Search Results

Search found 26124 results on 1045 pages for 'unreal development kit'.

Page 498/1045 | < Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >

  • Problem with boundary collision

    - by James Century
    The problem: When the player hits the left boundary he stops (this is exactly what I want), when he hits the right boundary. He continues until his rectangle's left boundary meets with the right boundary. Outcome: https://www.youtube.com/watch?v=yuJfIWZ_LL0&feature=youtu.be My Code public class Player extends GameObject{ BufferedImageLoader loader; Texture tex = Game.getInstance(); BufferedImage image; Animation playerWalkLeft; private HealthBarManager healthBar; private String username; private int width; private ManaBarManager manaBar; public Player(float x, float y, ObjectID ID) { super(x, y, ID, null); loader = new BufferedImageLoader(); playerWalkLeft = new Animation(5,tex.player[10],tex.player[11],tex.player[12],tex.player[13],tex.player[14],tex.player[15],tex.player[17],tex.player[18]); } public void tick(LinkedList<GameObject> object) { setX(getX()+velX); setY(getY()+velY); playerWalkLeft.runAnimation(); } public void render(Graphics g) { g.setColor(Color.BLACK); FontMetrics fm = g.getFontMetrics(g.getFont()); if(username != null) width = fm.stringWidth(username); if(username != null){ g.drawString(username,(int) x-width/2+15,(int) y); } if(velX != 0){ playerWalkLeft.drawAnimation(g, (int)x, (int)y); }else{ g.drawImage(tex.player[16], (int)x, (int)y, null); } g.setColor(Color.PINK); g.drawRect((int)x,(int)y,33,48); g.drawRect(0,0,(int)Game.getWalkableBounds().getWidth(), (int)Game.getWalkableBounds().getHeight()); } @SuppressWarnings("unused") private Image getCurrentImage() { return image; } public float getX() { return x; } public float getY() { return y; } public void setX(float x) { Rectangle gameBoundry = Game.getWalkableBounds(); if(x >= gameBoundry.getMinX() && x <= gameBoundry.getMaxX()){ this.x = x; } } public void setY(float y) { //IGNORE THE SetY please. this.y = y; } public float getVelX() { return velX; } public void setHealthBar(HealthBarManager healthBar){ this.healthBar = healthBar; } public HealthBarManager getHealthBar(){ return healthBar; } public float getVelY() { return velY; } public void setVelX(float velX) { this.velX = velX; } public void setVelY(float velY) { this.velY = velY; } public ObjectID getID() { return ID; } public void setUsername(String playerName) { this.username = playerName; } public String getUsername(){ return this.username; } public void setManaBar(ManaBarManager manaBar) { this.manaBar = manaBar; } public ManaBarManager getManaBar(){ return manaBar; } public int getLevel(){ return 1; } public boolean isPlayerInsideBoundry(float x, float y){ Rectangle boundry = Game.getWalkableBounds(); if(boundry.contains(x,y)){ return true; } return false; } } What I've tried: - Using a method that checks if the game boundary contains player boundary rectangle. This gave me the same result as what the check statement in my setX did.

    Read the article

  • Preventing item duplication?

    - by PuppyKevin
    For my game, there's two types of items - stackable, and nonstackable. Nonstackable items get assigned a unique ID that stays with it forever. A character ID is assosicated with the item, as is a state (CHANGED, UNCHANGED, NEW, REMOVED). The character ID and state is used for item saving purposes. Stackable items have one unique ID, as in the entire stack has one unique ID. For example: 5 Potions (stacked ontop of each other) has one unique ID. When dropping a nonstackable item, the state gets set to REMOVED, and the unique ID and state don't change. If picked up by another player, the state gets set to NEW, and the character ID gets changed to the new character's ID. When dropping all items in a stack of stackable items (for example, 5 potions out of 5) - it behaves just like a nonstackable item. When dropping some of a stack of stackable items (for example, 3 potions out of 5)... I really have no clue what to do. The 3 dropped potions have the state of REMOVED, but the same unique ID and character ID. If another player picks it up, it has no choice but to obtain a new unique ID, and its state gets changed to NEW and its character ID to the new one. If the dropping player picks it back up, they'd just be readded to the stack. There's two issues with that though. 1. If the player who dropped the 3 potions picks it back up, there's no way to tell if they legitimately dropped the items, or if they're duped items. 2. If another player picks up the 3 potions (assuming they're duped), there's no way to know if they're duped or not. My question is: How can I create a system that detects duplicated items for both nonstackable and stackable items?

    Read the article

  • (SOLVED) Problems Rendering Text in OpenGL Using FreeType

    - by Sean M.
    I've been following both the FreeType2 tutorial and the WikiBooks tuorial, trying to combine things from them both in order to load and render fonts using the FreeType library. I used the font loading code from the FreeType2 tutorial and tried to implement the rendering code from the wikibooks tutorial (tried being the keyword as I'm still trying to learn model OpenGL, I'm using 3.2). Everything loads correctly and I have the shader program to render the text with working, but I can't get the text to render. I'm 99% sure that it has something to do with how I cam passing data to the shader, or how I set up the screen. These are the code segments that handle OpenGL initialization, as well as Font initialization and rendering: //Init glfw if (!glfwInit()) { fprintf(stderr, "GLFW Initialization has failed!\n"); exit(EXIT_FAILURE); } printf("GLFW Initialized.\n"); //Process the command line arguments processCmdArgs(argc, argv); //Create the window glfwWindowHint(GLFW_SAMPLES, g_aaSamples); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); g_mainWindow = glfwCreateWindow(g_screenWidth, g_screenHeight, "Voxel Shipyard", g_fullScreen ? glfwGetPrimaryMonitor() : nullptr, nullptr); if (!g_mainWindow) { fprintf(stderr, "Could not create GLFW window!\n"); closeOGL(); exit(EXIT_FAILURE); } glfwMakeContextCurrent(g_mainWindow); printf("Window and OpenGL rendering context created.\n"); glClearColor(0.2f, 0.2f, 0.2f, 1.0f); //Are these necessary for Modern OpenGL (3.0+)? glViewport(0, 0, g_screenWidth, g_screenHeight); glOrtho(0, g_screenWidth, g_screenHeight, 0, -1, 1); //Init glew int err = glewInit(); if (err != GLEW_OK) { fprintf(stderr, "GLEW initialization failed!\n"); fprintf(stderr, "%s\n", glewGetErrorString(err)); closeOGL(); exit(EXIT_FAILURE); } printf("GLEW initialized.\n"); Here is the font file (it's slightly too big to post): CFont.h/CFont.cpp Here is the solution zipped up: [solution] (https://dl.dropboxusercontent.com/u/36062916/VoxelShipyard.zip), if anyone feels they need the entire solution. If anyone could take a look at the code, it would be greatly appreciated. Also if someone has a tutorial that is a little more user friendly, that would also be appreciated. Thanks.

    Read the article

  • JBox2D applyLinearImpulse doesn't work

    - by Romeo
    So i have this line of code: if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), cam.screenToWorld(body.getPosition())); System.out.println("I can jump!"); } My problem is that the console display I can jump! but the body doesn't do that. Can you explain to me if i do something wrong? Some more code. This function creates my 'hero' the one supposed to jump. private Body setDynamic(float width, float height, float x, float y) { PolygonShape shape = new PolygonShape(); shape.setAsBox(width/2, height/2); BodyDef bd = new BodyDef(); bd.allowSleep = true; bd.position = new Vec2(cam.screenToWorld(new Vec2(x + width / 2, y + height / 2))); bd.type = BodyType.DYNAMIC; bd.userData = new BodyInfo(width, height); Body body = world.createBody(bd); body.createFixture(shape, 10); return body; } And this is the main update loop: if(input.isKeyDown(Input.KEY_A)) { body.setLinearVelocity(new Vec2(-10*delta, body.getLinearVelocity().y)); } else if (input.isKeyDown(Input.KEY_D)) { body.setLinearVelocity(new Vec2(10*delta, body.getLinearVelocity().y)); } else { body.setLinearVelocity(new Vec2(0, body.getLinearVelocity().y)); } if(input.isKeyDown(Input.KEY_W)&&canJump()) { body.applyLinearImpulse(new Vec2(0, 30), body.getPosition()); System.out.println("I can jump!"); } world.step(delta * 0.001f, 10, 5); }

    Read the article

  • Need to make animation whereby the character shatters into a bunch of pieces

    - by theprojectabot
    I would like to take a 3d character model, cut out a bunch of shapes (or a bunch of triangles in the shape of the pieces I want) and then have the pieces separate from each other at the beginning of the animation and fall apart with gravity so it looks like the model is falling apart in shattered pieces. Is there a way to run a script on a mesh, cut out these pieces, instantiate all of them as separate models and then run gravity on them during the simulation?

    Read the article

  • How do you prevent inflation in a virtual economy?

    - by Tetrad
    With your typical MMORPG, players can usually farm the world for raw materials essentially forever. Monsters/mineral veins/etc are usually on some respawn timer so, other than time, there really isn't a good way to limit the amount of new currency entering the system. So that really only leaves money sinks to try to take money out of the system. What are some strategies to prevent inflation of the in-game currency?

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • C++: Checking if an object faces a point (within a certain range)

    - by bojoradarial
    I have been working on a shooter game in C++, and am trying to add a feature whereby missiles shot must be within 90 degrees (PI/2 radians) of the direction the ship is facing. The missiles will be shot towards the mouse. My idea is that the ship's angle of rotation is compared with the angle between the ship and the mouse (std::atan2(mouseY - shipY, mouseX - shipX)), and if the difference is less than PI/4 (45 degrees) then the missile can be fired. However, I can't seem to get this to work. The ship's angle of rotation is increased and decreased with the A and D keys, so it is possible that it isn't between 0 and 2*PI, hence the use of fmod() below. Code: float userRotation = std::fmod(user->Angle(), 6.28318f); if (std::abs(userRotation - missileAngle) > 0.78f) return; Any help would be appreciated. Thanks!

    Read the article

  • Combining pathfinding with global AI objectives

    - by V_Programmer
    I'm making a turn-based strategy game using Java and LibGDX. Now I want to code the AI. I haven't written the AI code yet. I've simply designed it. The AI will have two components, one focused in tactics and resource management (create troops, determine who have strategical advantage, detect important objectives, etc) and a individual component, focused in assign the work to each unit, examine its possibilites and move the unit. Now I'm facing an important problem. The map where the action take place is a grid-based map. Each terrain has different movement cost. I read about pathfinding and I think A* is a very good option to determine a good route between two points. However, imagine I have an unit with movement = 5 (i.e, it can move 5 tiles of movement cost = 1). My tactical AI has found an objective at a distance d = 20 tiles (Manhattan distance) from my unit. My problem is the following: the unit won't be able to reach the objective in one turn. So the AI will have to store a list of position and execute them in various turns. I don't know how to solve this. PS. In my unit code, I have a list called "selectionMarks" which stores all the possible places where the unit can go in this turn. This places are calculed recursively using a "getSelectionMarks" function. Any help is appreciated :D

    Read the article

  • Grid based collision - How many cells?

    - by Fibericon
    The game I'm creating is a bullet hell game, so there can be quite a few objects on the screen at any given time. It probably maxes out at about 40 enemies and 200 or so bullets. That being said, I'm splitting up the playing field into a grid for my collision checking. Right now, it's only 8 cells. How many would be optimal? I'm worried that if I use too many, I'll be wasting CPU power. My main concern is processing power, to make the game run smoothly. RAM is not a big concern for me.

    Read the article

  • Profiling and containing memory per system

    - by chadb
    I have been interesting in profiling and keeping a managed memory pool for each subsystem, so I could get statistic on how much memory was being used in something such as sounds or graphics. However, what is the best design for doing this? I was thinking of using multiple allocators and just using one per subsystem, however, that would result in global variables for my allocators (or so it would seem to me). Another approach I have seen/been suggested is to just overload new and pass in an allocator for a parameter. I had a similar question over on stackoverflow here with a bounty, however, it seems as if perhaps I was too vague or just there is not enough people with knowledge in the subject.

    Read the article

  • How can I clear explosions in my function?

    - by hustlerinc
    Hi I have a function to place bombs, and a for loop that places explosions on the tiles where possible. My problem is that I can't remove the explosions after a while. I've tried everything I can come up with so now I turn here as a last resort. The function looks like this: function Bomb(){ var placebomb = false; if(placeBomb && player.bombs != 0){ map[player.Y][player.X].object = 2; var bombX = player.X; var bombY = player.Y; placeBomb = false; player.bombs--; setTimeout(explode, 3000); } function explode(){ var explodeNorth = true; var explodeEast = true; var explodeSouth = true; var explodeWest = true; map[bombY][bombX].explosion = 1; delete map[bombY][bombX].object; for(i=0;i<=player.bombRadius;i++){ if(explodeNorth && map[bombY-i][bombX]){ if(!map[bombY-i][bombX].wall){ if(!map[bombY-i][bombX].object){ map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; delete map[bombY-i][bombX].object; map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; } if(explodeEast && map[bombY][bombX+i]){ if(!map[bombY][bombX+i].wall){ if(!map[bombY][bombX+i].object){ map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; delete map[bombY][bombX+i].object; map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; } if(explodeSouth && map[bombY+i][bombX]){ if(!map[bombY+i][bombX].wall){ if(!map[bombY+i][bombX].object){ map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; delete map[bombY+i][bombX].object; map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; } if(explodeWest && map[bombY][bombX-i]){ if(!map[bombY][bombX-i].wall){ if(!map[bombY][bombX-i].object){ map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; delete map[bombY][bombX-i].object; map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; } } player.bombs++; } } If anyone can think of a good way to remove the explosion after a delay please help.

    Read the article

  • How should I structure moving from overworld to menu system / combat?

    - by persepolis
    I'm making a text-based "Arena" game where the player is the owner of 5 creatures that battle other teams for loot, experience and glory. The game is very simple, using Python and a curses emulator. I have a static ASCII map of an "overworld" of sorts. My character, represented by a glyph, can move about this static map. There are locations all over the map that the character can visit, that break down into two types: 1) Towns, which are a series of menus that will allow the player to buy equipment for his team, hire new recruits or do other things. 2) Arenas, where the player's team will have a "battle" interface with actions he can perform, messages about the fight, etc. Maybe later, an ASCII representation of the fight but for now, just screens of information with action prompts. My main problem is what kind of design or structure I should use to implement this? Right now, the game goes through a master loop which waits for keyboard input and then moves the player about the screen. My current thinking is this: 1) Upon keyboard input, the Player coordinates are checked against a list of Location objects and if the Player coords match the Location coords then... 2) ??? I'm not sure if I should then call a seperate function to initiate a "menu" or "combat" mode. Or should I create some kind of new GameMode object that contains a method itself for drawing the screen, printing the necessary info? How do I pass my player's team data into this object? My main concern is passing around the program flow into all these objects. Should I be calling straight functions for different parts of my game, and objects to represent "things" within my game? I was reading about the MVC pattern and how this kind of problem might benefit - decouple the GUI from the game logic and user input but I have no idea how this applies to my game.

    Read the article

  • Passing an objects rotation down through its children

    - by MintyAnt
    In my topdown 2d game you have a player with a sword, like an old Zelda game. The sword is a seperate entity, and its collision box "rotates" around the player like an orbit, but always follows the player wherever he goes. The player and sword both have a vector2 heading. The sword is a weapon object that is attached to the character. In order to allow swinging in a direction, I have the following property inside sword (RotateCopy returns a copy of the mHeading after rotation) public Vector2 Heading { get { return mHeading.RotateCopy(mOwner.Rotation); } } This seems a bit messy to me, and slower than it could be. Is there a better way to "translate" the base/owner component rotations through to whatever component I am using, like this sword? Would using a rotation MATRIX be better? (Curretnly rotates by sin/cos) If so, how can I "add" up the matrices? Thank you.

    Read the article

  • How to implement the light trails for a tron game?

    - by Link
    Well I was creating a TRON style game, but had an issue with creating the actual light trails for the game. What I'm doing currently is I have an array the same size as my window in pixel size, implemented like this: int* collision[800][600]; Then when the bike goes on a certain pixel, it is marked with a 1 for traveled on. However what is the most efficient way to create a working light trail display? I tried to do something like this: int i, j; for(i=0; i<800; i++) for(j=0; j<600; j++) if(*collision[i][j] == 1) Image::applySurface(i, j, trailSurface, gameScreen); But it isn't working properly? It just fills the whole screen with a sprite instead. Whats a better/faster/working way to do this?

    Read the article

  • Selection of a mesh with arbitrary region

    - by Tigran
    Considering example: I have a mesh(es) on the OpenGL screen and would like to select a part of it (say for delete purpose). There is a clear way to do the selction via Ray Tracing, or via Selection provided by OpenGL itself. But, for my users, considering that meshes can get wired surfaces, I need to implement a selection via a Arbitrary closed region, so all triangles that appears present inside that region has to be selected. To be more clear, here is screen shot: I want all triangles inside black polygon to be selected, identified, whatever in some way. How can I achieve that ?

    Read the article

  • Draw Bug 2D player Camera

    - by RedShft
    I have just implemented a 2D player camera for my game, everything works properly except the player on the screen jitters when it moves between tiles. What I mean by jitter, is that if the player is moving the camera updates the tileset to be drawn and if the player steps to the right, the camera snaps that way. The movement is not smooth. I'm guessing this is occurring because of how I implemented the function to calculate the current viewable area or how my draw function works. I'm not entirely sure how to fix this. This camera system was entirely of my own creation and a first attempt at that, so it's very possible this is not a great way of doing things. My camera class, pulls information from the current tileset and calculates the viewable area. Right now I am targettng a resolution of 800 by 600. So I try to fit the appropriate amount of tiles for that resolution. My camera class, after calculating the current viewable tileset relative to the players location, returns a slice of the original tileset to be drawn. This tileset slice is updated every frame according to the players position. This slice is then passed to the map class, which draws the tile on screen. //Map Draw Function //This draw function currently matches the GID of the tile to it's location on the //PNG file of the tileset and then draws this portion on the screen void Draw(SDL_Surface* background, int[] _tileSet) { enforce( tilesetImage != null, "Tileset is null!"); enforce( background != null, "BackGround is null!"); int i = 0; int j = 0; SDL_Rect DestR, SrcR; SrcR.x = 0; SrcR.y = 0; SrcR.h = 32; SrcR.w = 32; foreach(tile; _tileSet) { //This code is matching the current tiles ID to the tileset image SrcR.x = cast(short)(tileWidth * (tile >= 11 ? (tile - ((tile / 10) * 10) - 1) : tile - 1)); SrcR.y = cast(short)(tileHeight * (tile > 10 ? (tile / 10) : 0)); //Applying the tile to the surface SDL_BlitSurface( tilesetImage, &SrcR, background, &DestR ); //this keeps track of what column/row we are on i++; if ( i == mapWidth ) { i = 0; j++; } DestR.x = cast(short)(i * tileWidth); DestR.y = cast(short)(j * tileHeight); } } //Camera Class class Camera { private: //A rectangle representing the view area SDL_Rect viewArea; //In number of tiles int viewAreaWidth; int viewAreaHeight; //This is the x and y coordinate of the camera in MAP SPACE IN PIXELS vect2 cameraCoordinates; //The player location in map space IN PIXELS vect2 playerLocation; //This is the players location in screen space; vect2 playerScreenLoc; int playerTileCol; int playerTileRow; int cameraTileCol; int cameraTileRow; //The map is stored in a single array with the tile ids //this corresponds to the index of the starting and ending tile int cameraStartTile, cameraEndTile; //This is a slice of the current tile set int[] tileSetCopy; int mapWidth; int mapHeight; int tileWidth; int tileHeight; public: this() { this.viewAreaWidth = 25; this.viewAreaHeight = 19; this.cameraCoordinates = vect2(0, 0); this.playerLocation = vect2(0, 0); this.viewArea = SDL_Rect (0, 0, 0, 0); this.tileWidth = 32; this.tileHeight = 32; } void Init(vect2 playerPosition, ref int[] tileSet, int mapWidth, int mapHeight ) { playerLocation = playerPosition; this.mapWidth = mapWidth; this.mapHeight = mapHeight; CalculateCurrentCameraPosition( tileSet, playerPosition ); //writeln( "Tile Set Copy: ", tileSetCopy ); //writeln( "Orginal Tile Set: ", tileSet ); } void CalculateCurrentCameraPosition( ref int[] tileSet, vect2 playerPosition ) { playerLocation = playerPosition; playerTileCol = cast(int)((playerLocation.x / tileWidth) + 1); playerTileRow = cast(int)((playerLocation.y / tileHeight) + 1); //writeln( "Player Tile (Column, Row): ","(", playerTileCol, ", ", playerTileRow, ")"); cameraTileCol = playerTileCol - (viewAreaWidth / 2); cameraTileRow = playerTileRow - (viewAreaHeight / 2); CameraMapBoundsCheck(); //writeln( "Camera Tile Start (Column, Row): ","(", cameraTileCol, ", ", cameraTileRow, ")"); cameraStartTile = ( (cameraTileRow - 1) * mapWidth ) + cameraTileCol - 1; //writeln( "Camera Start Tile: ", cameraStartTile ); cameraEndTile = cameraStartTile + ( viewAreaWidth * viewAreaHeight ) * 2; //writeln( "Camera End Tile: ", cameraEndTile ); tileSetCopy = tileSet[cameraStartTile..cameraEndTile]; } vect2 CalculatePlayerScreenLocation() { cameraCoordinates.x = cast(float)(cameraTileCol * tileWidth); cameraCoordinates.y = cast(float)(cameraTileRow * tileHeight); playerScreenLoc = playerLocation - cameraCoordinates + vect2(32, 32);; //writeln( "Camera Coordinates: ", cameraCoordinates ); //writeln( "Player Location (Map Space): ", playerLocation ); //writeln( "Player Location (Screen Space): ", playerScreenLoc ); return playerScreenLoc; } void CameraMapBoundsCheck() { if( cameraTileCol < 1 ) cameraTileCol = 1; if( cameraTileRow < 1 ) cameraTileRow = 1; if( cameraTileCol + 24 > mapWidth ) cameraTileCol = mapWidth - 24; if( cameraTileRow + 19 > mapHeight ) cameraTileRow = mapHeight - 19; } ref int[] GetTileSet() { return tileSetCopy; } int GetViewWidth() { return viewAreaWidth; } }

    Read the article

  • How do i approach this collision model?

    - by PeeS
    this is the game level prototype i have already implemented. It has few objects per room to allow me to finally add some collision detection/response code into it. VIDEO As you can probably see, every object inside has it's own AABB, even the room itself has AABB. So a player is like 'inside the Room AABB'. My player will be exactly inside the room, so he would have to collide correctly with those AABBs, so that when he hits any of those objects inside he get's a proper collision response from those AABB's. Now i would like to hear from you what kind of collision approach should i choose in here? How do i approach this kind of stuff: AABB to AABB collision detection then when this is positive go with AABB - Tri to find proper plane normal and calculate response ? AABB to AABB then when positive go with AABB - AABB Side check to find proper proper plane normal and calculate response? Anything else? How do you do this ? Many thanks.

    Read the article

  • Expiring timed actions a good idea?

    - by Bart van Heukelom
    We have an online game where players sometimes have to wait a while (say 30 minutes) before a process they intiated completes. This encourages them to come back later. An example of this is growing crops in Farmville or basically any action in the Sims Play4Free. Now, however, there is the idea to let these processes expire, so if the player doesn't 'reap' them in time (e.g. within 4 hours) they are aborted. I'm a bit sceptical about this. How will this make players come back more often? Is not the reward of reaping the process enough for that? Can we expect players to fit their daily schedule around our game, maybe even set the alarm clock at night? Won't this just cause players to give up on starting these processes in the first place? I realise this may be too subjective for this site, so I'll end with a concrete question: Do (m)any other online free-to-play games employ this technique?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Very slow direct3D texture sampling

    - by __dominic
    Hi, So I'm writing a small game using Direct3D 9 and I'm using multitexturing for the terrain. All I'm doing is sampling 3 textures and a blend map and getting the overall color from the three textures based on the color channels from the blend map. Anyway, I am getting a massive frame rate drop when I sample more than 1 texture, I'm going from 120+ fps to just under 50. This is the HLSL code responsible for the slow down: float3 ground = tex2D(GroundTex, multiTex).rgb; float3 stone = tex2D(StoneTex, multiTex).rgb; float3 grass = tex2D(GrassTex, multiTex).rgb; float3 blend = tex2D(BlendMapTex, blendMap).rgb; Am I doing it wrong ? If anyone has any info or tips about texture sampling or anything, that would be nice. Thanks.

    Read the article

  • How can be data oriented programming applied for GUI system?

    - by Miro
    I've just learned basics of Data oriented programming design, but I'm not very familiar with that yet. I've also read Pitfalls of Object Oriented Programming GCAP 09. It seems that data oriented programming is much better idea for games, than OOP. I'm just creating my own GUI system and it's completely OOP. I'm thinking if is data oriented programming design applicable for structured things like GUI. The main problem I see is that every type widget has different data, so I can hardly group them into arrays. Also every type of widget renders differently so I still need to call virtual functions.

    Read the article

  • How to get this wavefront .obj data onto the frustum?

    - by NoobScratcher
    I've finally figured out how to get the data from a .obj file and store the vertex positions x,y,z into a structure called Points with members x y z which are of type float. I want to know how to get this data onto the screen. Here is my attempt at doing so: //make a fileobject and store list and the index of that list in a c string ifstream file (list[index].c_str() ); std::vector<int>faces; std::vector<Point>points; points.push_back(Point()); Point p; int face[4]; while ( !file.eof() ) { char modelbuffer[10000]; //Get lines and store it in line string file.getline(modelbuffer, 10000); switch(modelbuffer[0]) { case 'v' : sscanf(modelbuffer, "v %f %f %f", &p.x, &p.y, &p.z); points.push_back(p); cout << "Getting Vertex Positions" << endl; cout << "v" << p.x << endl; cout << "v" << p.y << endl; cout << "v" << p.z << endl; break; case 'f': sscanf(modelbuffer, "f %d %d %d %d", face, face+1, face+2, face+3 ); cout << face[0] << endl; cout << face[1] << endl; cout << face[2] << endl; cout << face[3] << endl; faces.push_back(face[0]); faces.push_back(face[1]); faces.push_back(face[2]); faces.push_back(face[3]); } GLuint vertexbuffer; glGenBuffers(1, &vertexbuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer); glBufferData(GL_ARRAY_BUFFER, points.size(), points.data(), GL_STATIC_DRAW); //glBufferData(GL_ARRAY_BUFFER,sizeof(points), &(points[0]), GL_STATIC_DRAW); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); glVertexPointer(3, GL_FLOAT, sizeof(points),points.data()); glIndexPointer(GL_DOUBLE, 0, faces.data()); glDrawArrays(GL_QUADS, 0, points.size()); glDrawElements(GL_QUADS, faces.size(), GL_UNSIGNED_INT, faces.data()); } As you can see I've clearly failed the end part but I really don't know why its not rendering the data onto the frustum? Does anyone have a solution for this?

    Read the article

  • How to choose how to store data?

    - by Eldros
    Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. - Chinese Proverb I could ask what kind of data storage I should use for my actual project, but I want to learn to fish, so I don't need to ask for a fish each time I begin a new project. So, until I used two methods to store data on my non-game project: XML files, and relational databases. I know that there is also other kind of database, of the NoSQL kind. However I wouldn't know if there is more choice available to me, or how to choose in the first place, aside arbitrary picking one. So the question is the following: How should I choose the kind of data storage for a game project? And I would be interested on the following criterion when choosing: The size of the project. The platform targeted by the game. The complexity of the data structure. Added Portability of data amongst many project. Added How often should the data be accessed Added Multiple type of data for a same application Any other point you think is of interest when deciding what to use. EDIT I know about Would it be better to use XML/JSON/Text or a database to store game content?, but thought it didn't address exactly my point. Now if I am wrong, I would gladely be shown the error in my ways.

    Read the article

< Previous Page | 494 495 496 497 498 499 500 501 502 503 504 505  | Next Page >