but I have no idea how to compute it.. 2) The interpolated normal at P is given by i) (2/5, 2/5,1/5) ii) (1/2, 1/4, 1/4) iii) (3/5, 1/5, 1/5) 3) The interpolated color at P is given by: i) 1/2 Again, I know the correct answer but no idea how to solve it 4) The illumination at P using Phong Shading is i) 1/4 ii) 9/40 iii) 1/2

    Read the article

  • runtime error: invalid memory address or nil pointer dereference

    - by Klink
    I want to learn OpenGL 3.0 with golang. But when i try to compile some code, i get many errors. package main import ( "os" //"errors" "fmt" //gl "github.com/chsc/gogl/gl33" //"github.com/jteeuwen/glfw" "github.com/go-gl/gl" "github.com/go-gl/glfw" "runtime" "time" ) var ( width int = 640 height int = 480 ) var ( points = []float32{0.0, 0.8, -0.8, -0.8, 0.8, -0.8} ) func initScene() { gl.Init() gl.ClearColor(0.0, 0.5, 1.0, 1.0) gl.Enable(gl.CULL_FACE) gl.Viewport(0, 0, 800, 600) } func glfwInitWindowContext() { if err := glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "glfw_Init: %s\n", err) glfw.Terminate() } glfw.OpenWindowHint(glfw.FsaaSamples, 1) glfw.OpenWindowHint(glfw.WindowNoResize, 1) if err := glfw.OpenWindow(width, height, 0, 0, 0, 0, 32, 0, glfw.Windowed); err != nil { fmt.Fprintf(os.Stderr, "glfw_Window: %s\n", err) glfw.CloseWindow() } glfw.SetSwapInterval(1) glfw.SetWindowTitle("Title") } func drawScene() { for glfw.WindowParam(glfw.Opened) == 1 { gl.Clear(gl.COLOR_BUFFER_BIT) vertexShaderSrc := `#version 120 attribute vec2 coord2d; void main(void) { gl_Position = vec4(coord2d, 0.0, 1.0); }` vertexShader := gl.CreateShader(gl.VERTEX_SHADER) vertexShader.Source(vertexShaderSrc) vertexShader.Compile() fragmentShaderSrc := `#version 120 void main(void) { gl_FragColor[0] = 0.0; gl_FragColor[1] = 0.0; gl_FragColor[2] = 1.0; }` fragmentShader := gl.CreateShader(gl.FRAGMENT_SHADER) fragmentShader.Source(fragmentShaderSrc) fragmentShader.Compile() program := gl.CreateProgram() program.AttachShader(vertexShader) program.AttachShader(fragmentShader) program.Link() attribute_coord2d := program.GetAttribLocation("coord2d") program.Use() //attribute_coord2d.AttribPointer(size, typ, normalized, stride, pointer) attribute_coord2d.EnableArray() attribute_coord2d.AttribPointer(0, 3, false, 0, &(points[0])) //gl.DrawArrays(gl.TRIANGLES, 0, len(points)) gl.DrawArrays(gl.TRIANGLES, 0, 3) glfw.SwapBuffers() inputHandler() time.Sleep(100 * time.Millisecond) } } func inputHandler() { glfw.Enable(glfw.StickyKeys) if glfw.Key(glfw.KeyEsc) == glfw.KeyPress { //gl.DeleteBuffers(2, &uiVBO[0]) glfw.Terminate() } if glfw.Key(glfw.KeyF2) == glfw.KeyPress { glfw.SetWindowTitle("Title2") fmt.Println("Changed to 'Title2'") fmt.Println(len(points)) } if glfw.Key(glfw.KeyF1) == glfw.KeyPress { glfw.SetWindowTitle("Title1") fmt.Println("Changed to 'Title1'") } } func main() { runtime.LockOSThread() glfwInitWindowContext() initScene() drawScene() } And after that: panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x41bc6f74] goroutine 1 [syscall]: github.com/go-gl/gl._Cfunc_glDrawArrays(0x4, 0x7f8500000003) /tmp/go-build463568685/github.com/go-gl/gl/_obj/_cgo_defun.c:610 +0x2f github.com/go-gl/gl.DrawArrays(0x4, 0x3, 0x0, 0x45bd70) /tmp/go-build463568685/github.com/go-gl/gl/_obj/gl.cgo1.go:1922 +0x33 main.drawScene() /home/klink/Dev/Go/gogl/gopher/exper.go:85 +0x1e6 main.main() /home/klink/Dev/Go/gogl/gopher/exper.go:116 +0x27 goroutine 2 [syscall]: created by runtime.main /build/buildd/golang-1/src/pkg/runtime/proc.c:221 exit status 2

    Read the article

  • Realistic planetary terrain generation with weights

    - by Programmdude
    I need terrain generation for a planet. The planet will be divided up into several hundred hexes, and I need it to be realistic and based on weights. I have dabbled in terrain generation before, but nothing like this. So I figure it would be a good idea to ask the community for answers, recommended articles or the like. By realistic, I mean not just random hexes, but continent shaped things with a few islands. More desert around the equator and more ice around the poles. I also have two weights I need to base it around: ice percentage and water percentage. That means that around XX% of the planet will need to be water. Does anyone have any advice or places to start? Generating arbitrary terrain is easy, but something a bit more "organic" like this seems rather difficult. It also needs to be seamless. Should be obvious since it's a planet, but no harm in pointing it out.

    Read the article

  • How are realistic 3D faces created and animated in video games?

    - by Anton
    I'm interested in being able to create realistic faces and facial expressions for the 3D characters of a game I'm working on. Think something similar to the dialog scenes in games like Mass Effect. Unfortunately I'm not sure where to begin. I'm sure the faces/animations are created through 3D Modeling software, but otherwise I am lost. Do facial animations use the same "bones" that normal body animation uses? Is there any preferred 3D software for realistic faces and animations? Is there a preferred format to export these faces and animations in?

    Read the article

  • stdexcept On Android

    - by David R.
    I'm trying to compile SoundTouch on Android. I started with this configure line: ./configure CPPFLAGS="-I/Volumes/android-build/mydroid/development/ndk/build/platforms/android-3/arch-arm/usr/include/" LDFLAGS="-Wl,-rpath-link=/Volumes/android-build/mydroid/development/ndk/build/platforms/android-3/arch-arm/usr/lib -L/Volumes/android-build/mydroid/development/ndk/build/platforms/android-3/arch-arm/usr/lib -nostdlib -lc" --host=arm-eabi --enable-shared=yes CFLAGS="-nostdlib -O3 -mandroid" host_alias=arm-eabi --no-create --no-recursion Because the Android NDK targets ARM, I also had to change the Makefile to remove the -msse2 flags to progress. When I run 'make', I get: /bin/sh ../../libtool --tag=CXX --mode=compile arm-eabi-g++ -DHAVE_CONFIG_H -I. -I../../include -I../../include -I/Volumes/android-build/mydroid/development/ndk/build/platforms/android-3/arch-arm/usr/include/ -O3 -fcheck-new -I../../include -g -O2 -MT FIRFilter.lo -MD -MP -MF .deps/FIRFilter.Tpo -c -o FIRFilter.lo FIRFilter.cpp libtool: compile: arm-eabi-g++ -DHAVE_CONFIG_H -I. -I../../include -I../../include -I/Volumes/android-build/mydroid/development/ndk/build/platforms/android-3/arch-arm/usr/include/ -O3 -fcheck-new -I../../include -g -O2 -MT FIRFilter.lo -MD -MP -MF .deps/FIRFilter.Tpo -c FIRFilter.cpp -o FIRFilter.o FIRFilter.cpp:46:21: error: stdexcept: No such file or directory FIRFilter.cpp: In member function 'virtual void soundtouch::FIRFilter::setCoefficients(const soundtouch::SAMPLETYPE*, uint, uint)': FIRFilter.cpp:177: error: 'runtime_error' is not a member of 'std' FIRFilter.cpp: In static member function 'static void* soundtouch::FIRFilter::operator new(size_t)': FIRFilter.cpp:225: error: 'runtime_error' is not a member of 'std' make[2]: *** [FIRFilter.lo] Error 1 make[1]: *** [all-recursive] Error 1 make: *** [all-recursive] Error 1 This isn't very surprising, since the -nostdlib flag was required. Android seems to have neither stdexcept nor stdlib. How can I get past this block of compiling SoundTouch? At a guess, there may be some flag I don't know about that I should use. I could refactor the code not to use stdexcept. There may be a way to pull in the original stdexcept source and reference that. I might be able to link to a precompiled stdexcept library.

    Read the article

  • Open GL stars are not rendering

    - by Darestium
    I doing Nehe's Open GL Lesson 9. I'm using SFML for windowing, the strange thing is no stars are rendering. #include <SFML/System.hpp> #include <SFML/Window.hpp> #include <SFML/Graphics.hpp> #include <iostream> void processEvents(sf::Window *app); void processInput(sf::Window *app); void renderGlScene(sf::Window *app); void init(); int loadResources(); const int NUM_OF_STARS = 50; float triRot = 0.0f; float quadRot = 0.0f; bool twinkle = false; bool tKey = false; float zoom = 15.0f; float tilt = 90.0f; float spin = 0.0f; unsigned int loop; unsigned int texture_handle[1]; typedef struct { int r, g, b; float distance; float angle; } stars; stars star[NUM_OF_STARS]; int main() { sf::Window app(sf::VideoMode(800, 600, 32), "Nehe Lesson 9"); app.UseVerticalSync(false); init(); if (loadResources() == -1) { return EXIT_FAILURE; } while (app.IsOpened()) { processEvents(&app); processInput(&app); renderGlScene(&app); app.Display(); } return EXIT_SUCCESS; } int loadResources() { sf::Image img_data; // Load Texture if (!img_data.LoadFromFile("data/images/star.bmp")) { std::cout << "Could not load data/images/star.bmp"; return -1; } // Generate 1 texture glGenTextures(1, &texture_handle[0]); // Linear filtering glBindTexture(GL_TEXTURE_2D, texture_handle[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img_data.GetWidth(), img_data.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data.GetPixelsPtr()); return 0; } void processInput(sf::Window *app) { const sf::Input& input = app->GetInput(); if (input.IsKeyDown(sf::Key::T) && !tKey) { tKey = true; twinkle = !twinkle; } if (!input.IsKeyDown(sf::Key::T)) { tKey = false; } if (input.IsKeyDown(sf::Key::Up)) { tilt -= 0.05f; } if (input.IsKeyDown(sf::Key::Down)) { tilt += 0.05f; } if (input.IsKeyDown(sf::Key::PageUp)) { zoom -= 0.02f; } if (input.IsKeyDown(sf::Key::Up)) { zoom += 0.02f; } } void init() { glClearDepth(1.f); glClearColor(0.f, 0.f, 0.f, 0.f); // Enable texturing glEnable(GL_TEXTURE_2D); //glDepthMask(GL_TRUE); // Setup a perpective projection glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.f, 1.f, 1.f, 500.f); glShadeModel(GL_SMOOTH); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glEnable(GL_BLEND); for (loop = 0; loop < NUM_OF_STARS; loop++) { star[loop].distance = (float)loop / NUM_OF_STARS * 5.0f; // Calculate distance from the centre // Give stars random rgb value star[loop].r = rand() % 256; star[loop].g = rand() % 256; star[loop].b = rand() % 256; } } void processEvents(sf::Window *app) { sf::Event event; while (app->GetEvent(event)) { if (event.Type == sf::Event::Closed) { app->Close(); } if (event.Type == sf::Event::KeyPressed && event.Key.Code == sf::Key::Escape) { app->Close(); } } } void renderGlScene(sf::Window *app) { app->SetActive(); // Clear color depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // Select texture glBindTexture(GL_TEXTURE_2D, texture_handle[0]); for (loop = 0; loop < NUM_OF_STARS; loop++) { glLoadIdentity(); // Reset The View Before We Draw Each Star glTranslatef(0.0f, 0.0f, zoom); // Zoom Into The Screen (Using The Value In 'zoom') glRotatef(tilt, 1.0f, 0.0f, 0.0f); // Tilt The View (Using The Value In 'tilt') glRotatef(star[loop].angle, 0.0f, 1.0f, 0.0f); // Rotate To The Current Stars Angle glTranslatef(star[loop].distance, 0.0f, 0.0f); // Move Forward On The X Plane glRotatef(-star[loop].angle,0.0f,1.0f,0.0f); // Cancel The Current Stars Angle glRotatef(-tilt,1.0f,0.0f,0.0f); // Cancel The Screen Tilt if (twinkle) { glColor4ub(star[(NUM_OF_STARS - loop) - 1].r, star[(NUM_OF_STARS - loop)-1].g, star[(NUM_OF_STARS - loop) - 1].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad } glRotatef(spin,0.0f,0.0f,1.0f); // Rotate The Star On The Z Axis // Assign A Color Using Bytes glColor4ub(star[loop].r, star[loop].g, star[loop].b, 255); glBegin(GL_QUADS); // Begin Drawing The Textured Quad glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f,-1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f); glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f); glEnd(); // Done Drawing The Textured Quad spin += 0.01f; // Used To Spin The Stars star[loop].angle += (float)loop / NUM_OF_STARS; // Changes The Angle Of A Star star[loop].distance -= 0.01f; // Changes The Distance Of A Star if (star[loop].distance < 0.0f) { star[loop].distance += 5.0f; // Move The Star 5 Units From The Center star[loop].r = rand() % 256; // Give It A New Red Value star[loop].g = rand() % 256; // Give It A New Green Value star[loop].b = rand() % 256; // Give It A New Blue Value } } } I've looked over the code atleast 10 times now and I can't figure out the problem. Any help would be much appreciated.

    Read the article

  • Calculating instantaneous speed and acceleration for a simple Car software model

    - by Dylan
    I am trying to model a speedometer and tachometer for a simple software model of a car dashboard. I want this to be relatively simple, so for my purposes I won't likely simulate variables such as drag (or, assume that drag is a constant). But I would like to know the general formulas for: 1) Calculating the RPM, depending on a position of a graphical slider representing the accelerator. 2) Using this information to find the instantaneous speed (or, magnitude of instantaneous velocity?). I am not sure, in the case of 2), what other independent variables I need to consider. Do I need to consider the frequency of rotation of the wheels (assuming a fixed radius), in addition to the RPM? If anyone can give me a rough explanation plus relevant formulas, or alternatively direct me to other trusted resources online (I have had a hard time sifting through info and determining the accuracy), it would be much appreciated.

    Read the article

  • Group arrival steering

    - by ltjax
    I've got group movement implemented pretty much like this: http://www.red3d.com/cwr/steer/CrowdPath.html Basically, that's combining path following and separation. It works nicely as long as units are in transit, but arrival does not work very well at all. Right now, units just cease to use the path following component once the "exit" the path, i.e. when their closest point on the path is on or past the end. This leads to those units bumping into each other and also overshooting the point the player clicked. Ideally, I'd have the units arrive scattered around the finish point (and reasonable close to each other), not all clumped up past the finish line. I'd imagine that some kind of arrival steering might work here, but based on other units and a "fuzzy" classification of the end of the path. Is there any proven way to do this?

    Read the article

  • Game programming in C++ [closed]

    - by Asaf
    I am a new programmer. I know C++ quite well and I know C# very good. I'm really eager to learn how to program games well and I cant really find where to start learning from. I have never developed any graphics in C++ , only a crappy game with windows forms graphics. I'm really into game programming and hoping I can get employed in it in the future. I'd be glad to have some advice about this. Thanks in advance, Asaf

    Read the article

  • XNA 4: GetData from Texture2D and Set it into Texture3D with specific order

    - by cubrman
    I am trying to convert my color grading 2d lookup texture into 3d LUT. When I simply use: ColorAtlas.GetData(data); ColorAtlas3D.SetData(data); I get this: I tried building my 2d atlass horizontally but it did not helped - the data was messed up in a different way. So my question is how can I influence the order of the data I get from the 2d atlas and how can I properly pass it into my 3d atlas? Update: I know that I can GetData from a specific Rectangular area and put it into several arrays, but the result is still the same. This is what I tried: Color[] data2D = new Color[0]; for (int i = 0; i < 32; i++) { Color[] data = new Color[32 * 32]; GraphicsDevice.SetRenderTarget(null); ColorAtlas.GetData(0, new Rectangle(0, i*32, 32, 32), data, 0, data.Length); int oldLength = data2D.Length; Array.Resize<Color>(ref data2D, oldLength + data.Length); Array.Copy(data, 0, data2D, oldLength, data.Length); } ColorAtlas3D.SetData(data2D);

    Read the article

  • Problem with Assimp 3D model loader

    - by Brendan Webster
    In my game I have model loading functions for Assimp model loading library. I can load the model and render it, but the model displays incorrectly. The models load in as if they were using a seperate projection matrix. I have looked over my code over and over again, but I probably keep on missing the obvious reason why this is happening. Here is an image of my game: It's simply a 6 sided cube, but it's off big time! Here are my code snippets for rendering the cube to the screen: void C_MediaLoader::display(void) { float tmp; glTranslatef(0,0,0); // rotate it around the y axis glRotatef(angle,0.f,0.f,1.f); glColor4f(1,1,1,1); // scale the whole asset to fit into our view frustum tmp = scene_max.x-scene_min.x; tmp = aisgl_max(scene_max.y - scene_min.y,tmp); tmp = aisgl_max(scene_max.z - scene_min.z,tmp); tmp = (1.f / tmp); glScalef(tmp/5, tmp/5, tmp/5); // center the model //glTranslatef( -scene_center.x, -scene_center.y, -scene_center.z ); // if the display list has not been made yet, create a new one and // fill it with scene contents if(scene_list == 0) { scene_list = glGenLists(1); glNewList(scene_list, GL_COMPILE); // now begin at the root node of the imported data and traverse // the scenegraph by multiplying subsequent local transforms // together on GL's matrix stack. recursive_render(scene, scene->mRootNode); glEndList(); } glCallList(scene_list); } void C_MediaLoader::recursive_render (const struct aiScene *sc, const struct aiNode* nd) { unsigned int i; unsigned int n = 0, t; struct aiMatrix4x4 m = nd->mTransformation; // update transform aiTransposeMatrix4(&m); glPushMatrix(); glMultMatrixf((float*)&m); // draw all meshes assigned to this node for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; apply_material(sc->mMaterials[mesh->mMaterialIndex]); if(mesh->mNormals == NULL) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } for (t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; GLenum face_mode; switch(face->mNumIndices) { case 1: face_mode = GL_POINTS; break; case 2: face_mode = GL_LINES; break; case 3: face_mode = GL_TRIANGLES; break; default: face_mode = GL_POLYGON; break; } glBegin(face_mode); for(i = 0; i < face->mNumIndices; i++) { int index = face->mIndices[i]; if(mesh->mColors[0] != NULL) glColor4fv((GLfloat*)&mesh->mColors[0][index]); if(mesh->mNormals != NULL) glNormal3fv(&mesh->mNormals[index].x); glVertex3fv(&mesh->mVertices[index].x); } glEnd(); } } // draw all children for (n = 0; n < nd->mNumChildren; ++n) { recursive_render(sc, nd->mChildren[n]); } glPopMatrix(); } Sorry there is so much code to look through, but I really cannot find the problem, and I would love to have help.

    Read the article

  • What is the format of DXGI_FORMAT_D24_UNORM_S8_UINT?

    - by bobobobo
    I'm trying to read the values in a depth texture of type DXGI_FORMAT_D24_UNORM_S8_UINT. I know this means "24 bits for depth, 8 bits for stencil" "A 32-bit z-buffer format that supports 24 bits for depth and 8 bits for stencil.", but how do you interpret those 24 bits? It's clearly not going to be a 32-bit int, and it's not going to be a 32-bit float. If it is an integer value, how "far away" is a value of "1" in the depth texture?

    Read the article

  • (Quaternion based) Trouble moving foward based on model rotation

    - by ChocoMan
    Using quaternions, I'm having trouble moving my model in its facing direction. Currently the model moves can move in all cardinal directions with no problems. The problem comes when I rotate the move as it still travelling in the direction of world space. Meaning, if I'm moving forward, backward or any other direction while rotating the model, the model acts like its a figure skater spinning while traveling in the same direction. How do I update the direction of travel proper with the facing direction of the model? Rotates model on Y-axis: Yaw = pController.ThumbSticks.Right.X * MathHelper.ToRadians(speedAngleMAX); AddRotation = Quaternion.CreateFromYawPitchRoll(yaw, 0, 0); ModelLoad.MRotation *= AddRotation; MOrientation = Matrix.CreateFromQuaternion(ModelLoad.MRotation); Moves model forward: // Move Forward if (pController.IsButtonDown(Buttons.LeftThumbstickUp)) { SpeedX = (float)(Math.Sin(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; SpeedZ = (float)(Math.Cos(ModelLoad.ModelRotation)) * FWDSpeedMax * pController.ThumbSticks.Left.Y * (float)gameTime.ElapsedGameTime.TotalSeconds; // Update model position ModelLoad._modelPos += Vector3.Forward * SpeedZ; ModelLoad._modelPos += Vector3.Left * SpeedX; }

    Read the article

  • What are the most common AI systems implemented in Tower Defense Games

    - by the_Dan
    I'm currently in the middle of researching on the various types of AI techniques used in tower defense type games. If someone could be help me in understanding the different types of techniques and their associated advantages. Using Google I already found several techniques. Random Map traversal Path finding e.g. Cost based Traversing Algorithms i.e. A* I have already found a great answer to this type of question with the below link, but I feel that this answer is tailored to FPS. If anyone could add to this and make it specific to tower defense games then I would be truly great-full. How is AI most commonly implemented in popular games? Example of such games would be: Radiant Defense Plant Vs Zombies - Not truly Intelligent, but there must be an AI system used right? Field Runners Edit: After further research I found an interesting book that may be useful: http://www.amazon.com/dp/0123747317/?tag=stackoverfl08-20

    Read the article

  • Is there a global "low resolution" filter for OpenGL?

    - by Ian Henry
    I'm trying to learn a little about OpenGL, so I'm making a simple 2D game (with OpenTK), and so far it's coming along well. I thought it would be fun to give it that, for lack of a better word, retropixelated look of games from the early nineties. I figured it would be an easy thing to do -- simply draw everything at half its normal size and scale up with no anti-aliasing. But I can't find any resources on how to do this. I can set the min/mag filters of my textures to nearest and that works fine for my sprites, but I'm using lots of primitives and I'd like the effect to apply to them as well. The one idea I had was to draw everything at half size, then somehow copy the render buffer to a texture, then render that texture full-size, but I don't know how to do that, and it seems like there must be a better way. Can anyone help me out?

    Read the article

  • How to build a 4x game?

    - by Marco
    I'm trying to study how succefully implement a 4x game. Area of interest: 1) map data: how to store stellars systems (graphs?), how to generate them and so on.. 2) multiplayer: how to organize code in a non graphical server and a client to display it 3) command system: what are patters to catch user and ai decisions and handle them, adding at first "explore" and "colonize" then "combat", "research", "spy" and so on (commands can affect ships, planets, research, etc..) 4) ai system: ai can use commands to expand, upgrade planets and ship I know is a big questions, so help is appreciated :D 1) Map data Best choice is have a graph to model a galaxy. A node is a stellar system and every system have a list of planets. Ship cannot travel outside of predefined paths, like in Ascendancy: http://www.abandonia.com/files/games/221/Ascendancy_2.png Every connection between two stellar systems have a cost, in turns. Generate a galaxy is only a matter of: - dimension: number of stellar systems, - variety: randomize number of planets and types (desertic, earth, etc..), - positions of each stellar system on game space - connections: assure that exist a path between every node, so graph is "connected" (not sure if this a matematically correct term) 2) Multiplayer Game is organized in turns: player 1, player 2, ai1, ai2. Server take care of all data and clients just diplay it and collect data change. Because is a turn game, latency is not a problem :D 3) Command system I would like to design a hierarchy of commands to take care of this aspect: abstract Genericcommand (target) ExploreCommand (Ship) extends genericcommand colonizeCommand (Ship) buildcommand(planet, object) and so on. In my head all this commands are stored in a queue for every planets, ships or reasearch center or spy, and each turn a command is sent to a server to apply command and change data state 4) ai system I don't have any idea about this. Is a big topic and what I want is a simple ai. Something like "expand and fight against everyone". I think about a behaviour tree to control ai moves, so I can develop an ai that try to build ships to expand and then colonize planets, upgrade them throught science and combat enemies. Could be done with a finite state machine too ? any ideas, resources, article are welcome!

    Read the article

  • Issues with touch buttons in XNA (Release state to be precise)

    - by Aditya
    I am trying to make touch buttons in WP8 with all the states (Pressed, Released, Moved), but the TouchLocationState.Released is not working. Here's my code: Class variables: bool touching = false; int touchID; Button tempButton; Button is a separate class with a method to switch states when touched. The Update method contains the following code: TouchCollection touchCollection = TouchPanel.GetState(); if (!touching && touchCollection.Count > 0) { touching = true; foreach (TouchLocation location in touchCollection) { for (int i = 0; i < menuButtons.Count; i++) { touchID = location.Id; // store the ID of current touch Point touchLocation = new Point((int)location.Position.X, (int)location.Position.Y); // create a point Button button = menuButtons[i]; if (GetMenuEntryHitBounds(button).Contains(touchLocation)) // a method which returns a rectangle. { button.SwitchState(true); // change the button state tempButton = button; // store the pressed button for accessing later } } } } else if (touchCollection.Count == 0) // clears the state of all buttons if no touch is detected { touching = false; for (int i = 0; i < menuButtons.Count; i++) { Button button = menuButtons[i]; button.SwitchState(false); } } menuButtons is a list of buttons on the menu. A separate loop (within the Update method) after the touched variable is true if (touching) { TouchLocation location; TouchLocation prevLocation; if (touchCollection.FindById(touchID, out location)) { if (location.TryGetPreviousLocation(out prevLocation)) { Point point = new Point((int)location.Position.X, (int)location.Position.Y); if (prevLocation.State == TouchLocationState.Pressed && location.State == TouchLocationState.Released) { if (GetMenuEntryHitBounds(tempButton).Contains(point)) // Execute the button action. I removed the excess } } } } The code for switching the button state is working fine but the code where I want to trigger the action is not. location.State == TouchLocationState.Released mostly ends up being false. (Even after I release the touch, it has a value of TouchLocationState.Moved) And what is more irritating is that it sometimes works! I am really confused and stuck for days now. Is this the right way? If yes then where am I going wrong? Or is there some other more effective way to do this? PS: I also posted this question on stack overflow then realized this question is more appropriate in gamedev. Sorry if it counts as being redundant.

    Read the article

  • 3D Ball Physics Theory: collision response on ground and against walls?

    - by David
    I'm really struggling to get a strong grasp on how I should be handling collision response in a game engine I'm building around a 3D ball physics concept. Think Monkey Ball as an example of the type of gameplay. I am currently using sphere-to-sphere broad phase, then AABB to OBB testing (the final test I am using right now is one that checks if one of the 8 OBB points crosses the planes of the object it is testing against). This seems to work pretty well, and I am getting back: Plane that object is colliding against (with a point on the plane, the plane's normal, and the exact point of intersection. I've tried what feels like dozens of different high-level strategies for handling these collisions, without any real success. I think my biggest problem is understanding how to handle collisions against walls in the x-y axes (left/right, front/back), which I want to have elasticity, and the ground (z-axis) where I want an elastic reaction if the ball drops down, but then for it to eventually normalize and be kept "on the ground" (not go into the ground, but also not continue bouncing). Without kluging something together, I'm positive there is a good way to handle this, my theories just aren't getting me all the way there. For physics modeling and movement, I am trying to use a Euler based setup with each object maintaining a position (and destination position prior to collision detection), a velocity (which is added onto the position to determine the destination position), and an acceleration (which I use to store any player input being put on the ball, as well as gravity in the z coord). Starting from when I detect a collision, what is a good way to approach the response to get the expected behavior in all cases? Thanks in advance to anyone taking the time to assist... I am grateful for any pointers, and happy to post any additional info or code if it is useful. UPDATE Based on Steve H's and eBusiness' responses below, I have adapted my collision response to what makes a lot more sense now. It was close to right before, but I didn't have all the right pieces together at the right time! I have one problem left to solve, and that is what is causing the floor collision to hit every frame. Here's the collision response code I have now for the ball, then I'll describe the last bit I'm still struggling to understand. // if we are moving in the direction of the plane (against the normal)... if (m_velocity.dot(intersection.plane.normal) <= 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Clamp z-velocity to zero if we are within a certain threshold // -- NOTE: this was an experimental idea I had to solve the "jitter" bug I'll describe below float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position + intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); The above snippet is run after a collision is detected on the ball (collider) with a collidee (floor in this case). With a dampening force of 1.8f, the ball's reflected "upward" velocity will eventually be overcome by gravity, so the ball will essentially be stuck on the floor. THIS is the problem I have now... the collision code is running every frame (since the ball's z-velocity is constantly pushing it a collision with the floor below it). The ball is not technically stuck, I can move it around still, but the movement is really goofy because the velocity and position keep getting affected adversely by the above snippet. I was experimenting with an idea to clamp the z-velocity to zero if it was "close to zero", but this didn't do what I think... probably because the very next frame the ball gets a new gravity acceleration applied to its velocity regardless (which I think is good, right?). Collisions with walls are as they used to be and work very well. It's just this last bit of "stickiness" to deal with. The camera is constantly jittering up and down by extremely small fractions too when the ball is "at rest". I'll keep playing with it... I like puzzles like this, especially when I think I'm close. Any final ideas on what I could be doing wrong here? UPDATE 2 Good news - I discovered I should be subtracting the intersection.diff from the m_position (position prior to collision). The intersection.diff is my calculation of the difference in the vector of position to destPosition from the intersection point to the position. In this case, adding it was causing my ball to always go "up" just a little bit, causing the jitter. By subtracting it, and moving that clamper for the velocity.z when close to zero to being above the dot product (and changing the test from <= 0 to < 0), I now have the following: // Clamp z-velocity to zero if we are within a certain threshold float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // if we are moving in the direction of the plane (against the normal)... float dotprod = m_velocity.dot(intersection.plane.normal); if (dotprod < 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration? // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position - intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); UpdateWorldMatrix(m_destWorldMatrix, m_destOBB, m_destPosition, false); This is MUCH better. No jitter, and the ball now "rests" at the floor, while still bouncing off the floor and walls. The ONLY thing left is that the ball is now virtually "stuck". He can move but at a much slower rate, likely because the else of my dot product test is only letting the ball move at a rate multiplied against the tRemaining... I think this is a better solution than I had previously, but still somehow not the right idea. BTW, I'm trying to journal my progress through this problem for anyone else with a similar situation - hopefully it will serve as some help, as many similar posts have for me over the years.

    Read the article

  • 3d vertex translated onto 2d viewport

    - by Dan Leidal
    I have a spherical world defined by simple trigonometric functions to create triangles that are relatively similar in size and shape throughout. What I want to be able to do is use mouse input to target a range of vertices in the area around the mouse click in order to manipulate these vertices in real time. I read a post on this forum regarding translating 3d world coordinates into the 2d viewport.. it recommended that you should multiply the world vector coordinates by the viewport and then the projection, but they didn't include any code examples, and suffice to say i couldn't get any good results. Further information.. I am using a lookat method for the viewport. Does this cause a problem, and if so is there a solution? If this isn't the problem, does anyone have a simple code example illustrating translating one vertex in a 3d world into a 2d viewspace? I am using XNA.

    Read the article

  • GetData() error creating framebuffer

    - by Lelezeus
    I'm currently porting a game written in C# with XNA library to Android with Monogame. I have a Texture2D and i'm trying to get an array of uint in this way: Texture2d textureDeform = game.Content.Load<Texture2D>("Texture/terrain"); uint[] pixelDeformData = new uint[textureDeform.Width * textureDeform.Height]; textureDeform.GetData(pixelDeformData, 0, textureDeform.Width * textureDeform.Height); I get the following exception: System.Exception: Error creating framebuffer: Zero at Microsoft.Xna.Framework.Graphics.Texture2D.GetTextureData (Int32 ThreadPriorityLevel) [0x00000] in :0 I found that the problem is in private byte[] GetTextureData(int ThreadPriorityLevel) creating the framebuffer: private byte[] GetTextureData(int ThreadPriorityLevel) { int framebufferId = -1; int renderBufferID = -1; GL.GenFramebuffers(1, ref framebufferId); // framebufferId is still -1 , why can't be created? GraphicsExtensions.CheckGLError(); GL.BindFramebuffer(All.Framebuffer, framebufferId); GraphicsExtensions.CheckGLError(); //renderBufferIDs = new int[currentRenderTargets]; GL.GenRenderbuffers(1, ref renderBufferID); GraphicsExtensions.CheckGLError(); // attach the texture to FBO color attachment point GL.FramebufferTexture2D(All.Framebuffer, All.ColorAttachment0, All.Texture2D, this.glTexture, 0); GraphicsExtensions.CheckGLError(); // create a renderbuffer object to store depth info GL.BindRenderbuffer(All.Renderbuffer, renderBufferID); GraphicsExtensions.CheckGLError(); GL.RenderbufferStorage(All.Renderbuffer, All.DepthComponent24Oes, Width, Height); GraphicsExtensions.CheckGLError(); // attach the renderbuffer to depth attachment point GL.FramebufferRenderbuffer(All.Framebuffer, All.DepthAttachment, All.Renderbuffer, renderBufferID); GraphicsExtensions.CheckGLError(); All status = GL.CheckFramebufferStatus(All.Framebuffer); if (status != All.FramebufferComplete) throw new Exception("Error creating framebuffer: " + status); ... } The frameBufferId is still -1, seems that framebuffer could not be generated and I don't know why. Any help would be appreciated, thank you in advance.

    Read the article

  • Interesting/Innovative Open Source tools for indie games [closed]

    - by Gastón
    Just out of curiosity, I want to know opensource tools or projects that can add some interesting features to indie games, preferably those that could only be found on big-budget games. EDIT: As suggested by The Communist Duck and Joe Wreschnig, I'm putting the examples as answers. EDIT 2: Please do not post tools like PyGame, Inkscape, Gimp, Audacity, Slick2D, Phys2D, Blender (except for interesting plugins) and the like. I know they are great tools/libraries and some would argue essential to develop good games, but I'm looking for more rare projects. Could be something really specific or niche, like generating realistic trees and plants, or realistic AI for animals.

    Read the article

  • Which are the cons of using only non-member functions and POD?

    - by Miro
    I'm creating my own game engine. I've read these articles and this question about DOD and it was written to not use member functions and classes. I also heard some criticism to this idea. I can write it using member functions or non-member functions it would be similar. So what are the benefits/cons of that approach or when the project grows, does any of these approaches give clearer and better manageable code? With POD & non-member functions I don't have to make struct members public I can still use object id outside of engine like OpenGL does with all it's stuff, so It's not about encapsulation. POD - plain old data DOD - data oriented design

    Read the article

  • GameState management hierarchical FSM vs stack based FSM

    - by user8363
    I'm reading a bit on Finite State Machines to handle game states (or screens). I would like to build a rather decent FSM that can handle multiple screens. e.g. while the game is running I want to be able to pop-up an ingame menu and when that happens the main screen must stop updating (the game is paused) but must still be visible in the background. However when I open an inventory pop-up the main screen must be visible and continue updating etc. I'm a bit confused about the difference in implementation and functionality between hierarchical FSM's and FSM's that handle a stack of states instead. Are they basically the same? Or are there important differences?

    Read the article

  • Friction not working for Vehicle in BulletPhysics

    - by Manmohan Bishnoi
    I am creating a vehicle using bullet-physics engine (v 2.82). I created a ground ( btBoxShape ), a box and a vehicle (following the demo). But friction between ground and vehicle wheels seems not working. As soon as the vehicle is placed in 3d world, it starts moving forward. START : Steering works for the vehicle, but engineForce and brakingForce does not work (i.e. I cannot speed-up or stop the vehicle) : I create physics world like this : void initPhysics() { broadphase = new btDbvtBroadphase(); collisionConfiguration = new btDefaultCollisionConfiguration(); dispatcher = new btCollisionDispatcher(collisionConfiguration); solver = new btSequentialImpulseConstraintSolver(); dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration); dynamicsWorld->setGravity(btVector3(0, -9.81, 0)); // Debug Drawer bulletDebugugger.setDebugMode(btIDebugDraw::DBG_DrawWireframe); dynamicsWorld->setDebugDrawer(&bulletDebugugger); //groundShape = new btStaticPlaneShape(btVector3(0, 1, 0), 1); groundShape = new btBoxShape(btVector3(50, 3, 50)); fallShape = new btBoxShape(btVector3(1, 1, 1)); // Orientation and Position of Ground groundMotionState = new btDefaultMotionState(btTransform(btQuaternion(0, 0, 0, 1), btVector3(0, -3, 0))); btRigidBody::btRigidBodyConstructionInfo groundRigidBodyCI(0, groundMotionState, groundShape, btVector3(0, 0, 0)); groundRigidBody = new btRigidBody(groundRigidBodyCI); dynamicsWorld->addRigidBody(groundRigidBody); /////////////////////////////////////////////////////////////////////// // Vehicle Setup /////////////////////////////////////////////////////////////////////// vehicleChassisShape = new btBoxShape(btVector3(1.f, 0.5f, 2.f)); vehicleBody = new btCompoundShape(); localTrans.setIdentity(); localTrans.setOrigin(btVector3(0, 1, 0)); vehicleBody->addChildShape(localTrans, vehicleChassisShape); localTrans.setOrigin(btVector3(3, 0.f, 0)); vehicleMotionState = new btDefaultMotionState(localTrans); //vehicleMotionState = new btDefaultMotionState(btTransform(btQuaternion(0, 0, 0, 1), btVector3(3, 0, 0))); btVector3 vehicleInertia(0, 0, 0); vehicleBody->calculateLocalInertia(vehicleMass, vehicleInertia); btRigidBody::btRigidBodyConstructionInfo vehicleRigidBodyCI(vehicleMass, vehicleMotionState, vehicleBody, vehicleInertia); vehicleRigidBody = new btRigidBody(vehicleRigidBodyCI); dynamicsWorld->addRigidBody(vehicleRigidBody); wheelShape = new btCylinderShapeX(btVector3(wheelWidth, wheelRadius, wheelRadius)); { vehicleRayCaster = new btDefaultVehicleRaycaster(dynamicsWorld); vehicle = new btRaycastVehicle(vehicleTuning, vehicleRigidBody, vehicleRayCaster); // never deactivate vehicle vehicleRigidBody->setActivationState(DISABLE_DEACTIVATION); dynamicsWorld->addVehicle(vehicle); float connectionHeight = 1.2f; bool isFrontWheel = true; vehicle->setCoordinateSystem(rightIndex, upIndex, forwardIndex); // 0, 1, 2 // add wheels // front left btVector3 connectionPointCS0(CUBE_HALF_EXTENT-(0.3*wheelWidth), connectionHeight, 2*CUBE_HALF_EXTENT-wheelRadius); vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, vehicleTuning, isFrontWheel); // front right connectionPointCS0 = btVector3(-CUBE_HALF_EXTENT+(0.3*wheelWidth), connectionHeight, 2*CUBE_HALF_EXTENT-wheelRadius); vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, vehicleTuning, isFrontWheel); isFrontWheel = false; // rear right connectionPointCS0 = btVector3(-CUBE_HALF_EXTENT+(0.3*wheelWidth), connectionHeight, -2*CUBE_HALF_EXTENT+wheelRadius); vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, vehicleTuning, isFrontWheel); // rear left connectionPointCS0 = btVector3(CUBE_HALF_EXTENT-(0.3*wheelWidth), connectionHeight, -2*CUBE_HALF_EXTENT+wheelRadius); vehicle->addWheel(connectionPointCS0, wheelDirectionCS0, wheelAxleCS, suspensionRestLength, wheelRadius, vehicleTuning, isFrontWheel); for (int i = 0; i < vehicle->getNumWheels(); i++) { btWheelInfo& wheel = vehicle->getWheelInfo(i); wheel.m_suspensionStiffness = suspensionStiffness; wheel.m_wheelsDampingRelaxation = suspensionDamping; wheel.m_wheelsDampingCompression = suspensionCompression; wheel.m_frictionSlip = wheelFriction; wheel.m_rollInfluence = rollInfluence; } } /////////////////////////////////////////////////////////////////////// // Orientation and Position of Falling body fallMotionState = new btDefaultMotionState(btTransform(btQuaternion(0, 0, 0, 1), btVector3(-1, 5, 0))); btScalar mass = 1; btVector3 fallInertia(0, 0, 0); fallShape->calculateLocalInertia(mass, fallInertia); btRigidBody::btRigidBodyConstructionInfo fallRigidBodyCI(mass, fallMotionState, fallShape, fallInertia); fallRigidBody = new btRigidBody(fallRigidBodyCI); dynamicsWorld->addRigidBody(fallRigidBody); } I step physics world like this : // does not work vehicle->applyEngineForce(maxEngineForce, WHEEL_REARLEFT); vehicle->applyEngineForce(maxEngineForce, WHEEL_REARRIGHT); // these also do not work vehicle->setBrake(gBreakingForce, WHEEL_REARLEFT); vehicle->setBrake(gBreakingForce, WHEEL_REARRIGHT); // this works vehicle->setSteeringValue(gVehicleSteering, WHEEL_FRONTLEFT); vehicle->setSteeringValue(gVehicleSteering, WHEEL_FRONTRIGHT); dynamicsWorld->stepSimulation(1 / 60.0f, 10); However If I apply brakingForce to all 4 wheels (i.e. including WHEEL_FRONTLEFT and WHEEL_FRONTRIGHT), then my vehicle stops, but keeps sliding/moving forward very very slowly. How do I fix this ?

    Read the article

  • Making a game "resize-safe"

    - by CPP_Person
    It's one thing to get the graphics aligned perfectly, it's another to do this for every single resolution and not take too much time and/or make the code unreadable due to size. Games like Battlefield 3 and Minecraft seem to manage this. But what do they do to keep things from stretching or going off the screen? I don't know any algorithms to do this. I'd like some help on this topic. I've always programmed games that only handle a single resolution, so help would be appreciate.

    Read the article

< Previous Page | 492 493 494 495 496 497 498 499 500 501 502 503  | Next Page >