Search Results

Search found 18245 results on 730 pages for 'recursive query'.

Page 518/730 | < Previous Page | 514 515 516 517 518 519 520 521 522 523 524 525  | Next Page >

  • XML XQUERY Problem with NTEXT data type

    - by johnfa
    Hello I want to use XQuery on a column of data type NTEXT (I have no choice!). I have tried converting the column to XML using CONVERT but it gives the error: Incorrect syntax near the keyword 'CONVERT'. Here's the query SELECT y.item.value('@UserID', 'varchar(50)') AS UnitID, y.item.value('@ListingID', 'varchar(100)') AS @ListingID FROM dbo.KB_XMod_Modules CROSS APPLY CONVERT(xml, instancedata).nodes('//instance') AS y(item) (instancedata is my column) Can anyone think of a work around for this ? Thanks

    Read the article

  • Order results by another table?

    - by user3462020
    I'm working on a custom forum system and I'm trying to figure out how to put a thread on the top of the list if a user posts in it. I've got this for my query SELECT user_threads.threadID, user_threads.title, user_threads.uid, user_threads.postDate, thread_messages.posted FROM user_threads, thread_messages WHERE parent = :parent GROUP BY user_threads.title ORDER BY thread_messages.posted DESC Which doesn't appear to be working. if I post in a new thread, it remains where it is on the list.

    Read the article

  • HTML actual page link

    - by lore3d
    Hi all, I'm building a website, and i need to know the actual page address in which the user is in, in order to take users in the same page after login. The problem is that every page is generated from variables passed by url and query string, so I dont't know how to recover every variable and assign to it the correct value. How to recover variables name and assign them the correct values? Thanks lore (sorry for my English)

    Read the article

  • How can i add '"-" in column

    - by jasmeet
    my query is showing in row 2000 the data of 2000-2001 & in 2001 the data of 2001-2002. how can i change the column so that it displayes column 1 column 2 2000-2001 5 2001-2002 3 2002-2003 9 2003-2004 12 . . . . and so on...

    Read the article

  • SQLite FTS3 sumulate LIKE somestrin%

    - by alex
    I'm writing a dictionary app and need to do the usual word suggesting while typing. LIKE somestrin% is rather slow (~1300ms on a ~100k row table) so I've turned to FTS3. Problem is, I haven't found a sane way to search from the beginning of a string. Now I'm performing a query like SELECT word, offsets(entries) FROM entries WHERE word MATCH '"chicken *"'; , then parse the offsets string in code. Are there any better options?

    Read the article

  • SQL top + count() confusion

    - by vasin
    I've got the following table: patients id name diagnosis_id What I need to do is get all the patients with N most popular diagnosis. And I'm getting nothing using this query: SELECT name FROM patients WHERE diagnosis_id IN (SELECT TOP(5) COUNT(diagnosis_id) FROM patients GROUP BY diagnosis_id ORDER BY diagnosis_id) How to fix it?

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • .NET 4: &ldquo;Slim&rdquo;-style performance boost!

    - by Vitus
    RTM version of .NET 4 and Visual Studio 2010 is available, and now we can do some test with it. Parallel Extensions is one of the most valuable part of .NET 4.0. It’s a set of good tools for easily consuming multicore hardware power. And it also contains some “upgraded” sync primitives – Slim-version. For example, it include updated variant of widely known ManualResetEvent. For people, who don’t know about it: you can sync concurrency execution of some pieces of code with this sync primitive. Instance of ManualResetEvent can be in 2 states: signaled and non-signaled. Transition between it possible by Set() and Reset() methods call. Some shortly explanation: Thread 1 Thread 2 Time mre.Reset(); mre.WaitOne(); //code execution 0 //wating //code execution 1 //wating //code execution 2 //wating //code execution 3 //wating mre.Set(); 4 //code execution //… 5 Upgraded version of this primitive is ManualResetEventSlim. The idea in decreasing performance cost in case, when only 1 thread use it. Main concept in the “hybrid sync schema”, which can be done as following:   internal sealed class SimpleHybridLock : IDisposable { private Int32 m_waiters = 0; private AutoResetEvent m_waiterLock = new AutoResetEvent(false);   public void Enter() { if (Interlocked.Increment(ref m_waiters) == 1) return; m_waiterLock.WaitOne(); }   public void Leave() { if (Interlocked.Decrement(ref m_waiters) == 0) return; m_waiterLock.Set(); }   public void Dispose() { m_waiterLock.Dispose(); } } It’s a sample from Jeffry Richter’s book “CLR via C#”, 3rd edition. Primitive SimpleHybridLock have two public methods: Enter() and Leave(). You can put your concurrency-critical code between calls of these methods, and it would executed in only one thread at the moment. Code is really simple: first thread, called Enter(), increase counter. Second thread also increase counter, and suspend while m_waiterLock is not signaled. So, if we don’t have concurrent access to our lock, “heavy” methods WaitOne() and Set() will not called. It’s can give some performance bonus. ManualResetEvent use the similar idea. Of course, it have more “smart” technics inside, like a checking of recursive calls, and so on. I want to know a real difference between classic ManualResetEvent realization, and new –Slim. I wrote a simple “benchmark”: class Program { static void Main(string[] args) { ManualResetEventSlim mres = new ManualResetEventSlim(false); ManualResetEventSlim mres2 = new ManualResetEventSlim(false);   ManualResetEvent mre = new ManualResetEvent(false);   long total = 0; int COUNT = 50;   for (int i = 0; i < COUNT; i++) { mres2.Reset(); Stopwatch sw = Stopwatch.StartNew();   ThreadPool.QueueUserWorkItem((obj) => { //Method(mres, true); Method2(mre, true); mres2.Set(); }); //Method(mres, false); Method2(mre, false);   mres2.Wait(); sw.Stop();   Console.WriteLine("Pass {0}: {1} ms", i, sw.ElapsedMilliseconds); total += sw.ElapsedMilliseconds; }   Console.WriteLine(); Console.WriteLine("==============================="); Console.WriteLine("Done in average=" + total / (double)COUNT); Console.ReadLine(); }   private static void Method(ManualResetEventSlim mre, bool value) { for (int i = 0; i < 9000000; i++) { if (value) { mre.Set(); } else { mre.Reset(); } } }   private static void Method2(ManualResetEvent mre, bool value) { for (int i = 0; i < 9000000; i++) { if (value) { mre.Set(); } else { mre.Reset(); } } } } I use 2 concurrent thread (the main thread and one from thread pool) for setting and resetting ManualResetEvents, and try to run test COUNT times, and calculate average execution time. Here is the results (I get it on my dual core notebook with T7250 CPU and Windows 7 x64): ManualResetEvent ManualResetEventSlim Difference is obvious and serious – in 10 times! So, I think preferable way is using ManualResetEventSlim, because not always on calling Set() and Reset() will be called “heavy” methods for working with Windows kernel-mode objects. It’s a small and nice improvement! ;)

    Read the article

  • Explaining Explain Plan Notes for Auto DOP

    - by jean-pierre.dijcks
    I've recently gotten some questions around "why do I not see a parallel plan" while Auto DOP is on (I think)...? It is probably worthwhile to quickly go over some of the ways to find out what Auto DOP was thinking. In general, there is no need to go tracing sessions and look under the hood. The thing to start with is to do an explain plan on your statement and to look at the parameter settings on the system. Parameter Settings to Look At First and foremost, make sure that parallel_degree_policy = AUTO. If you have that parameter set to LIMITED you will not have queuing and we will only do the auto magic if your objects are set to default parallel (so no degree specified). Next you want to look at the value of parallel_degree_limit. It is typically set to CPU, which in default settings equates to the Default DOP of the system. If you are testing Auto DOP itself and the impact it has on performance you may want to leave it at this CPU setting. If you are running concurrent statements you may want to give this some more thoughts. See here for more information. In general, do stick with either CPU or with a specific number. For now avoid the IO setting as I've seen some mixed results with that... In 11.2.0.2 you should also check that IO Calibrate has been run. Best to simply do a: SQL> select * from V$IO_CALIBRATION_STATUS; STATUS        CALIBRATION_TIME ------------- ---------------------------------------------------------------- READY         04-JAN-11 10.04.13.104 AM You should see that your IO Calibrate is READY and therefore Auto DOP is ready. In any case, if you did not run the IO Calibrate step you will get the following note in the explain plan: Note -----    - automatic DOP: skipped because of IO calibrate statistics are missing One more note on calibrate_io, if you do not have asynchronous IO enabled you will see:  ERROR at line 1: ORA-56708: Could not find any datafiles with asynchronous i/o capability ORA-06512: at "SYS.DBMS_RMIN", line 463 ORA-06512: at "SYS.DBMS_RESOURCE_MANAGER", line 1296 ORA-06512: at line 7 While this is changed in some fixes to the calibrate procedure, you should really consider switching asynchronous IO on for your data warehouse. Explain Plan Explanation To see the notes that are shown and explained here (and the above little snippet ) you can use a simple explain plan mechanism. There should  be no need to add +parallel etc. explain plan for <statement> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); Auto DOP The note structure displaying why Auto DOP did not work (with the exception noted above on IO Calibrate) is like this: Automatic degree of parallelism is disabled: <reason> These are the reason codes: Parameter -  parallel_degree_policy = manual which will not allow Auto DOP to kick in  Hint - One of the following hints are used NOPARALLEL, PARALLEL(1), PARALLEL(MANUAL) Outline - A SQL outline of an older version (before 11.2) is used SQL property restriction - The statement type does not allow for parallel processing Rule-based mode - Instead of the Cost Based Optimizer the system is using the RBO Recursive SQL statement - The statement type does not allow for parallel processing pq disabled/pdml disabled/pddl disabled - For some reason (alter session?) parallelism is disabled Limited mode but no parallel objects referenced - your parallel_degree_policy = LIMITED and no objects in the statement are decorated with the default PARALLEL degree. In most cases all objects have a specific degree in which case Auto DOP will honor that degree. Parallel Degree Limited When Auto DOP does it works you may see the cap you imposed with parallel_degree_limit showing up in the note section of the explain plan: Note -----    - automatic DOP: Computed Degree of Parallelism is 16 because of degree limit This is an obvious indication that your are being capped for this statement. There is one quite interesting one that happens when you are being capped at DOP = 1. First of you get a serial plan and the note changes slightly in that it does not indicate it is being capped (we hope to update the note at some point in time to be more specific). It right now looks like this: Note -----    - automatic DOP: Computed Degree of Parallelism is 1 Dynamic Sampling With 11.2.0.2 you will start seeing another interesting change in parallel plans, and since we are talking about the note section here, I figured we throw this in for good measure. If we deem the parallel (!) statement complex enough, we will enact dynamic sampling on your query. This happens as long as you did not change the default for dynamic sampling on the system. The note looks like this: Note ----- - dynamic sampling used for this statement (level=5)

    Read the article

  • Goto for the Java Programming Language

    - by darcy
    Work on JDK 8 is well-underway, but we thought this late-breaking JEP for another language change for the platform couldn't wait another day before being published. Title: Goto for the Java Programming Language Author: Joseph D. Darcy Organization: Oracle. Created: 2012/04/01 Type: Feature State: Funded Exposure: Open Component: core/lang Scope: SE JSR: 901 MR Discussion: compiler dash dev at openjdk dot java dot net Start: 2012/Q2 Effort: XS Duration: S Template: 1.0 Reviewed-by: Duke Endorsed-by: Edsger Dijkstra Funded-by: Blue Sun Corporation Summary Provide the benefits of the time-testing goto control structure to Java programs. The Java language has a history of adding new control structures over time, the assert statement in 1.4, the enhanced for-loop in 1.5,and try-with-resources in 7. Having support for goto is long-overdue and simple to implement since the JVM already has goto instructions. Success Metrics The goto statement will allow inefficient and verbose recursive algorithms and explicit loops to be replaced with more compact code. The effort will be a success if at least twenty five percent of the JDK's explicit loops are replaced with goto's. Coordination with IDE vendors is expected to help facilitate this goal. Motivation The goto construct offers numerous benefits to the Java platform, from increased expressiveness, to more compact code, to providing new programming paradigms to appeal to a broader demographic. In JDK 8, there is a renewed focus on using the Java platform on embedded devices with more modest resources than desktop or server environments. In such contexts, static and dynamic memory footprint is a concern. One significant component of footprint is the code attribute of class files and certain classes of important algorithms can be expressed more compactly using goto than using other constructs, saving footprint. For example, to implement state machines recursively, some parties have asked for the JVM to support tail calls, that is, to perform a complex transformation with security implications to turn a method call into a goto. Such complicated machinery should not be assumed for an embedded context. A better solution is just to expose to the programmer the desired functionality, goto. The web has familiarized users with a model of traversing links among different HTML pages in a free-form fashion with some state being maintained on the side, such as login credentials, to effect behavior. This is exactly the programming model of goto and code. While in the past this has been derided as leading to "spaghetti code," spaghetti is a tasty and nutritious meal for programmers, unlike quiche. The invokedynamic instruction added by JSR 292 exposes the JVM's linkage operation to programmers. This is a low-level operation that can be leveraged by sophisticated programmers. Likewise, goto is a also a low-level operation that should not be hidden from programmers who can use more efficient idioms. Some may object that goto was consciously excluded from the original design of Java as one of the removed feature from C and C++. However, the designers of the Java programming languages have revisited these removals before. The enum construct was also left out only to be added in JDK 5 and multiple inheritance was left out, only to be added back by the virtual extension method methods of Project Lambda. As a living language, the needs of the growing Java community today should be used to judge what features are needed in the platform tomorrow; the language should not be forever bound by the decisions of the past. Description From its initial version, the JVM has had two instructions for unconditional transfer of control within a method, goto (0xa7) and goto_w (0xc8). The goto_w instruction is used for larger jumps. All versions of the Java language have supported labeled statements; however, only the break and continue statements were able to specify a particular label as a target with the onerous restriction that the label must be lexically enclosing. The grammar addition for the goto statement is: GotoStatement: goto Identifier ; The new goto statement similar to break except that the target label can be anywhere inside the method and the identifier is mandatory. The compiler simply translates the goto statement into one of the JVM goto instructions targeting the right offset in the method. Therefore, adding the goto statement to the platform is only a small effort since existing compiler and JVM functionality is reused. Other language changes to support goto include obvious updates to definite assignment analysis, reachability analysis, and exception analysis. Possible future extensions include a computed goto as found in gcc, which would replace the identifier in the goto statement with an expression having the type of a label. Testing Since goto will be implemented using largely existing facilities, only light levels of testing are needed. Impact Compatibility: Since goto is already a keyword, there are no source compatibility implications. Performance/scalability: Performance will improve with more compact code. JVMs already need to handle irreducible flow graphs since goto is a VM instruction.

    Read the article

  • Design Pattern for Complex Data Modeling

    - by Aaron Hayman
    I'm developing a program that has a SQL database as a backing store. As a very broad description, the program itself allows a user to generate records in any number of user-defined tables and make connections between them. As for specs: Any record generated must be able to be connected to any other record in any other user table (excluding itself...the record, not the table). These "connections" are directional, and the list of connections a record has is user ordered. Moreover, a record must "know" of connections made from it to others as well as connections made to it from others. The connections are kind of the point of this program, so there is a strong possibility that the number of connections made is very high, especially if the user is using the software as intended. A record's field can also include aggregate information from it's connections (like obtaining average, sum, etc) that must be updated on change from another record it's connected to. To conserve memory, only relevant information must be loaded at any one time (can't load the entire database in memory at load and go from there). I cannot assume the backing store is local. Right now it is, but eventually this program will include syncing to a remote db. Neither the user tables, connections or records are known at design time as they are user generated. I've spent a lot of time trying to figure out how to design the backing store and the object model to best fit these specs. In my first design attempt on this, I had one object managing all a table's records and connections. I attempted this first because it kept the memory footprint smaller (records and connections were simple dicts), but maintaining aggregate and link information between tables became....onerous (ie...a huge spaghettified mess). Tracing dependencies using this method almost became impossible. Instead, I've settled on a distributed graph model where each record and connection is 'aware' of what's around it by managing it own data and connections to other records. Doing this increases my memory footprint but also let me create a faulting system so connections/records aren't loaded into memory until they're needed. It's also much easier to code: trace dependencies, eliminate cycling recursive updates, etc. My biggest problem is storing/loading the connections. I'm not happy with any of my current solutions/ideas so I wanted to ask and see if anybody else has any ideas of how this should be structured. Connections are fairly simple. They contain: fromRecordID, fromTableID, fromRecordOrder, toRecordID, toTableID, toRecordOrder. Here's what I've come up with so far: Store all the connections in one big table. If I do this, either I load all connections at once (one big db call) or make a call every time a user table is loaded. The big issue here: the size of the connections table has the potential to be huge, and I'm afraid it would slow things down. Store in separate tables all the outgoing connections for each user table. This is probably the worst idea I've had. Now my connections are 'spread out' over multiple tables (one for each user table), which means I have to make a separate DB called to each table (or make a huge join) just to find all the incoming connections for a particular user table. I've avoided making "one big ass table", but I'm not sure the cost is worth it. Store in separate tables all outgoing AND incoming connections for each user table (using a flag to distinguish between incoming vs outgoing). This is the idea I'm leaning towards, but it will essentially double the total DB storage for all the connections (as each connection will be stored in two tables). It also means I have to make sure connection information is kept in sync in both places. This is obviously not ideal but it does mean that when I load a user table, I only need to load one 'connection' table and have all the information I need. This also presents a separate problem, that of connection object creation. Since each user table has a list of all connections, there are two opportunities for a connection object to be made. However, connections objects (designed to facilitate communication between records) should only be created once. This means I'll have to devise a common caching/factory object to make sure only one connection object is made per connection. Does anybody have any ideas of a better way to do this? Once I've committed to a particular design pattern I'm pretty much stuck with it, so I want to make sure I've come up with the best one possible.

    Read the article

  • When is my View too smart?

    - by Kyle Burns
    In this posting, I will discuss the motivation behind keeping View code as thin as possible when using patterns such as MVC, MVVM, and MVP.  Once the motivation is identified, I will examine some ways to determine whether a View contains logic that belongs in another part of the application.  While the concepts that I will discuss are applicable to most any pattern which favors a thin View, any concrete examples that I present will center on ASP.NET MVC. Design patterns that include a Model, a View, and other components such as a Controller, ViewModel, or Presenter are not new to application development.  These patterns have, in fact, been around since the early days of building applications with graphical interfaces.  The reason that these patterns emerged is simple – the code running closest to the user tends to be littered with logic and library calls that center around implementation details of showing and manipulating user interface widgets and when this type of code is interspersed with application domain logic it becomes difficult to understand and much more difficult to adequately test.  By removing domain logic from the View, we ensure that the View has a single responsibility of drawing the screen which, in turn, makes our application easier to understand and maintain. I was recently asked to take a look at an ASP.NET MVC View because the developer reviewing it thought that it possibly had too much going on in the view.  I looked at the .CSHTML file and the first thing that occurred to me was that it began with 40 lines of code declaring member variables and performing the necessary calculations to populate these variables, which were later either output directly to the page or used to control some conditional rendering action (such as adding a class name to an HTML element or not rendering another element at all).  This exhibited both of what I consider the primary heuristics (or code smells) indicating that the View is too smart: Member variables – in general, variables in View code are an indication that the Model to which the View is being bound is not sufficient for the needs of the View and that the View has had to augment that Model.  Notable exceptions to this guideline include variables used to hold information specifically related to rendering (such as a dynamically determined CSS class name or the depth within a recursive structure for indentation purposes) and variables which are used to facilitate looping through collections while binding. Arithmetic – as with member variables, the presence of arithmetic operators within View code are an indication that the Model servicing the View is insufficient for its needs.  For example, if the Model represents a line item in a sales order, it might seem perfectly natural to “normalize” the Model by storing the quantity and unit price in the Model and multiply these within the View to show the line total.  While this does seem natural, it introduces a business rule to the View code and makes it impossible to test that the rounding of the result meets the requirement of the business without executing the View.  Within View code, arithmetic should only be used for activities such as incrementing loop counters and calculating element widths. In addition to the two characteristics of a “Smart View” that I’ve discussed already, this View also exhibited another heuristic that commonly indicates to me the need to refactor a View and make it a bit less smart.  That characteristic is the existence of Boolean logic that either does not work directly with properties of the Model or works with too many properties of the Model.  Consider the following code and consider how logic that does not work directly with properties of the Model is just another form of the “member variable” heuristic covered earlier: @if(DateTime.Now.Hour < 12) {     <div>Good Morning!</div> } else {     <div>Greetings</div> } This code performs business logic to determine whether it is morning.  A possible refactoring would be to add an IsMorning property to the Model, but in this particular case there is enough similarity between the branches that the entire branching structure could be collapsed by adding a Greeting property to the Model and using it similarly to the following: <div>@Model.Greeting</div> Now let’s look at some complex logic around multiple Model properties: @if (ModelPageNumber + Model.NumbersToDisplay == Model.PageCount         || (Model.PageCount != Model.CurrentPage             && !Model.DisplayValues.Contains(Model.PageCount))) {     <div>There's more to see!</div> } In this scenario, not only is the View code difficult to read (you shouldn’t have to play “human compiler” to determine the purpose of the code), but it also complex enough to be at risk for logical errors that cannot be detected without executing the View.  Conditional logic that requires more than a single logical operator should be looked at more closely to determine whether the condition should be evaluated elsewhere and exposed as a single property of the Model.  Moving the logic above outside of the View and exposing a new Model property would simplify the View code to: @if(Model.HasMoreToSee) {     <div>There’s more to see!</div> } In this posting I have briefly discussed some of the more prominent heuristics that indicate a need to push code from the View into other pieces of the application.  You should now be able to recognize these symptoms when building or maintaining Views (or the Models that support them) in your applications.

    Read the article

  • BIND DNS Master with Zerigo Slaves - BIND won't update the slave servers

    - by Anthony
    I've tried to resolve this myself and have looked through Google and Stack but haven't found the answer I'm looking for. Currently on a VPS server I have BIND DNS installed as a MASTER DNS Server. I use Zerigo's DNS service as SLAVE servers for public use: The Master doesn't receive queries - It's job is to simply create and modify DNS entries locally of which the SLAVE use to serve. Here is an excerpt of the BIND log, I set it to INFO event logging: 14-Apr-2012 23:00:00.234 general: info: received control channel command 'reload' 14-Apr-2012 23:00:00.234 general: info: loading configuration from 'C:\DNS\BIND\etc\named.conf' 14-Apr-2012 23:00:00.234 general: info: using default UDP/IPv4 port range: [1024, 65535] 14-Apr-2012 23:00:00.234 general: info: using default UDP/IPv6 port range: [1024, 65535] 14-Apr-2012 23:00:00.250 general: info: reloading configuration succeeded 14-Apr-2012 23:00:00.250 general: info: reloading zones succeeded 14-Apr-2012 23:16:22.750 xfer-out: info: client 174.36.24.251#47135: transfer of 'ajmakeup.com/IN': AXFR started 14-Apr-2012 23:16:22.750 xfer-out: info: client 174.36.24.251#47135: transfer of 'ajmakeup.com/IN': AXFR ended 14-Apr-2012 23:16:23.015 xfer-out: info: client 68.71.141.22#36212: transfer of 'ajmakeup.com/IN': AXFR started 14-Apr-2012 23:16:23.031 xfer-out: info: client 68.71.141.22#36212: transfer of 'ajmakeup.com/IN': AXFR ended As you can see there is no problem with Zerigo's DNS servers requesting new DNS data, when I force a reload that is; I don't believe, as per the way they are set as SLAVE, that they poll for changes. However the problem is the other way; the MASTER is not updating the SLAVE servers when reload is run (on the MASTER); it is a batch on a 15 minute timer. Below is my NAMED.CONF: key "rndc-key" { algorithm hmac-md5; secret "REMOVED FOR SECURITY"; }; acl "trusted" { 174.36.24.251/32; 68.71.141.22/32; localhost; }; options { version "not currently available"; directory "C:\DNS\BIND\etc"; allow-query { trusted; }; }; controls { inet 127.0.0.1 port 953 allow { 127.0.0.1; } keys { "rndc-key"; }; }; logging{ channel simple_log { file "C:\DNS\BIND\logging\bind.log" versions 3 size 5m; severity info; print-time yes; print-severity yes; print-category yes; }; category default{ simple_log; }; }; zone "ajmakeup.com" in { type master; file "c:\dns\BIND\zones\db.ajmakeup.com.txt"; allow-transfer { 174.36.24.251; 68.71.141.22; }; allow-update { none; }; }; Does my problem have something to do with 'allow-query' under options? You will notice that 'allow-transfer' is set explicitly on each DNS zone. In case you need it here is my RNDC.CONF: key "rndc-key" { algorithm hmac-md5; secret "REMOVED FOR SECURITY"; }; options { default-key "rndc-key"; default-server 127.0.0.1; default-port 953; }; server localhost { key "rndc-key"; }; Note: I am using WebsitePanel as my hosting panel and is such why it creates the zone enteries the way it does. Although I know I can change this behaviour, I do not wish to do so nor do I believe is the root of the problem. Thanks for your help.

    Read the article

  • How do you handle authentication across domains?

    - by William Ratcliff
    I'm trying to save users of our services from having to have multiple accounts/passwords. I'm in a large organization and there's one group that handles part of user authentication for users who are from outside the facility (primarily for administrative functions). They store a secure cookie to establish a session and communicate only via HTTPS via the browser. Sessions expire either through: 1) explicit logout of the user 2) Inactivity 3) Browser closes My team is trying to write a web application to help users analyze data that they've taken (or are currently taking) while at our facility. We need to determine if a user is 1) authenticated 2) Some identifier for that user so we can store state for them (what analysis they are working on, etc.) So, the problem is how do you authenticate across domains (the authentication server for the other application lives in a border region between public and private--we will live in the public region). We have come up with some scenarios and I'd like advice about what is best practice, or if there is one we haven't considered. Let's start with the case where the user is authenticated with the authentication server. 1) The authentication server leaves a public cookie in the browser with their primary key for a user. If this is deemed sensitive, they encrypt it on their server and we have the key to decrypt it on our server. When the user visits our site, we check for this public cookie. We extract the user_id and use a public api for the authentication server to request if the user is logged in. If they are, they send us a response with: response={ userid :we can then map this to our own user ids. If necessary, we can request additional information such as email-address/display name once (to notify them if long running jobs are done, or to share results with other people, like with google_docs). account_is_active:Make sure that the account is still valid session_is_active: Is their session still active? If we query this for a valid user, this will have a side effect that we will reset the last_time_session_activated value and thus prolong their session with the authentication server last_time_session_activated: let us know how much time they have left ip_address_session_started_from:make sure the person at our site is coming from the same ip as they started the session at } Given this response, we either accept them as authenticated and move on with our app, or redirect them to the login page for the authentication server (question: if we give an encrypted portion of the response (signed by us) with the page to redirect them to, do we open any gaping security holes in the authentication server)? The flaw that we've found with this is that if the user visits evilsite.com and they look at the session cookie and send a query to the public api of the authentication server, they can keep the session alive and if our original user leaves the machine without logging out, then the next user will be able to access their session (this was possible before, but having the session alive eternally makes this worse). 2) The authentication server redirects all requests made to our domain to us and we send responses back through them to the user. Essentially, they act as a proxy. The advantage of this is that we can handshake with the authentication server, so it's safe to be trusted with the email address/name of the user and they don't have to reenter it So, if the user tries to go to: authentication_site/mysite_page1 they are redirected to mysite. Which would you choose, or is there a better way? The goal is to minimize the "Yet Another Password/Yet another username" problem... Thanks!!!!

    Read the article

  • Cannot join Win7 workstations to Win2k8 domain

    - by wfaulk
    I am trying to connect a Windows 7 Ultimate machine to a Windows 2k8 domain and it's not working. I get this error: Note: This information is intended for a network administrator. If you are not your network's administrator, notify the administrator that you received this information, which has been recorded in the file C:\Windows\debug\dcdiag.txt. DNS was successfully queried for the service location (SRV) resource record used to locate a domain controller for domain "example.local": The query was for the SRV record for _ldap._tcp.dc._msdcs.example.local The following domain controllers were identified by the query: dc1.example.local dc2.example.local However no domain controllers could be contacted. Common causes of this error include: Host (A) or (AAAA) records that map the names of the domain controllers to their IP addresses are missing or contain incorrect addresses. Domain controllers registered in DNS are not connected to the network or are not running. The client is in an office connected remotely via MPLS to the data center where our domain controllers exist. I don't seem to have anything blocking connectivity to the DCs, but I don't have total control over the MPLS circuit, so it's possible that there's something blocking connectivity. I have tried multiple clients (Win7 Ultimate and WinXP SP3) in the one office and get the same symptoms on all of them. I have no trouble connecting to either of the domain controllers, though I have, admittedly, not tried every possible port. ICMP, LDAP, DNS, and SMB connections all work fine. Client DNS is pointing to the DCs, and "example.local" resolves to the two IP addresses of the DCs. I get this output from the NetLogon Test command line utility: C:\Windows\System32>nltest /dsgetdc:example.local Getting DC name failed: Status = 1355 0x54b ERROR_NO_SUCH_DOMAIN I have also created a separate network to emulate that office's configuration that's connected to the DC network via LAN-to-LAN VPN instead of MPLS. Joining Windows 7 computers from that remote network works fine. The only difference I can find between the two environments is the intermediate connectivity, but I'm out of ideas as to what to test or how to do it. What further steps should I take? (Note that this isn't actually my client workstation and I have no direct access to it; I'm forced to do remote hands access to it, which makes some of the obvious troubleshooting methods, like packet sniffing, more difficult. If I could just set up a system there that I could remote into, I would, but requests to that effect have gone unanswered.) 2011-08-25 update: I had DCDIAG.EXE run on a client attempting to join the domain: C:\Windows\System32>dcdiag /u:example\adminuser /p:********* /s:dc2.example.local Directory Server Diagnosis Performing initial setup: Ldap search capabality attribute search failed on server dc2.example.local, return value = 81 This sounds like it was able to connect via LDAP, but the thing that it was trying to do failed. But I don't quite follow what it was trying to do, much less how to reproduce it or resolve it. 2011-08-26 update: Using LDP.EXE to try and make an LDAP connection directly to the DCs results in these errors: ld = ldap_open("10.0.0.1", 389); Error <0x51: Fail to connect to 10.0.0.1. ld = ldap_open("10.0.0.2", 389); Error <0x51: Fail to connect to 10.0.0.2. ld = ldap_open("10.0.0.1", 3268); Error <0x51: Fail to connect to 10.0.0.1. ld = ldap_open("10.0.0.2", 3268); Error <0x51: Fail to connect to 10.0.0.2. This would seem to point fingers at LDAP connections being blocked somewhere. (And 0x51 == 81, which was the error from DCDIAG.EXE from yesterday's update.) I could swear I tested this using TELNET.EXE weeks ago, but now I'm thinking that I may have assumed that its clearing of the screen was telling me that it was waiting and not that it had connected. I'm tracking down LDAP connectivity problems now. This update may become an answer.

    Read the article

  • Replicate between mysql 5.0.xx community and enterprise edition over ssh

    - by Arlukin
    I'm trying to setup a mysql replication over an SSH tunnel. The odd thing about this setup is that I have one master with mysql 5.0.60sp1-enterprise-gpl-log and one slave with mysql 5.0.67-community-log. Could it be so that it's not possible to replicate between community and enterprise edition? As you can see in my log below, it's possible to login on the remote server with the mysql client. But the replication get "Can't connect to MySQL server on '127.0.0.1' (13)" Is it any log file I have forgotten to look in, to get more info? [root@mysql1-av ~]# mysql -uroot -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 73 Server version: 5.0.67-community-log MySQL Community Edition (GPL) Type 'help;' or '\h' for help. Type '\c' to clear the buffer. The version of the slave mysql [root@mysql1-av ~]# autossh -f -M 20001 -L 3307:10.200.200.200:3306 [email protected] -N [root@mysql1-av ~]# mysql -h127.0.0.1 --port 3307 -uroot -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 5189 Server version: 5.0.60sp1-enterprise-gpl-log MySQL Enterprise Server (GPL) Type 'help;' or '\h' for help. Type '\c' to clear the buffer. mysql> Aborted Login to the master mysql with the mysql client over the ssh tunnel. [root@mysql1-av ~]# mysql -uroot -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 75 Server version: 5.0.67-community-log MySQL Community Edition (GPL) Type 'help;' or '\h' for help. Type '\c' to clear the buffer. mysql> change master to master_host='127.0.0.1', MASTER_PORT=3307, master_user='xxxx', master_password='xxxx', master_log_file='bin.000001'; Query OK, 0 rows affected (0.00 sec) mysql> start slave; Query OK, 0 rows affected (0.00 sec) mysql> show slave status \G *************************** 1. row *************************** Slave_IO_State: Connecting to master Master_Host: 127.0.0.1 Master_User: replNSG Master_Port: 3307 Connect_Retry: 60 Master_Log_File: bin.000001 Read_Master_Log_Pos: 4 Relay_Log_File: relay.000001 Relay_Log_Pos: 98 Relay_Master_Log_File: bin.000001 Slave_IO_Running: No Slave_SQL_Running: Yes Replicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0 Last_Error: Skip_Counter: 0 Exec_Master_Log_Pos: 4 Relay_Log_Space: 98 Until_Condition: None Until_Log_File: Until_Log_Pos: 0 Master_SSL_Allowed: No Master_SSL_CA_File: Master_SSL_CA_Path: Master_SSL_Cert: Master_SSL_Cipher: Master_SSL_Key: Seconds_Behind_Master: NULL 1 row in set (0.00 sec) Start the replication, but it breaks on IO. [root@mysql1-av ~]# tail /var/log/mysqld.log 120921 22:17:59 [Note] Slave I/O thread killed while connecting to master 120921 22:17:59 [Note] Slave I/O thread exiting, read up to log 'bin.000001', position 4 120921 22:17:59 [Note] Error reading relay log event: slave SQL thread was killed 120921 22:29:36 [Note] Slave SQL thread initialized, starting replication in log 'bin.000001' at position 4, relay log '/var/lib/mysql/relay.000001' position: 4 120921 22:29:36 [ERROR] Slave I/O thread: error connecting to master '[email protected]:3307': Error: 'Can't connect to MySQL server on '127.0.0.1' (13)' errno: 2003 retry-time: 60 retries: 86400 Because it can't connect to the master server.

    Read the article

  • High Load mysql on Debian server

    - by Oleg Abrazhaev
    I have Debian server with 32 gb memory. And there is apache2, memcached and nginx on this server. Memory load always on maximum. Only 500m free. Most memory leak do MySql. Apache only 70 clients configured, other services small memory usage. When mysql use all memory it stops. And nothing works, need mysql reboot. Mysql configured use maximum 24 gb memory. I have hight weight InnoDB bases. (400000 rows, 30 gb). And on server multithread daemon, that makes many inserts in this tables, thats why InnoDB. There is my mysql config. [mysqld] # # * Basic Settings # default-time-zone = "+04:00" user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp language = /usr/share/mysql/english skip-external-locking default-time-zone='Europe/Moscow' # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. # # * Fine Tuning # #low_priority_updates = 1 concurrent_insert = ALWAYS wait_timeout = 600 interactive_timeout = 600 #normal key_buffer_size = 2024M #key_buffer_size = 1512M #70% hot cache key_cache_division_limit= 70 #16-32 max_allowed_packet = 32M #1-16M thread_stack = 8M #40-50 thread_cache_size = 50 #orderby groupby sort sort_buffer_size = 64M #same myisam_sort_buffer_size = 400M #temp table creates when group_by tmp_table_size = 3000M #tables in memory max_heap_table_size = 3000M #on disk open_files_limit = 10000 table_cache = 10000 join_buffer_size = 5M # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #myisam_use_mmap = 1 max_connections = 200 thread_concurrency = 8 # # * Query Cache Configuration # #more ignored query_cache_limit = 50M query_cache_size = 210M #on query cache query_cache_type = 1 # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. #log = /var/log/mysql/mysql.log # # Error logging goes to syslog. This is a Debian improvement :) # # Here you can see queries with especially long duration log_slow_queries = /var/log/mysql/mysql-slow.log long_query_time = 1 log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log server-id = 1 log-bin = /var/lib/mysql/mysql-bin #replicate-do-db = gate log-bin-index = /var/lib/mysql/mysql-bin.index log-error = /var/lib/mysql/mysql-bin.err relay-log = /var/lib/mysql/relay-bin relay-log-info-file = /var/lib/mysql/relay-bin.info relay-log-index = /var/lib/mysql/relay-bin.index binlog_do_db = 24avia expire_logs_days = 10 max_binlog_size = 100M read_buffer_size = 4024288 innodb_buffer_pool_size = 5000M innodb_flush_log_at_trx_commit = 2 innodb_thread_concurrency = 8 table_definition_cache = 2000 group_concat_max_len = 16M #binlog_do_db = gate #binlog_ignore_db = include_database_name # # * BerkeleyDB # # Using BerkeleyDB is now discouraged as its support will cease in 5.1.12. #skip-bdb # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # You might want to disable InnoDB to shrink the mysqld process by circa 100MB. #skip-innodb # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 500M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 32M key_buffer_size = 512M # # * NDB Cluster # # See /usr/share/doc/mysql-server-*/README.Debian for more information. # # The following configuration is read by the NDB Data Nodes (ndbd processes) # not from the NDB Management Nodes (ndb_mgmd processes). # # [MYSQL_CLUSTER] # ndb-connectstring=127.0.0.1 # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ Please, help me make it stable. Memory used /etc/mysql # free total used free shared buffers cached Mem: 32930800 32766424 164376 0 139208 23829196 -/+ buffers/cache: 8798020 24132780 Swap: 33553328 44660 33508668 Maybe my problem not in memory, but MySQL stops every day. As you can see, cache memory free 24 gb. Thank to Michael Hampton? for correction. Load overage on server 3.5. Maybe hdd or another problem? Maybe my config not optimal for 30gb InnoDB ?

    Read the article

  • Unable to Mange DNS via MMC

    - by IT Helpdesk Team Manager
    When trying to access the DNS service on Microsoft Windows Server 2003 (Build 3790) domain controller/schema master via the MMC DNS snap in or locally via the DNS MMC from Administrative tools I'm getting a red "X" through the icon for the DNS Server. The inability to access DNS management via MMC happens on all domain controllers as well. We've looked at items such as the DHCP client not being started, incorrect DNS setup ( the machine points at itself and another DC ), the DNS service not running ( it is and all DNS queries via NSLOOKUP work correctly ), dslint returns the correct information and functions as expected. There is the following entry in the DNS event log: The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp. 0000: 0000051b dnscmd fails with RPC server unavailable yet RPC is started: C:\Documents and Settings\Administrator.DOMAIN>dnscmd /Info Info query failed status = 1722 (0x000006ba) Command failed: RPC_S_SERVER_UNAVAILABLE 1722 (000006ba) DCDIAG /TEST:DNS /V /E produces the following errors: Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1753 (Type: Win32 - Description: There are no more endpoints available from the endpoint mapper.)] Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1722 (Type: Win32 - Description: The RPC server is unavailable.)] The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. A DNS query for _ldap._tcp.dc._msdcs. returns the correct results. All domain and ADS related activities are working except that I can't manage my DNS via MMC or dnscmd. Any thoughts or solutions would be greatly appreciated. EDIT: Adding Registry export per request: Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc Class Name: <NO CLASS> Last Write Time: 10/18/2012 - 2:29 PM Value 0 Name: DCOM Protocols Type: REG_MULTI_SZ Data: ncacn_ip_tcp Value 1 Name: UuidSequenceNumber Type: REG_DWORD Data: 0xb19bd0f Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: ncacn_np Type: REG_SZ Data: rpcrt4.dll Value 1 Name: ncacn_ip_tcp Type: REG_SZ Data: rpcrt4.dll Value 2 Name: ncadg_ip_udp Type: REG_SZ Data: rpcrt4.dll Value 3 Name: ncacn_http Type: REG_SZ Data: rpcrt4.dll Value 4 Name: ncacn_at_dsp Type: REG_SZ Data: rpcrt4.dll Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: DefaultSyntax Type: REG_SZ Data: 3 Value 1 Name: Endpoint Type: REG_SZ Data: \pipe\locator Value 2 Name: NetworkAddress Type: REG_SZ Data: \\. Value 3 Name: Protocol Type: REG_SZ Data: ncacn_np Value 4 Name: ServerNetworkAddress Type: REG_SZ Data: \\. Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NetBios Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\RpcProxy Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: Enabled Type: REG_DWORD Data: 0x1 Value 1 Name: ValidPorts Type: REG_SZ Data: pdc:100-5000 Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\SecurityService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: 9 Type: REG_SZ Data: secur32.dll Value 1 Name: 10 Type: REG_SZ Data: secur32.dll Value 2 Name: 14 Type: REG_SZ Data: schannel.dll Value 3 Name: 16 Type: REG_SZ Data: secur32.dll Value 4 Name: 1 Type: REG_SZ Data: secur32.dll Value 5 Name: 18 Type: REG_SZ Data: secur32.dll Value 6 Name: 68 Type: REG_SZ Data: netlogon.dll

    Read the article

< Previous Page | 514 515 516 517 518 519 520 521 522 523 524 525  | Next Page >