Search Results

Search found 87946 results on 3518 pages for 'code plex'.

Page 522/3518 | < Previous Page | 518 519 520 521 522 523 524 525 526 527 528 529  | Next Page >

  • Subterranean IL: Exception handler semantics

    - by Simon Cooper
    In my blog posts on fault and filter exception handlers, I said that the same behaviour could be replicated using normal catch blocks. Well, that isn't entirely true... Changing the handler semantics Consider the following: .try { .try { .try { newobj instance void [mscorlib]System.Exception::.ctor() // IL for: // e.Data.Add("DictKey", true) throw } fault { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } } filter { ldstr "2a: Filter logic" call void [mscorlib]System.Console::WriteLine(string) // IL for: // (bool)((Exception)e).Data["DictKey"] endfilter }{ ldstr "2b: Filter handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } } catch object { ldstr "3: Catch handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } Return: // rest of method If the filter handler is engaged (true is inserted into the exception dictionary) then the filter handler gets engaged, and the following gets printed to the console: 2a: Filter logic 1: Fault handler 2b: Filter handler and if the filter handler isn't engaged, then the following is printed: 2a:Filter logic 1: Fault handler 3: Catch handler Filter handler execution The filter handler is executed first. Hmm, ok. Well, what happens if we replaced the fault block with the C# equivalent (with the exception dictionary value set to false)? .try { // throw exception } catch object { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) rethrow } we get this: 1: Fault handler 2a: Filter logic 3: Catch handler The fault handler is executed first, instead of the filter block. Eh? This change in behaviour is due to the way the CLR searches for exception handlers. When an exception is thrown, the CLR stops execution of the thread, and searches up the stack for an exception handler that can handle the exception and stop it propagating further - catch or filter handlers. It checks the type clause of catch clauses, and executes the code in filter blocks to see if the filter can handle the exception. When the CLR finds a valid handler, it saves the handler's location, then goes back to where the exception was thrown and executes fault and finally blocks between there and the handler location, discarding stack frames in the process, until it reaches the handler. So? By replacing a fault with a catch, we have changed the semantics of when the filter code is executed; by using a rethrow instruction, we've split up the exception handler search into two - one search to find the first catch, then a second when the rethrow instruction is encountered. This is only really obvious when mixing C# exception handlers with fault or filter handlers, so this doesn't affect code written only in C#. However it could cause some subtle and hard-to-debug effects with object initialization and ordering when using and calling code written in a language that can compile fault and filter handlers.

    Read the article

  • How do you exclude yourself from Google Analytics on your website using cookies?

    - by Keoki Zee
    I'm trying to set up an exclusion filter with a browser cookie, so that my own visits to my don't show up in my Google Analytics. I tried 3 different methods and none of them have worked so far. I would like help understanding what I am doing wrong and how I can fix this. Method 1 First, I tried following Google's instructions, http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55481, for excluding traffic by Cookie Content: Create a new page on your domain, containing the following code: <body onLoad="javascript:pageTracker._setVar('test_value');"> Method 2 Next, when that didn't work, I googled around and found this Google thread, http://www.google.com/support/forum/p/Google%20Analytics/thread?tid=4741f1499823fcd5&hl=en, where the most popular answer says to use a slightly different code: SHS Analytics wrote: <body onLoad="javascript:_gaq.push(['_setVar','test_value']);"> Thank you! This has now set a __utmv cookie containing "test_value", whereas the original: pageTracker._setVar('test_value') (which Google is still recommending) did not manage to do that for me (in Mac Safari 5 and Firefox 3.6.8). So I tried this code, but it didn't work for me. Method 3 Finally, I searched StackOverflow and came across this thread, http://stackoverflow.com/questions/3495270/exclude-my-traffic-from-google-analytics-using-cookie-with-subdomain, which suggests that the following code might work: <script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setVar', 'exclude_me']); _gaq.push(['_setAccount', 'UA-xxxxxxxx-x']); _gaq.push(['_trackPageview']); // etc... </script> This script appeared in the head element in the example, instead of in the onload event of the body like in the previous 2 examples. So I tried this too, but still had no luck with trying to exclude myself from Google Analytics. Re-iterate question So, I tried all 3 methods above with no success. Am I doing something wrong? How can I exclude myself from my Google Analytics using an exclusion cookie for my browser?

    Read the article

  • Look ma, no plugin!

    The new crop of HTML5 web browsers are capable of some pretty amazing things, and several of our engineers decided to take some 20% time to see how...

    Read the article

  • Asp.net Menu

    Hi,Just to help others. Link http://blog.ysatech.com/post/2009/12/14/ASP-NET-Horizontal-Menu-Control.aspx guides working of asp.net menus(Horizantal,vertical).You can also download the code.Thanks for keeping this code. Its helped me alot....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Intercept method calls in Groovy for automatic type conversion

    - by kerry
    One of the cooler things you can do with groovy is automatic type conversion.  If you want to convert an object to another type, many times all you have to do is invoke the ‘as’ keyword: def letters = 'abcdefghijklmnopqrstuvwxyz' as List But, what if you are wanting to do something a little fancier, like converting a String to a Date? def christmas = '12-25-2010' as Date ERROR org.codehaus.groovy.runtime.typehandling.GroovyCastException: Cannot cast object '12-25-2010' with class java.lang.String' to class 'java.util.Date' No bueno! I want to be able to do custom type conversions so that my application can do a simple String to Date conversion. Enter the metaMethod. You can intercept method calls in Groovy using the following method: def intercept(name, params, closure) { def original = from.metaClass.getMetaMethod(name, params) from.metaClass[name] = { Class clazz -> closure() original.doMethodInvoke(delegate, clazz) } } Using this method, and a little syntactic sugar, we create the following ‘Convert’ class: // Convert.from( String ).to( Date ).using { } class Convert { private from private to private Convert(clazz) { from = clazz } static def from(clazz) { new Convert(clazz) } def to(clazz) { to = clazz return this } def using(closure) { def originalAsType = from.metaClass.getMetaMethod('asType', [] as Class[]) from.metaClass.asType = { Class clazz -> if( clazz == to ) { closure.setProperty('value', delegate) closure(delegate) } else { originalAsType.doMethodInvoke(delegate, clazz) } } } } Now, we can make the following statement to add the automatic date conversion: Convert.from( String ).to( Date ).using { new java.text.SimpleDateFormat('MM-dd-yyyy').parse(value) } def christmas = '12-25-2010' as Date Groovy baby!

    Read the article

  • Twazzup and App Engine

    Twazzup and App Engine An interview with the developers behind twazzup.com on how App Engine helps them run their application. From: GoogleDevelopers Views: 1298 7 ratings Time: 08:37 More in Science & Technology

    Read the article

  • Patterns for Handling Changing Property Sets in C++

    - by Bhargav Bhat
    I have a bunch "Property Sets" (which are simple structs containing POD members). I'd like to modify these property sets (eg: add a new member) at run time so that the definition of the property sets can be externalized and the code itself can be re-used with multiple versions/types of property sets with minimal/no changes. For example, a property set could look like this: struct PropSetA { bool activeFlag; int processingCount; /* snip few other such fields*/ }; But instead of setting its definition in stone at compile time, I'd like to create it dynamically at run time. Something like: class PropSet propSetA; propSetA("activeFlag",true); //overloading the function call operator propSetA("processingCount",0); And the code dependent on the property sets (possibly in some other library) will use the data like so: bool actvFlag = propSet["activeFlag"]; if(actvFlag == true) { //Do Stuff } The current implementation behind all of this is as follows: class PropValue { public: // Variant like class for holding multiple data-types // overloaded Conversion operator. Eg: operator bool() { return (baseType == BOOLEAN) ? this->ToBoolean() : false; } // And a method to create PropValues various base datatypes static FromBool(bool baseValue); }; class PropSet { public: // overloaded[] operator for adding properties void operator()(std::string propName, bool propVal) { propMap.insert(std::make_pair(propName, PropVal::FromBool(propVal))); } protected: // the property map std::map<std::string, PropValue> propMap; }; This problem at hand is similar to this question on SO and the current approach (described above) is based on this answer. But as noted over at SO this is more of a hack than a proper solution. The fundamental issues that I have with this approach are as follows: Extending this for supporting new types will require significant code change. At the bare minimum overloaded operators need to be extended to support the new type. Supporting complex properties (eg: struct containing struct) is tricky. Supporting a reference mechanism (needed for an optimization of not duplicating identical property sets) is tricky. This also applies to supporting pointers and multi-dimensional arrays in general. Are there any known patterns for dealing with this scenario? Essentially, I'm looking for the equivalent of the visitor pattern, but for extending class properties rather than methods. Edit: Modified problem statement for clarity and added some more code from current implementation.

    Read the article

  • Enumerable Interleave Extension Method

    - by João Angelo
    A recent stackoverflow question, which I didn’t bookmark and now I’m unable to find, inspired me to implement an extension method for Enumerable that allows to insert a constant element between each pair of elements in a sequence. Kind of what String.Join does for strings, but maintaining an enumerable as the return value. Having done the single element part I got a bit carried away and ended up expanding it adding overloads to support interleaving elements of another sequence and support for a predicate to control when interleaving takes place. I have to confess that I did this for fun and now I can’t think of any real usage scenario, nonetheless, it may prove useful for someone. First a simple example: var target = new string[] { "(", ")", "(", ")" }; var result = target.Interleave(".", (f, s) => f == "("); // Prints: (.)(.) Console.WriteLine(String.Join(string.Empty, result)); And now the untested but documented implementation: using System; using System.Collections; using System.Collections.Generic; using System.Linq; public static class EnumerableExtensions { /// <summary> /// Iterates infinitely over a constant element. /// </summary> /// <typeparam name="T"> /// The type of element in the sequence. /// </typeparam> private class InfiniteSequence<T> : IEnumerable<T>, IEnumerator<T> { public InfiniteSequence(T element) { this.Element = element; } public T Element { get; private set; } public IEnumerator<T> GetEnumerator() { return this; } IEnumerator IEnumerable.GetEnumerator() { return this; } T IEnumerator<T>.Current { get { return this.Element; } } void IDisposable.Dispose() { } object IEnumerator.Current { get { return this.Element; } } bool IEnumerator.MoveNext() { return true; } void IEnumerator.Reset() { } } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); return InterleaveInternal(target, new InfiniteSequence<T>(element), (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); return InterleaveInternal(target, elements, (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, new InfiniteSequence<T>(element), predicate); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, elements, predicate); } private static IEnumerable<T> InterleaveInternal<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { var targetEnumerator = target.GetEnumerator(); if (targetEnumerator.MoveNext()) { var elementsEnumerator = elements.GetEnumerator(); while (true) { T first = targetEnumerator.Current; yield return first; if (!targetEnumerator.MoveNext()) yield break; T second = targetEnumerator.Current; bool interleave = true && predicate(first, second) && elementsEnumerator.MoveNext(); if (interleave) yield return elementsEnumerator.Current; } } } }

    Read the article

< Previous Page | 518 519 520 521 522 523 524 525 526 527 528 529  | Next Page >