Search Results

Search found 14414 results on 577 pages for 'oracle irm'.

Page 506/577 | < Previous Page | 502 503 504 505 506 507 508 509 510 511 512 513  | Next Page >

  • Coherence Webcast for Developers July 11

    - by jeckels
    Coming on July 11th, we look forward to having you join us for a special Coherence webcast - just for developers! Want to learn how you, the developer, can make applications Big Data and Fast data ready? Want to be able to customize and manage your applications and services to provide real-time data and processing with ease? Then this webcast is for you. Coherence Live Webcast Developers: Deploy Highly-Available Custom Services on Your Data Grid Products July 11, 10am Pacific Time >> Register now! <<  (of course, it's free)Join Brian Oliver of the Coherence team to see how you can create and deploy customized, highly-available services for your data grid, and how real-time data processing will allow you to provide unmatched end-user experiences. We look forward to having you join us.

    Read the article

  • Another Twig Improvements

    - by Ondrej Brejla
    Hi all! We are here again to intorduce you some of our new NetBeans 7.3 features. Today we'll show you some another Twig improvements. So let's start! Code Templates First feature is about Code Templates. We added some basic templates to improve your Editor experience. You will be really fast with it! If someone don't know what Code Templates are, they are piece of code (snippet) which is inserted into editor after typing its abbreviation and pressing Tab key (or another one which you define in Tools -> Options -> Editor -> Code Templates -> Expand Template on) to epxand it. All default Twig Code Templates can be found in Tools -> Options -> Editor -> Code Templates -> Twig Markup. You can add your custom templates there as well. Note: Twig Markup code templates have to be expanded inside Twig delimiters (i.e. { and }). If you try to expand them outside of delimiters, it will not work, because then you are in HTML context. If you want to add a template which will contain Twig delimiter too, you have to add it directly into Tools -> Options -> Editor -> Code Templates -> HTML/XHTML. Don't add them into Twig File, it will not work. Interpolation Coloring The second, minor, feature is, that we know how to colorize Twig Interpolation. It's a small feature, but usefull :-) And that's all for today and as usual, please test it and if you find something strange, don't hesitate to file a new issue (product php, component Twig). Thanks a lot!

    Read the article

  • Online ALTER TABLE in MySQL 5.6

    - by Marko Mäkelä
    This is the low-level view of data dictionary language (DDL) operations in the InnoDB storage engine in MySQL 5.6. John Russell gave a more high-level view in his blog post April 2012 Labs Release – Online DDL Improvements. MySQL before the InnoDB Plugin Traditionally, the MySQL storage engine interface has taken a minimalistic approach to data definition language. The only natively supported operations were CREATE TABLE, DROP TABLE and RENAME TABLE. Consider the following example: CREATE TABLE t(a INT); INSERT INTO t VALUES (1),(2),(3); CREATE INDEX a ON t(a); DROP TABLE t; The CREATE INDEX statement would be executed roughly as follows: CREATE TABLE temp(a INT, INDEX(a)); INSERT INTO temp SELECT * FROM t; RENAME TABLE t TO temp2; RENAME TABLE temp TO t; DROP TABLE temp2; You could imagine that the database could crash when copying all rows from the original table to the new one. For example, it could run out of file space. Then, on restart, InnoDB would roll back the huge INSERT transaction. To fix things a little, a hack was added to ha_innobase::write_row for committing the transaction every 10,000 rows. Still, it was frustrating that even a simple DROP INDEX would make the table unavailable for modifications for a long time. Fast Index Creation in the InnoDB Plugin of MySQL 5.1 MySQL 5.1 introduced a new interface for CREATE INDEX and DROP INDEX. The old table-copying approach can still be forced by SET old_alter_table=0. This interface is used in MySQL 5.5 and in the InnoDB Plugin for MySQL 5.1. Apart from the ability to do a quick DROP INDEX, the main advantage is that InnoDB will execute a merge-sort algorithm before inserting the index records into each index that is being created. This should speed up the insert into the secondary index B-trees and potentially result in a better B-tree fill factor. The 5.1 ALTER TABLE interface was not perfect. For example, DROP FOREIGN KEY still invoked the table copy. Renaming columns could conflict with InnoDB foreign key constraints. Combining ADD KEY and DROP KEY in ALTER TABLE was problematic and not atomic inside the storage engine. The ALTER TABLE interface in MySQL 5.6 The ALTER TABLE storage engine interface was completely rewritten in MySQL 5.6. Instead of introducing a method call for every conceivable operation, MySQL 5.6 introduced a handful of methods, and data structures that keep track of the requested changes. In MySQL 5.6, online ALTER TABLE operation can be requested by specifying LOCK=NONE. Also LOCK=SHARED and LOCK=EXCLUSIVE are available. The old-style table copying can be requested by ALGORITHM=COPY. That one will require at least LOCK=SHARED. From the InnoDB point of view, anything that is possible with LOCK=EXCLUSIVE is also possible with LOCK=SHARED. Most ALGORITHM=INPLACE operations inside InnoDB can be executed online (LOCK=NONE). InnoDB will always require an exclusive table lock in two phases of the operation. The execution phases are tied to a number of methods: handler::check_if_supported_inplace_alter Checks if the storage engine can perform all requested operations, and if so, what kind of locking is needed. handler::prepare_inplace_alter_table InnoDB uses this method to set up the data dictionary cache for upcoming CREATE INDEX operation. We need stubs for the new indexes, so that we can keep track of changes to the table during online index creation. Also, crash recovery would drop any indexes that were incomplete at the time of the crash. handler::inplace_alter_table In InnoDB, this method is used for creating secondary indexes or for rebuilding the table. This is the ‘main’ phase that can be executed online (with concurrent writes to the table). handler::commit_inplace_alter_table This is where the operation is committed or rolled back. Here, InnoDB would drop any indexes, rename any columns, drop or add foreign keys, and finalize a table rebuild or index creation. It would also discard any logs that were set up for online index creation or table rebuild. The prepare and commit phases require an exclusive lock, blocking all access to the table. If MySQL times out while upgrading the table meta-data lock for the commit phase, it will roll back the ALTER TABLE operation. In MySQL 5.6, data definition language operations are still not fully atomic, because the data dictionary is split. Part of it is inside InnoDB data dictionary tables. Part of the information is only available in the *.frm file, which is not covered by any crash recovery log. But, there is a single commit phase inside the storage engine. Online Secondary Index Creation It may occur that an index needs to be created on a new column to speed up queries. But, it may be unacceptable to block modifications on the table while creating the index. It turns out that it is conceptually not so hard to support online index creation. All we need is some more execution phases: Set up a stub for the index, for logging changes. Scan the table for index records. Sort the index records. Bulk load the index records. Apply the logged changes. Replace the stub with the actual index. Threads that modify the table will log the operations to the logs of each index that is being created. Errors, such as log overflow or uniqueness violations, will only be flagged by the ALTER TABLE thread. The log is conceptually similar to the InnoDB change buffer. The bulk load of index records will bypass record locking. We still generate redo log for writing the index pages. It would suffice to log page allocations only, and to flush the index pages from the buffer pool to the file system upon completion. Native ALTER TABLE Starting with MySQL 5.6, InnoDB supports most ALTER TABLE operations natively. The notable exceptions are changes to the column type, ADD FOREIGN KEY except when foreign_key_checks=0, and changes to tables that contain FULLTEXT indexes. The keyword ALGORITHM=INPLACE is somewhat misleading, because certain operations cannot be performed in-place. For example, changing the ROW_FORMAT of a table requires a rebuild. Online operation (LOCK=NONE) is not allowed in the following cases: when adding an AUTO_INCREMENT column, when the table contains FULLTEXT indexes or a hidden FTS_DOC_ID column, or when there are FOREIGN KEY constraints referring to the table, with ON…CASCADE or ON…SET NULL option. The FOREIGN KEY limitations are needed, because MySQL does not acquire meta-data locks on the child or parent tables when executing SQL statements. Theoretically, InnoDB could support operations like ADD COLUMN and DROP COLUMN in-place, by lazily converting the table to a newer format. This would require that the data dictionary keep multiple versions of the table definition. For simplicity, we will copy the entire table, even for DROP COLUMN. The bulk copying of the table will bypass record locking and undo logging. For facilitating online operation, a temporary log will be associated with the clustered index of table. Threads that modify the table will also write the changes to the log. When altering the table, we skip all records that have been marked for deletion. In this way, we can simply discard any undo log records that were not yet purged from the original table. Off-page columns, or BLOBs, are an important consideration. We suspend the purge of delete-marked records if it would free any off-page columns from the old table. This is because the BLOBs can be needed when applying changes from the log. We have special logging for handling the ROLLBACK of an INSERT that inserted new off-page columns. This is because the columns will be freed at rollback.

    Read the article

  • ZFS Basics

    - by user12614620
    Stage 1 basics: creating a pool # zpool create $NAME $REDUNDANCY $DISK1_0..N [$REDUNDANCY $DISK2_0..N]... $NAME = name of the pool you're creating. This will also be the name of the first filesystem and, by default, be placed at the mountpoint "/$NAME" $REDUNDANCY = either mirror or raidzN, and N can be 1, 2, or 3. If you leave N off, then it defaults to 1. $DISK1_0..N = the disks assigned to the pool. Example 1: zpool create tank mirror c4t1d0 c4t2d0 name of pool: tank redundancy: mirroring disks being mirrored: c4t1d0 and c4t2d0 Capacity: size of a single disk Example 2: zpool create tank raidz c4t1d0 c4t2d0 c4t3d0 c4t4d0 c4t5d0 Here the redundancy is raidz, and there are five disks, in a 4+1 (4 data, 1 parity) config. This means that the capacity is 4 times the disk size. If the command used "raidz2" instead, then the config would be 3+2. Likewise, "raidz3" would be a 2+3 config. Example 3: zpool create tank mirror c4t1d0 c4t2d0 mirror c4t3d0 c4t4d0 This is the same as the first mirror example, except there are two mirrors now. ZFS will stripe data across both mirrors, which means that writing data will go a bit faster. Note: you cannot create a mirror of two raidzs. You can create a raidz of mirrors, but to do that requires trickery.

    Read the article

  • sqlplus: Running "set lines" and "set pagesize" automatially

    - by katsumii
    This is a followup to my previous entry. Using the full tty real estate with sqlplus (INOUE Katsumi @ Tokyo) 'rlwrap' is widely used for adding 'sqlplus' the history function and command line editing. Here's another but again kludgy implementation. First this is the alias. alias sqlplus="rlwrap -z ~/sqlplus.filter sqlplus" And this is the file content. #!/usr/bin/env perl use lib ($ENV{RLWRAP_FILTERDIR} or "."); use RlwrapFilter; use POSIX qw(:signal_h); use strict; my $filter = new RlwrapFilter; $filter -> prompt_handler(\&prompt); sigprocmask(SIG_UNBLOCK, POSIX::SigSet->new(28)); $SIG{WINCH} = 'winchHandler'; $filter -> run; sub winchHandler { $filter -> input_handler(\&input); sigprocmask(SIG_UNBLOCK, POSIX::SigSet->new(28)); $SIG{WINCH} = 'winchHandler'; $filter -> run; } sub input { $filter -> input_handler(undef); return `resize |sed -n "1s/COLUMNS=/set linesize /p;2s/LINES=/set pagesize /p"` . $_; } sub prompt { if ($_ =~ "SQL> ") { $filter -> input_handler(\&input); $filter -> prompt_handler(undef); } return $_; } I hope I can compare these 2 implementations after testing more and getting some feedbacks.

    Read the article

  • Draggable & Resizable Editors

    - by Geertjan
    Thanks to a cool tip from Steven Yi (here in the comments to a blog entry), I was able to make a totally pointless but fun set of draggable and resizable editors: What you see above are two JEditorPanes within JPanels. The JPanels are within ComponentWidgets provided by the NetBeans Visual Library, which is also where the special border comes from. The ComponentWidgets are within a Visual Library Scene, which is within a JScrollPane in a TopComponent. Each editor has this, which means the NetBeans Java Editor is bound to the JEditorPane: jEditorPane1.setContentType("text/x-java"); EditorKit kit = CloneableEditorSupport.getEditorKit("text/x-java"); jEditorPane1.setEditorKit(kit); jEditorPane1.getDocument().putProperty("mimeType", "text/x-java"); A similar thing is done in the other JEditorPane, i.e., it is bound to the XML Editor. While the XML Editor also has code completion, in addition to syntax coloring, as can be seen above, this is not the case for the JEditorPane bound to the Java Editor, since the JEditorPane doesn't have a Java classpath, which is needed for Java code completion to work.

    Read the article

  • Getting Started Plugging into the "Find in Projects" Dialog

    - by Geertjan
    In case you missed it amidst all the code in yesterday's blog entry, the "Find in Projects" dialog is now pluggable. I think that's really cool. The code yesterday gives you a complete example, but let's break it down a bit and deconstruct down to a very simple hello world scenario. We'll end up with as many extra tabs in the "Find in Projects" dialog as we need, for example, three in this case:  And clicking on any of those extra tabs will, in this simple example, simply show us this: Once we have that, we'll be able to continue adding small bits of code over the next few blog entries until we have something more useful. So, in this blog entry, you'll literally be able to display "Hello World" within a new tab in the "Find in Projects" dialog: import javax.swing.JComponent; import javax.swing.JLabel; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.NotificationLineSupport; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider1 extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Demo Extension 1"; } public class ExampleSearchPresenter extends SearchProvider.Presenter { private ExampleSearchPresenter(ExampleSearchProvider1 sp) { super(sp, true); } @Override public JComponent getForm() { return new JLabel("Hello World"); } @Override public SearchComposition composeSearch() { return null; } @Override public boolean isUsable(NotificationLineSupport nls) { return true; } } } That's it, not much code, works fine in NetBeans IDE 7.2 Beta, and is easier to digest than the big chunk from yesterday. If you make three classes like the above in a NetBeans module, and you install it, you'll have three new tabs in the "Find in Projects" dialog. The only required dependencies are Dialogs API, Lookup API, and Search in Projects API. Read the javadoc linked above and then in next blog entries we'll continue to build out something like the sample you saw in yesterday's blog entry.

    Read the article

  • 101 Ways to Participate...and make the future Java

    - by heathervc
     In case you missed it earlier today, and as promised in BOF6283, here are the 101 Ways to Improve (and Make the Future) Java...thanks to Bruno Souza of SouJava and Martijn Verburg of the London Java Community for their contributions! Join or create a JUG Come to the meetings Help promoting your JUG: twitter, facebook, etc Find someone that can give a talk Get your company to sponsor (a meeting, an event) Organize an activity (meetings, hackathons, dojos, etc) Answer questions on a mailing list (or simply join!) Volunteer for a small, one time tasks (creating a web page, helping with an activity) Come early to an event, and help to carry the piano Moderate a list or add things to the wiki Participate in the organization meetings or mailing lists Take pictures of an event or meeting and publish them online Write a blog about an event or meeting, to help promote the group Help record and post a session online Present your JavaOne experience when you get back Repeat the best talk you saw at JavaOne at a JUG meeting Send this list of ideas to other Java developers in your area so they can help out too! Present a step-by-step tutorial Present GreenFoot and Alice to school students Present BlueJ and Alice to university students Teach those tools to teachers and professors Write a step-by-step tutorial on your blog or to a magazine Create a page that lists resources Give a talk about your favorite Java feature or technology Learn a new Java API and present to your co-workers Then, present in a JUG meeting, and then, present it in an event in your area, and submit it to JavaOne! Create a study group to get certified or to learn some new Java technology Teach a non-Java developer how to download the basic tools and where to find more information Download and use an open source project Improve the documentation Write an article or a blog post about the project Write an FAQ Join and participate on the mailing list Describe a bug in detail and submit a bug report Fix a bug and submit it to the project Give a talk about it at a JUG meeting Teach your co-workers how to use the project Sign up to Adopt a JSR Test regular builds of the Reference Implementation (RI) Report bugs in the RI Submit Feature Requests to the spec Triage issues on the issue tracker Run a hack day to discuss the API Moderate mailing lists and forums Create an FAQ or Wiki Evangelize a specification on Twitter, G+, Hacker News, etc Give a lightning talk Help build the RI Help build the Technical Compatibility Kit (TCK) Create a Podcast Learn Latin - e.g. legal language, translate to English Sign up to Adopt OpenJDK Run a Bugathon Fix javac compiler warnings Build virtual images Add tests to Java Submit Javadoc patches Give a webbing Teach someone to build OpenJDK Hold a brown bag session at work Fix the oldest known bug Overhaul Javadoc to use HTML Load the OpenJDK into different IDEs Run a build farm node Test your code on a nightly build Learn how to read Java byte code Visit JCP.org Follow jcp_org on Twitter Friend JCP on Facebook Read JCP Blog Register for JCP.org site Create a JSR Watch List Review JSRs in progress Comment on JSRs in progress, write and track bug reports, use cases, etc Review JSRs in Maintenance Comment on JSRs in Maintenance Implement Final JSRs Review the Transparency of JSRs in progress and provide feedback to the PMO and Spec Lead/community Become a JCP Member or associate with a current JCP member Nominate to serve on an Expert Group (EG) Serve on an EG Submit a JSR proposal and become Spec Lead Take a Spec Lead role in an Inactive or Dormant JSR Nominate for an Executive Committee (EC) seat Vote in the EC elections Vote in EC Special Elections Review EC Meeting Summaries Attend Spec Lead calls Write blogs, articles on your experiences Join the EC project on java.net Join JCP.Next on java.net/JSR 358 Participate on the JCP forums and join JSR projects on java.net Suggest agenda items for open EC meetings Attend public EC teleconference (2x per year) Attend open EC meetings at JavaOne Nominate for JCP Annual Awards Attend annual JavaOne and JCP Annual Awards Ceremony Attend JCP related BOF sessions and give your feedback to Program Office Invite JCP program office members to your JUG  or meetup Invite JSR Spec Leads to your JUG or meetup And always - hold a party!

    Read the article

  • Pragmas and exceptions

    - by Darryl Gove
    The compiler pragmas: #pragma no_side_effect(routinename) #pragma does_not_write_global_data(routinename) #pragma does_not_read_global_data(routinename) are used to tell the compiler more about the routine being called, and enable it to do a better job of optimising around the routine. If a routine does not read global data, then global data does not need to be stored to memory before the call to the routine. If the routine does not write global data, then global data does not need to be reloaded after the call. The no side effect directive indicates that the routine does no I/O, does not read or write global data, and the result only depends on the input. However, these pragmas should not be used on routines that throw exceptions. The following example indicates the problem: #include <iostream extern "C" { int exceptional(int); #pragma no_side_effect(exceptional) } int exceptional(int a) { if (a==7) { throw 7; } else { return a+1; } } int a; int c=0; class myclass { public: int routine(); }; int myclass::routine() { for(a=0; a<1000; a++) { c=exceptional(c); } return 0; } int main() { myclass f; try { f.routine(); } catch(...) { std::cout << "Something happened" << a << c << std::endl; } } The routine "exceptional" is declared as having no side effects, however it can throw an exception. The no side effects directive enables the compiler to avoid storing global data back to memory, and retrieving it after the function call, so the loop containing the call to exceptional is quite tight: $ CC -O -S test.cpp ... .L77000061: /* 0x0014 38 */ call exceptional ! params = %o0 ! Result = %o0 /* 0x0018 36 */ add %i1,1,%i1 /* 0x001c */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000061 /* 0x0024 */ nop However, when the program is run the result is incorrect: $ CC -O t.cpp $ ./a.out Something happend00 If the code had worked correctly, the output would have been "Something happened77" - the exception occurs on the seventh iteration. Yet, the current code produces a message that uses the original values for the variables 'a' and 'c'. The problem is that the exception handler reads global data, and due to the no side effects directive the compiler has not updated the global data before the function call. So these pragmas should not be used on routines that have the potential to throw exceptions.

    Read the article

  • Performance triage

    - by Dave
    Folks often ask me how to approach a suspected performance issue. My personal strategy is informed by the fact that I work on concurrency issues. (When you have a hammer everything looks like a nail, but I'll try to keep this general). A good starting point is to ask yourself if the observed performance matches your expectations. Expectations might be derived from known system performance limits, prototypes, and other software or environments that are comparable to your particular system-under-test. Some simple comparisons and microbenchmarks can be useful at this stage. It's also useful to write some very simple programs to validate some of the reported or expected system limits. Can that disk controller really tolerate and sustain 500 reads per second? To reduce the number of confounding factors it's better to try to answer that question with a very simple targeted program. And finally, nothing beats having familiarity with the technologies that underlying your particular layer. On the topic of confounding factors, as our technology stacks become deeper and less transparent, we often find our own technology working against us in some unexpected way to choke performance rather than simply running into some fundamental system limit. A good example is the warm-up time needed by just-in-time compilers in Java Virtual Machines. I won't delve too far into that particular hole except to say that it's rare to find good benchmarks and methodology for java code. Another example is power management on x86. Power management is great, but it can take a while for the CPUs to throttle up from low(er) frequencies to full throttle. And while I love "turbo" mode, it makes benchmarking applications with multiple threads a chore as you have to remember to turn it off and then back on otherwise short single-threaded runs may look abnormally fast compared to runs with higher thread counts. In general for performance characterization I disable turbo mode and fix the power governor at "performance" state. Another source of complexity is the scheduler, which I've discussed in prior blog entries. Lets say I have a running application and I want to better understand its behavior and performance. We'll presume it's warmed up, is under load, and is an execution mode representative of what we think the norm would be. It should be in steady-state, if a steady-state mode even exists. On Solaris the very first thing I'll do is take a set of "pstack" samples. Pstack briefly stops the process and walks each of the stacks, reporting symbolic information (if available) for each frame. For Java, pstack has been augmented to understand java frames, and even report inlining. A few pstack samples can provide powerful insight into what's actually going on inside the program. You'll be able to see calling patterns, which threads are blocked on what system calls or synchronization constructs, memory allocation, etc. If your code is CPU-bound then you'll get a good sense where the cycles are being spent. (I should caution that normal C/C++ inlining can diffuse an otherwise "hot" method into other methods. This is a rare instance where pstack sampling might not immediately point to the key problem). At this point you'll need to reconcile what you're seeing with pstack and your mental model of what you think the program should be doing. They're often rather different. And generally if there's a key performance issue, you'll spot it with a moderate number of samples. I'll also use OS-level observability tools to lock for the existence of bottlenecks where threads contend for locks; other situations where threads are blocked; and the distribution of threads over the system. On Solaris some good tools are mpstat and too a lesser degree, vmstat. Try running "mpstat -a 5" in one window while the application program runs concurrently. One key measure is the voluntary context switch rate "vctx" or "csw" which reflects threads descheduling themselves. It's also good to look at the user; system; and idle CPU percentages. This can give a broad but useful understanding if your threads are mostly parked or mostly running. For instance if your program makes heavy use of malloc/free, then it might be the case you're contending on the central malloc lock in the default allocator. In that case you'd see malloc calling lock in the stack traces, observe a high csw/vctx rate as threads block for the malloc lock, and your "usr" time would be less than expected. Solaris dtrace is a wonderful and invaluable performance tool as well, but in a sense you have to frame and articulate a meaningful and specific question to get a useful answer, so I tend not to use it for first-order screening of problems. It's also most effective for OS and software-level performance issues as opposed to HW-level issues. For that reason I recommend mpstat & pstack as my the 1st step in performance triage. If some other OS-level issue is evident then it's good to switch to dtrace to drill more deeply into the problem. Only after I've ruled out OS-level issues do I switch to using hardware performance counters to look for architectural impediments.

    Read the article

  • Look after your tribe of Pygmies with Java ME technology

    - by hinkmond
    Here's a game that is crossing over from the iDrone to the more lucrative Java ME cell phone market. See: Pocket God on Java ME Here's a quote: Massive casual iPhone hit Pocket God has parted the format waves and walked over to the land of Java mobiles, courtesy of AMA. The game sees you take control of an omnipotent, omnipresent, and (possibly) naughty deity, looking after your tribe of Pygmies... Everyone knows that there are more Java ME feature phones than grains of sand on a Pocket God island beach. So, when iDrone games are done piddlying around on a lesser platform, they move over to Java ME where things are really happening. Hinkmond

    Read the article

  • Kostenlose MySQL Seminare im Mai

    - by A&C Redaktion
    Im Mai führen wir für Sie zahlreiche MySQL Seminare mit unterschiedlichen Themenschwerpunkten durch. Vom „Skalierbarkeitstag“ über einen praxisorienterten MySQL Enterprise Workshop bis hin zum Überblick über die Hochverfügbarkeitslösungen für MySQL mit Anwendungsbeispiel aus der Praxis. Wir würden uns sehr freuen, Sie bei einem dieser Seminare begrüßen zu dürfen. Die einzelnen Termine und Anmeldungslinks finden Sie hier. Wir freuen uns auf Ihre Teilnahme!

    Read the article

  • Webcast WebCenter Content, April 11th, 2012

    - by rituchhibber
    Our next WebCenter Content webcast will be on April 10th, 2012. This WebCast will help you to prepare yourself for the WebCenter Content Certified Implementation Specialist EXAM. Webcast Details: Date Topic Speaker Web Call Details Intercall Details  April 10th                WebCenter Content   Refresh     Course      Markus NeubauerSilburyWebCenter ContentSpecialized Partner Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around 13:30 Conference ID/Key: 9819145/1004 For more details, please click here.

    Read the article

  • Un-used Indexes on MDP_MATRIX Consuming Resources

    - by user702295
    Disable un-used Indexes: As much as it is recommended to create relevant indexes, it is advised not to have too many indexes on the mdp_matrix table.  Too many indexes will cause long waits on the table as indexes needs to get updated every time the table is updated.  There are many seeded indexes on mdp_matrix, every out of the box data model level has an index on the matrix table.  If a level is unused in the specific data model of the implementation, it is advisable to disable that index.  If the customer is not sure if and how indexes are utilized, the DBA can monitor all indexes.  After a few cycles of operation, the DBA should go over that list and see which indexes have not been used.  Consider disabling them. There are scripts on the net to monitor indexes or use the monitoring usage clause in the alter index statement.

    Read the article

  • JavaOne Latin America Early Bird Discount: R$300,00 Off

    - by Tori Wieldt
    Learn how to code in Java more efficiently, pick up Java best practices, and participate in world-class networking at JavaOne Latin America—all for R$300,00 less if you register by 16 November. Have you ever wondered how to construct embedded Java applications for next-generation smart devices? Want to profit from client-side solutions using JavaFX, or simply build modern applications in Java 7? Techniques for these and much more are showcased at JavaOne Latin America—and you’re invited! Choose from more than 50 sessions, multiple demos, plus keynotes and hands-on labs. Topics include: Core Java Platform JavaFX and Rich User Experiences Java EE, Web Services, and the Cloud Java ME, Java Embedded, and Java Card Secure Your Place Now—Register now! Para mais informações ou inscrição ligue para (11) 2875-4163.

    Read the article

  • Architects, Leadership, and Influence

    - by Bob Rhubart
    Technical expertise is a given for architects. In addition to solid development experience, extensive knowledge of technical trends, tools, standards, and methodolgies (not to mention business accumen) provides the foundation for the decisions the architect must make in the effort to get all the pieces to work together. But even superior technical chops can't overcome a lack of leadership. Leadership is about influence: the ability to effectively communicate — to sell your ideas and defend your decisions in a manner that affects the decisions of the people around you. Leadership and influence are especially important in situations in which the architect may not have the authority to simply tell people what to do. And even when the architect has that kind of authority, influential leadership can mean the difference between gaining real buy-in and support from colleagues and stakeholders, and settling for their grudging acceptance (or worse). Guess which outcome is likely to produce the best results. In a previous post I presented some examples of the kind of criticism that is leveled at architects, a great deal of which can be attributed to a lack of leadership and influence on the part of the targets of that criticism. So it was serendipitous that I recently ran across a post on the Harvard Business Review blog written by Chris Musselwhite and Tammie Plouffe. That post, When Your Influence Is Ineffective, includes this: [I]nfluence becomes ineffective when individuals become so focused on the desired outcome that they fail to fully consider the situation. While the influencer may still gain the short-term desired outcome, he or she can do long-term damage to personal effectiveness and the organization, as it creates an atmosphere of distrust where people stop listening, and the potential for innovation or progress is diminished. The need to "see the big picture" is a grossly reductive assesement of the architect's responsibilities — but that doesn't mean it's not true. That big picture perspective must encompass both the technological elements of the architecture and the elements responsible for implementing those technologies in compliance with the prescribed architecture. Technologies may be tempermental, but they don't have personalities or egos, and they are unlikely to carry a grudge — not yet, anyway (Hello, Skynet!).  Effective leadership and the ability to influence people can help to ensure that all the pieces fit and that they work together, today and tomorrow.

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

  • Sources of NetBeans Gradle Plugin

    - by Geertjan
    Here is where you can find the sources of the latest and greatest NetBeans Gradle plugin: http://java.net/projects/nb-api-samples/sources/api-samples/show/versions/7.1/misc/GradleSupport To use it, download the sources above, open the sources into the IDE (which must be 7.1.1 or above), then you'll have a NetBeans module. Right-click it to run the module into a new instance of NetBeans IDE. In the Options window's Miscellaneous tab, there's a Gradle subtab for setting the Gradle location. In the New File dialog, in the Other category, you'll find a template named "Empty Gradle file". Make sure to name it "build" and to put it in the root directory of the application (by leaving the Folder field empty, you're specifying it should be created in the root directory). You'll then be able to expand the build.gradle file: Double-click a task to run it. When you open the file, it opens in the Groovy editor, if the Groovy editor is installed. When you make changes in the file, the list of tasks, shown above, is automatically recreated. It's at a really early stage of development and it would be great if developers out there would be interested in adding more features to it.

    Read the article

  • Java EE @ Devoxx UK

    - by delabassee
    Devoxx UK is taking place next week (12th and 13th June) in London. As with any Devoxx conference, this UK edition will have a nice mix of content, an impressive list of speakers and obviously Java EE will be well will covered too:  Apache TomEE, Java EE Web Profile and more on Tomcat (David Blevins) Myths, Tales and Voodoo - About Java EE and Testing (Adam Bien) 50 new features of Java EE 7 (Antonio Goncalves & Arun Gupta) Java EE 7 Hands-on Lab (Arun Gupta) In addition, there will be 2 BoF related to Java EE on Thursday evening, the first BoF will be about the Java EE platform and the second one will be about the Java EE Reference Implementation, i.e. GlassFish. I will participate in the Java EE Community BoF where will discuss Java EE general but with all recent activities, I suspect that a large portion of the BoF will spent on discussing the current plans for Java EE 8.  Right after and in the same room, I will join Steve Millidge of C2B2 for the GlassFish is here to stay! BoF. The goal is to discuss on GlassFish, the current status, the plans for the next release, how the community can contributes, etc. It should be mentioned that attending those BoFs is completely free, just make sure to register here.  So if you are in London next week, mind the Geek and see you at Devoxx UK!

    Read the article

  • Java ME Tech Holiday Gift Idea #3: Kindle Touch Wi-Fi

    - by hinkmond
    Here's a Java ME tech-enabled device holiday gift idea: The venerable Amazon Kindle Touch with built-in Wi-Fi. Niiiice! See: Java ME Tech Gift Idea #3 Here's a quote: + Most-advanced E Ink display, now with multi-touch + New sleek design - 8% lighter, 11% smaller, holds 3,000 books + Only e-reader with text-to-speech, audiobooks and mp3 support + Built in Wi-Fi - Get books in 60 seconds If you want to give someone special a cool device, you want to give something with Java ME technology. Give only the best this holiday season! Hinkmond

    Read the article

  • Library order is important

    - by Darryl Gove
    I've written quite extensively about link ordering issues, but I've not discussed the interaction between archive libraries and shared libraries. So let's take a simple program that calls a maths library function: #include <math.h int main() { for (int i=0; i<10000000; i++) { sin(i); } } We compile and run it to get the following performance: bash-3.2$ cc -g -O fp.c -lm bash-3.2$ timex ./a.out real 6.06 user 6.04 sys 0.01 Now most people will have heard of the optimised maths library which is added by the flag -xlibmopt. This contains optimised versions of key mathematical functions, in this instance, using the library doubles performance: bash-3.2$ cc -g -O -xlibmopt fp.c -lm bash-3.2$ timex ./a.out real 2.70 user 2.69 sys 0.00 The optimised maths library is provided as an archive library (libmopt.a), and the driver adds it to the link line just before the maths library - this causes the linker to pick the definitions provided by the static library in preference to those provided by libm. We can see the processing by asking the compiler to print out the link line: bash-3.2$ cc -### -g -O -xlibmopt fp.c -lm /usr/ccs/bin/ld ... fp.o -lmopt -lm -o a.out... The flag to the linker is -lmopt, and this is placed before the -lm flag. So what happens when the -lm flag is in the wrong place on the command line: bash-3.2$ cc -g -O -xlibmopt -lm fp.c bash-3.2$ timex ./a.out real 6.02 user 6.01 sys 0.01 If the -lm flag is before the source file (or object file for that matter), we get the slower performance from the system maths library. Why's that? If we look at the link line we can see the following ordering: /usr/ccs/bin/ld ... -lmopt -lm fp.o -o a.out So the optimised maths library is still placed before the system maths library, but the object file is placed afterwards. This would be ok if the optimised maths library were a shared library, but it is not - instead it's an archive library, and archive library processing is different - as described in the linker and library guide: "The link-editor searches an archive only to resolve undefined or tentative external references that have previously been encountered." An archive library can only be used resolve symbols that are outstanding at that point in the link processing. When fp.o is placed before the libmopt.a archive library, then the linker has an unresolved symbol defined in fp.o, and it will search the archive library to resolve that symbol. If the archive library is placed before fp.o then there are no unresolved symbols at that point, and so the linker doesn't need to use the archive library. This is why libmopt needs to be placed after the object files on the link line. On the other hand if the linker has observed any shared libraries, then at any point these are checked for any unresolved symbols. The consequence of this is that once the linker "sees" libm it will resolve any symbols it can to that library, and it will not check the archive library to resolve them. This is why libmopt needs to be placed before libm on the link line. This leads to the following order for placing files on the link line: Object files Archive libraries Shared libraries If you use this order, then things will consistently get resolved to the archive libraries rather than to the shared libaries.

    Read the article

  • When to use each user research method

    - by user12277104
    There are a lot of user research methods out there, but sometimes we get stuck in a rut, conducting all formative usability testing before coding, or running surveys to gather satisfaction data. I'll be the first to admit that it happens to me, but to get out of a rut, it just takes a minute to look at where I am in the design & development cycle, what kind(s) of data I need, and what methods are available to me. We need reminders, or refreshers, every once in a while. One tool I've found useful is a graphic organizer that I created many years ago. It's been through several revisions, as I've adapted it to the product cycles of the places I've worked, changed my mind about how to categorize it, and added methods that I've used or created over time. I shared a version of this table at the 2012 International UPA conference, and I was contacted by someone yesterday who wanted to use it in a university course on user-center design. I was flattered at the the thought, but embarrassed, because I was sure it needed updating -- that was a year ago, after all. But I opened it today, and really, there's not much I'd change -- sure, I could add some nuance regarding what types of formative testing, such as modality (remote, unmoderated remote, or in-person) or flavor of testing (RITE, RITE-Krug, comparative, performance), but I think it's pretty much ok as is. Click on the image below, to get the full-size PDF. And whether it's entirely "right" or "wrong" isn't the whole value of looking at these methods across the product lifecycle. The real value lies in the reminder that I have options. And what those options are change as the field changes, so while I don't expect this graphic to have an eternal shelf life, it's still ok a year after I last updated it. That said, if you find something missing or out of place, let me know :) 

    Read the article

  • Finding which activities will execute next in a process instance

    - by Mark Nelson
      We have had a few queries lately about how to find out what activity (or activities) will be the next to execute in a particular process instance.  It is possible to do this, however you will need to use a couple of undocumented APIs.  That means that they could (and probably will) change in some future release and break your code.  If you understand the risks of using undocumented APIs and are prepared to accept that risk, read on… READ MORE >>

    Read the article

  • On-demand Webcast: Java in the Smart Grid

    - by Jacob Lehrbaum
    The Smart Grid is one of the most significant evolutions of our utility infrastructure in recent history. This innovative grid will soon revolutionize how utilities manage and control the energy in our homes--helping utilities reduce energy usage during peak hours, improve overall energy efficiency, and lower your energy bills. If you'd like to learn more about the Smart Grid and the role that Java is poised to play in this important initiative you can check out our on-demand webcast. We'll show you how Java solutions--including Java ME and Java SE for Embedded --can help build devices and infrastructure that take advantage of this new market. As the world's most popular developer language, Java enables you to work with a wide range of developers and provides access to tools and resources to build smarter devices, faster and more affordably.

    Read the article

< Previous Page | 502 503 504 505 506 507 508 509 510 511 512 513  | Next Page >