Search Results

Search found 40226 results on 1610 pages for 'object relational model'.

Page 502/1610 | < Previous Page | 498 499 500 501 502 503 504 505 506 507 508 509  | Next Page >

  • Is this method of writing Unit Tests correct?

    - by aspdotnetuser
    I have created a small C# project to help me learn how to write good unit tests. I know that one important rule of unit testing is to test the smallest 'unit' of code possible so that if it fails you know exactly what part of the code needs to fixed. I need help with the following before I continue to implement more unit tests for the project: If I have a Car class, for example, that creates a new Car object which has various attributes that are calculated when its' constructor method is called, would the two following tests be considered as overkill? Should there be one test that tests all calculated attributes of the Car object instead? [Test] public void CarEngineCalculatedValue() { BusinessObjects.Car car= new BusinessObjects.Car(); Assert.GreaterOrEqual(car.Engine, 1); } [Test] public void CarNameCalculatedValue() { BusinessObjects.Car car= new BusinessObjects.Car(); Assert.IsNotNull(car.Name); } Should I have the above two test methods to test these things or should I have one test method that asserts the Car object has first been created and then test these things in the same test method?

    Read the article

  • How bad is it to have two methods with the same name but different signatures in two classes?

    - by Super User
    I have a design problem related to a public interface, the names of methods, and the understanding of my API and code. I have two classes like this: class A: ... function collision(self): .... ... class B: .... function _collision(self, another_object, l, r, t, b): .... The first class has one public method named collision, and the second has one private method called _collision. The two methods differs in argument type and number. As an example let's say that _collision checks if the object is colliding with another object with certain conditions l, r, t, b (collide on the left side, right side, etc) and returns true or false. The public collision method, on the other hand, resolves all the collisions of the object with other objects. The two methods have the same name because I think it's better to avoid overloading the design with different names for methods that do almost the same thing, but in distinct contexts and classes. Is this clear enough to the reader or I should change the method's name?

    Read the article

  • Create a thread in xna Update method to find path?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work. Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Application Scope v's Static - Not Quite the same

    - by Duncan Mills
    An interesting question came up today which, innocent as it sounded, needed a second or two to consider. What's the difference between storing say a Map of reference information as a Static as opposed to storing the same map as an application scoped variable in JSF?  From the perspective of the web application itself there seems to be no functional difference, in both cases, the information is confined to the current JVM and potentially visible to your app code (note that Application Scope is not magically propagated across a cluster, you would need a separate instance on each VM). To my mind the primary consideration here is a matter of leakage. A static will be (potentially) visible to everything running within the same VM (OK this depends on which class-loader was used but let's keep this simple), and this includes your model code and indeed other web applications running in the same container. An Application Scoped object, in JSF terms, is much more ring-fenced and is only visible to the Web app itself, not other web apps running on the same server and not directly to the business model layer if that is running in the same VM. So given that I'm a big fan of coding applications to say what I mean, then using Application Scope appeals because it explicitly states how I expect the data to be used and a provides a more explicit statement about visibility and indeed dependency as I'd generally explicitly inject it where it is needed.  Alternative viewpoints / thoughts are, as ever, welcomed...

    Read the article

  • How to avoid game objects accidentally deleting themselves in C++

    - by Tom Dalling
    Let's say my game has a monster that can kamikaze explode on the player. Let's pick a name for this monster at random: a Creeper. So, the Creeper class has a method that looks something like this: void Creeper::kamikaze() { EventSystem::postEvent(ENTITY_DEATH, this); Explosion* e = new Explosion; e->setLocation(this->location()); this->world->addEntity(e); } The events are not queued, they get dispatched immediately. This causes the Creeper object to get deleted somewhere inside the call to postEvent. Something like this: void World::handleEvent(int type, void* context) { if(type == ENTITY_DEATH){ Entity* ent = dynamic_cast<Entity*>(context); removeEntity(ent); delete ent; } } Because the Creeper object gets deleted while the kamikaze method is still running, it will crash when it tries to access this->location(). One solution is to queue the events into a buffer and dispatch them later. Is that the common solution in C++ games? It feels like a bit of a hack, but that might just be because of my experience with other languages with different memory management practices. In C++, is there a better general solution to this problem where an object accidentally deletes itself from inside one of its methods?

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • XNA hlsl tex2D() only reads 3 channels from normal maps and specular maps

    - by cubrman
    Our engine uses deferred rendering and at the main draw phase gathers plenty of data from the objects it draws. In order to save on tex2D calls, we packed our objects' specular maps with all sorts of data, so three out of four channels are already taken. To make it clear: I am talking about the assets that come with the models and are stored in their material's Specular Level channel, not about the RenderTarget. So now I need another information to be stored in the alpha channel, but I cannot make the shader to read it properly! Nomatter what I write into alpha it ends up being 1 (255)! I tried: saving the textures in PNG/TGA formats. turning off pre-computed alpha in model's properties. Out of every texture available to me (we use Diffuse map, Normal Map and Specular Map) I was only able to read alpha successfully from the Diffuse Map! Here is how I add specular and normal maps to my model's material in the content processor: if (geometry.Material.Textures.ContainsKey(normalMapKey)) { ExternalReference<TextureContent> texRef = geometry.Material.Textures[normalMapKey]; geometry.Material.Textures.Remove("NormalMap"); geometry.Material.Textures.Add("NormalMap", texRef); } ... foreach (KeyValuePair<String, ExternalReference<TextureContent>> texture in material.Textures) { if ((texture.Key == "Texture") || (texture.Key == "NormalMap") || (texture.Key == "SpecularMap")) mat.Textures.Add(texture.Key, texture.Value); } In the shader I obviously use: float4 data = tex2D(specularMapSampler, TexCoords); so data.a is always 1 in my case, could you suggest a reason?

    Read the article

  • Converting a DrawModel() using BasicEffect to one using Effect

    - by Fibericon
    Take this DrawModel() provided by MSDN: private void DrawModel(Model m) { Matrix[] transforms = new Matrix[m.Bones.Count]; float aspectRatio = graphics.GraphicsDevice.Viewport.Width / graphics.GraphicsDevice.Viewport.Height; m.CopyAbsoluteBoneTransformsTo(transforms); Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); Matrix view = Matrix.CreateLookAt(new Vector3(0.0f, 50.0f, Zoom), Vector3.Zero, Vector3.Up); foreach (ModelMesh mesh in m.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.View = view; effect.Projection = projection; effect.World = gameWorldRotation * transforms[mesh.ParentBone.Index] * Matrix.CreateTranslation(Position); } mesh.Draw(); } } How would I apply a custom effect to a model with that? Effect doesn't have View, Projection, or World members. This is what they recommend replacing the foreach loop with: foreach (ModelMesh mesh in terrain.Meshes) { foreach (Effect effect in mesh.Effects) { mesh.Draw(); } } Of course, that doesn't really work. What else needs to be done?

    Read the article

  • How bad it's have two methods with the same name but differents signatures in two classes?

    - by Super User
    I have a design problem relationated with the public interface, the names of methods and the understanding of my API and my code. I have two classes like this: class A: ... function collision(self): .... ... class B: .... function _collision(self, another_object, l, r, t, b): .... The first class have one public method named collision and the second have one private method called _collision. The two methods differs in arguments type and number. In the API _m method is private. For the example let's say that the _collision method checks if the object is colliding with another_ object with certain conditions l, r, t, b (for example, collide the left side, the right side, etc) and returns true or false according to the case. The collision method, on the other hand, resolves all the collisions of the object with other objects. The two methods have the same name because I think is better avoid overload the design with different names for methods who do almost the same think, but in distinct contexts and classes. This is clear enough to the reader or I should change the method's name?

    Read the article

  • How does the new google maps make buildings and cityscapes 3D?

    - by Aerovistae
    Anyone who's seen the new Google maps has no doubt taken note of the incredible amount of three-dimensional detail in select American cities such as Boston, New York, Chicago, and San Francisco. They've even modeled the trees, bridges and some of the boats in the harbor! Minor architectural details are present. It's crazy. Looking at it up close, I've found there's a rectangular area around each of those cities, and anything within them is 3Dified, but it cuts off hard and fast at the edge, even if it's in the middle of a building. The edge of the rectangle is where the 3D stops. This leads me to think it's being done algorithmically (which would make sense, given the scale of the project, how many trees and buildings and details there are), and yet I can't imagine how that's possible. How could an algorithm model all these things without extensive data on their shapes and contours? How could it model the individual wires of a bridge, or the statues in a park? It must be done by hand, and yet how could it be for so much detail! Does anyone have any insight on this?

    Read the article

  • Tiled Editor: How is this Map Handling Collision?

    - by user2736286
    BrowserQuest map in question. From what I understand, with tiled, there are two main ways to specify collision: Create an object layer, and interpret the shapes in the engine as collision objects. Create a tiled layer, and make all tiles in the layer have a collision property, and interpret all tiles in the layer as collision objects. I'm using BrowserQuest as a big source of inspiration for my project, and I want to know how they handled collision on the level editing side. I've checked through all their layers, expecting an object layer to be handling cliff collision like: But there are no such object layers to be found. Furthermore, the tile layers containing the tiles for such cliffs have no properties at all, meaning that they didn't just specify "collision" for such tile layers. I especially need to know how they handled less rectangular shapes like: I could imagine that they are not using explicit collision layers, but instead determining collision in the actual engine, based off the presence of specific tile layer sprites. Only because BrowserQuest has whole-tile movement, and it wouldn't look too odd if a small apple, taking up only a fraction of the tile size, prevents movement over that entire tile. But I'm creating a game with more precise movement, so collision has to be tight to the apple, and I really want to know how BrowserQuest approached collision defining. If anyone knowledgeable with Tiled could take a quick look at the map, I'd appreciate it! I'm tearing my hair out here :). Thanks

    Read the article

  • How do you keep SOA DRY?

    - by TaylorOtwell
    In our organization, we've shifted to a more "service oriented architecture". To give an example, let's assume we need to retrieve a "Quote" object. This quote has a shipper, a consignee, phone numbers, contacts, email addresses, and other location information. In other words, a Quote object is made up of many other objects. So, it seems like it would make sense to make a "Quote Retrieval Service". In our situation, we've accomplished this by creating a .NET solution and writing the service. The service API looks something like this (in pseudo-code): Function GetQuote(String ID) Returns Quote So, so far so good. Now, when this service is consumed, to keep things "de-coupled", we are creating essentially a duplicate of the Quote object and mapping from the QuoteService version of the Quote into the consumer's version of the Quote. In many cases, these classes will have the exact same properties. So, if the Quote service is consumed by 5 other applications, we would have 6 definitions of what a "Quote" is. One for each consumer, and one for the service. This feels wrong. I thought code was supposed to be DRY, but it seems like our method of SOA is forcing us to create tons of duplicated class definitions. What are we doing wrong, or is the code duplication just a "necessary evil" of SOA?

    Read the article

  • Basic 3D Collision detection in XNA 4.0

    - by NDraskovic
    I have a problem with detecting collision between 2 models using BoundingSpheres in XNA 4.0. The code I'm using i very simple: private bool IsCollision(Model model1, Matrix world1, Model model2, Matrix world2) { for (int meshIndex1 = 0; meshIndex1 < model1.Meshes.Count; meshIndex1++) { BoundingSphere sphere1 = model1.Meshes[meshIndex1].BoundingSphere; sphere1 = sphere1.Transform(world1); for (int meshIndex2 = 0; meshIndex2 < model2.Meshes.Count; meshIndex2++) { BoundingSphere sphere2 = model2.Meshes[meshIndex2].BoundingSphere; sphere2 = sphere2.Transform(world2); if (sphere1.Intersects(sphere2)) return true; } } return false; } The problem I'm getting is that when I call this method from the Update method, the program behaves as if this method always returns true value (which of course is not correct). The code for calling is very simple (although this is only the test code): if (IsCollision(model1, worldModel1, model2, worldModel2)) { Window.Title = "Intersects"; } What is causing this?

    Read the article

  • Big level objects collision system for 2d game

    - by Aristarhys
    I read many variants today and get some knowledge in general, so here is a steps of mine thoughts in pictures (horrible paint.net ones). We need to develop grid system, so we check only thing near, perform simple check to cut out deep check, and at - last deep check like per-pixel collision check. Step 1 - Let p1, p2 are some sprites lets first just check with circle collision - because large distance between p1, p2 this fails and of course so we don't need test more deeply. But if we have not 2, but 20 objects, why we need to even circle test something so far outside of our view. Step 2 - Add basic column system, now we don't bother with p2 if it's in a column far from p1 column, so we even don't do circle test. But p3 is in the same col, so let do circle test, which of course will fail. Step 3 - Lets improve column system to the grid system with grid cell size just like p1, p2, p3 collision boxes, so we cut out things much top or below p1. And this is all great until comes BIG OBJs which is some kind of platforms. They are much bigger then grid cell. Circle test for will be successful, but deep check for whole big obj will fail And that the part I can't get. How do I store the grid position of big object? Like 4 grid coords for big object vertexes? And if one of them close to p1 do circle check for centre of big object then a deep one if succeed? Am I do it wrong? My possible solution:

    Read the article

  • How to shift a vector based on the rotation of another vector?

    - by bpierre
    I’m learning 2D programming, so excuse my approximations, and please, don’t hesitate to correct me. I am just trying to fire a bullet from a player. I’m using HTML canvas (top left origin). Here is a representation of my problem: The black vector represent the position of the player (the grey square). The green vector represent its direction. The red disc represents the target. The red vector represents the direction of a bullet, which will move in the direction of the target (red and dotted line). The blue cross represents the point from where I really want to fire the bullet (and the blue and dotted line represents its movement). This is how I draw the player (this is the player object. Position, direction and dimensions are 2D vectors): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.drawImage(this.image, Math.round(-this.dimensions.x/2), Math.round(-this.dimensions.y/2), this.dimensions.x, this.dimensions.y); ctx.restore(); This is how I instanciate a new bullet: var bulletPosition = playerPosition.clone(); // Copy of the player position var bulletDirection = Vector2D.substract(targetPosition, playerPosition).normalize(); // Difference between the player and the target, normalized new Bullet(bulletPosition, bulletDirection); This is how I move the bullet (this is the bullet object): var speed = 5; this.position.add(Vector2D.multiply(this.direction, speed)); And this is how I draw the bullet (this is the bullet object): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.fillRect(0, 0, 3, 3); ctx.restore(); How can I change the direction and position vectors of the bullet to ensure it is on the blue dotted line? I think I should represent the shift with a vector, but I can’t see how to use it.

    Read the article

  • How successful is GPL in reaching its goals?

    - by StasM
    There are, broadly, two types of FOSS licenses when it relates to commercial usage of the code - let's say the GPL-type and the BSD-type. The first is, broadly, restrictive about commercial usage (by usage I also mean modification and redistribution, as well as creating derived works, etc.) of the code under the license, and the second is much more permissive. As I understand, the idea behind GPL-type licenses is to encourage people to abandon the proprietary software model and instead convert to the FOSS code, and the license is the instrument to entice them to do so - i.e. "you can use this nice software, but only if you agree to come to our camp and play by our rules". What I want to ask is - was this strategy successful so far? I.e. are there any major achievements in the form of some big project going from closed to open because of GPL or some software being developed in the open only because GPL made it so? How big is the impact of this strategy - compared, say, to the world where everybody would have BSD-type licenses or release all open-source code under public domain? Note that I am not asking if FOSS model is successful - this is beyond question. What I am asking is if the specific way of enticing people to convert from proprietary to FOSS used by GPL-type and not used by BSD-type licenses was successful. I also don't ask about the merits of GPL itself as the license - just about the fact of its effectiveness.

    Read the article

  • Confusion with floats converted into ints during collision detection

    - by TheBroodian
    So in designing a 2D platformer, I decided that I should be using a Vector2 to track the world location of my world objects to retain some sub-pixel precision for slow-moving objects and other such subtle nuances, yet representing their bodies with Rectangles, because as far as collision detection and resolution is concerned, I don't need sub-pixel precision. I thought that the following line of thought would work smoothly... Vector2 wrldLocation; Point WorldLocation; Rectangle collisionRectangle; public void Update(GameTime gameTime) { Vector2 moveAmount = velocity * (float)gameTime.ElapsedGameTime.TotalSeconds wrldLocation += moveAmount; WorldLocation = new Point((int)wrldLocation.X, (int)wrldLocation.Y); collisionRectangle = new Rectangle(WorldLocation.X, WorldLocation.Y, genericWidth, genericHeight); } and I guess in theory it sort of works, until I try to use it in conjunction with my collision detection, which works by using Rectangle.Offset() to project where collisionRectangle would supposedly end up after applying moveAmount to it, and if a collision is found, finding the intersection and subtracting the difference between the two intersecting sides to the given moveAmount, which would theoretically give a corrected moveAmount to apply to the object's world location that would prevent it from passing through walls and such. The issue here is that Rectangle.Offset() only accepts ints, and so I'm not really receiving an accurate adjustment to moveAmount for a Vector2. If I leave out wrldLocation from my previous example, and just use WorldLocation to keep track of my object's location, everything works smoothly, but then obviously if my object is being given velocities less than 1 pixel per update, then the velocity value may as well be 0, which I feel further down the line I may regret. Does anybody have any suggestions about how I might go about resolving this?

    Read the article

  • Internet Explorer menu z-order problem [migrated]

    - by robgt
    I have what appears to be a z-order problem with Internet Explorer 9. It might be in other IE versions also, but not tested. I have to assume so. This page: http://www.modelhelicopters.co.uk/partsfinder/trex500esp/frames If you hover over the "All pages for this model" menu item on the parts finder menu bar (below the currency selector) - it should drop down a list of all the parts finder pages for the selected model helicopter. If you view the same page in IE or Chrome etc, you will see how it should appear. In IE9, the menu gets cut off at the top of the main exploded view image - suggesting the z-order is wrong. I have tried amending this with a jquery snippet but it didn't fix IE9. I know the code was inserted by jquery as shown by firebug in firefox. $j('div.std img[src*="/partsfinder/img"]').attr("style","position:relative;z-index:-100;"); I really do not know why this is not working.

    Read the article

  • Fast determination of whether objects are onscreen in 2D

    - by Ben Ezard
    So currently, I have this in each object's renderer's update method: float a = transform.position.x * Main.scale; float b = transform.position.y * Main.scale; float c = Camera.main.transform.position.x * Main.scale; float d = Camera.main.transform.position.y * Main.scale; onscreen = a + width - c > 0 && a - c < GameView.width && b + height - d > 0 && b - d < GameView.height; transform.position is a 2D vector containing the game engine's definition of where the object is - this is then multiplied by Main.scale to translate that coordinate into actual screen space Similarly, Camera.main.transform.position is the in-engine representation of where the main camera is, and this is also multiplied by Main.scale The problem is, as my game is tile-based, thousands of these updates get called every frame, just to determine whether or not each object should be drawn - how can I improve this please?

    Read the article

  • Correct way to use Farseer Physics in XNA

    - by user1640602
    I am using Farseer Physics for my 2D sidescroller game and I'm not sure how to proceed with it. I currently have a Sprite class (handles nothing but graphics), a GameObject class (contains specific object info like hit points), a World object which contains the list of Bodies, and a Level object which contains all of these objects. Originally I was trying to keep track of the Sprites, GameObjects, and Bodies separately because I felt that would provide loose coupling but it quickly became a headache. So my new idea was to add a Sprite member to the GameObject class but I'm still not sure how to maintain the Bodies because they have to communicate with GameObject. Specifically, my issue is this: The position of the Body is used to draw the Sprite inside of the Level. In order to do that I would have to maintain a link between GameObjects and Bodies. Is this correct or is there a better way to architect my game? If any of this is unclear please ask and I'll try to clarify. Thank you in advance for any help.

    Read the article

  • Adding root bone in 3DS Max?

    - by carlturtle
    my animation artist has made me a nice first person pair of arms, animated it, textured it, and given it to me. Then he went on vacation. I am programming my animations, and I am trying to test the model he has given me. Building my project gives me a warning: Multiple skeletons were found in the file. The first skeleton, named "frame l upperarm" has been moved to be a child of the scene root. The other, "frame r upperarm", will be ignored. Fragment identifier "frame r upperarm". Then an error: "Vertex is bound to bone "frame l forearm", but this bone is not present in the skeleton." I realize this means that there are two skeletons, as said in this problem: Importing 3d model with multiple skeletons I have 3DS Max, but I have no idea how to use it, and Google/CGTalk/Plycount turn up nothing relevant on how to add a root bone or combine skeletons. If anyone knows how, it would help me out greatly. Thanks.

    Read the article

  • techniques for displaying vehicle damage

    - by norca
    I wonder how I can displaying vehicle damage. I am talking about an good way to show damage on screen. Witch kind of model are common in games and what are the benefits of them. What is state of the art? One way i can imagine is to save a set of textures (normal/color/lightmaps, etc) to a state of the car (normal, damage, burnt out) and switch or blending them. But is this really good without changing the model? Another way i was thinking about is preparing animations for different locations on my car, something like damage on the front, on the leftside/rightside or on the back. And start blending the specific animation. But is this working with good textures? Whats about physik engines? Is it usefull to use it for deforming vertexdata? i think losing parts of my car (doors, sirens, weapons) can looks really nice. my game is a kind of rts in a top down view. vehicles are not the really most importend units (its no racing game), but i have quite a lot in. thx for help

    Read the article

  • How do you avoid name similarities between your classes and the native ones?

    - by Oscar
    I just ran into an "interesting problem", which I would like your opinion about: I am developing a system and for many reasons (meaning: abstraction, technology independence, etc) we create our own types for exchanging information. For instance: if there is a method which is called SendEmail and is invoked by the business logic, it way have a parameter of type OurCompany.EMailMessage, which is an object which is completely technology independent and contains only "business relevant data" (for instance, no information abut head encoding). Inside the SendEmail function, we get this information from our EMailMEssage object and create a MailMessage (this one is technolgy specific) object so it can be sent over the network. As you can already notice, our class has a very similar name to the "native" language class. The problem is: this is exactly what they are, email messages, so it is hard to find another meaningful name for them. Do you have this problem often? How do you manage it? Edit: @mgkrebbs just commented about using fully qualified names. This is our current approach, but a little bit too verbose, IMHO. I would like something cleaner, if possible.

    Read the article

  • OpenGL - Rendering from part of an index and vertex array depending on an element count

    - by user1423893
    I'm currently drawing my shapes as lines by using a VAO and then assigning the dynamic vertices and indices each frame. // Bind VAO glBindVertexArray(m_vao); // Update the vertex buffer with the new data (Copy data into the vertex buffer object) glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); // Update the index buffer with the new data (Copy data into the index buffer object) glBufferData(GL_ELEMENT_ARRAY_BUFFER, numIndices * sizeof(unsigned short), indices.data(), GL_DYNAMIC_DRAW); glDrawElements(GL_LINES, numIndices, GL_UNSIGNED_SHORT, BUFFER_OFFSET(0)); // Unbind VAO glBindVertexArray(0); What I would like to do is draw the lines using only part of the data stored in the index and vertex buffer objects. The vertex buffer has its vertices set from an array of defined maximum size: std::array<VertexPosition, maxVertices> m_vertices; The index buffer has its elements set from an array of defined maximum size: std::array<unsigned short, maxIndices> indices = { 0 }; A running total is kept of the number of vertices and indices needed for each draw call numVertices numIndices Can I not specify that the buffer data contain the entire array and only read from part of it when drawing? For example using the vertex buffer object glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); m_vertices.data() = Entire array is stored numVertices * sizeof(VertexPosition) = Amount of data to read from the entire array Is this not the correct way to approach this? I do not wish to use std::vector if possible.

    Read the article

  • What are some ways to separate game logic from animations and the draw loop?

    - by TMV
    I have only previously made flash games, using MovieClips and such to separate out my animations from my game logic. Now I am getting into trying my hand at making a game for Android, but the game programming theory around separating these things still confuses me. I come from a background of developing non game web applications so I am versed in more MVC like patterns and am stuck in that mindset as I approach game programming. I want to do things like abstract my game by having, for example, a game board class that contains the data for a grid of tiles with instances of a tile class that each contain properties. I can give my draw loop access to this and have it draw the game board based on the properties of each tile on the game board, but I don't understand where exactly animation should go. As far as I can tell, animation sort of sits between the abstracted game logic (model) and the draw loop (view). With my MVC mindset, it's frustrating trying to decide where animation is actually supposed to go. It would have quite a bit of data associated with it like a model, but seemingly needs to be very closely coupled with the draw loop in order to have things like frame independent animation. How can I break out of this mindset and start thinking about patterns that make more sense for games?

    Read the article

< Previous Page | 498 499 500 501 502 503 504 505 506 507 508 509  | Next Page >