Search Results

Search found 44734 results on 1790 pages for 'model based design'.

Page 542/1790 | < Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >

  • Advanced Continuous Delivery to Azure from TFS, Part 1: Good Enough Is Not Great

    - by jasont
    The folks over on the TFS / Visual Studio team have been working hard at releasing a steady stream of new features for their new hosted Team Foundation Service in the cloud. One of the most significant features released was simple continuous delivery of your solution into your Azure deployments. The original announcement from Brian Harry can be found here. Team Foundation Service is a great platform for .Net developers who are used to working with TFS on-premises. I’ve been using it since it became available at the //BUILD conference in 2011, and when I recently came to work at Stackify, it was one of the first changes I made. Managing work items is much easier than the tool we were using previously, although there are some limitations (more on that in another blog post). However, when continuous deployment was made available, it blew my mind. It was the killer feature I didn’t know I needed. Not to say that I wasn’t previously an advocate for continuous delivery; just that it was always a pain to set up and configure. Having it hosted - and a one-click setup – well, that’s just the best thing since sliced bread. It made perfect sense: my source code is in the cloud, and my deployment is in the cloud. Great! I can queue up a build from my iPad or phone and just let it go! I quickly tore through the quick setup and saw it all work… sort of. This will be the first in a three part series on how to take the building block of Team Foundation Service continuous delivery and build a CD model that will actually work for any team deploying something more advanced than a “Hello World” example. Part 1: Good Enough Is Not Great Part 2: A Model That Works: Branching and Multiple Deployment Environments Part 3: Other Considerations: SQL, Custom Tasks, Etc Good Enough Is Not Great There. I’ve said it. I certainly hope no one on the TFS team is offended, but it’s the truth. Let’s take a look under the hood and understand how it works, and then why it’s not enough to handle real world CD as-is. How it works. (note that I’ve skipped a couple of steps; I already have my accounts set up and something deployed to Azure) The first step is to establish some oAuth magic between your Azure management portal and your TFS Instance. You do this via the management portal. Once it’s done, you have a new build process template in your TFS instance. (Image lifted from the documentation) From here, you’ll get the usual prompts for security, allowing access, etc. But you’ll also get to pick which Solution in your source control to build. Here’s what the bulk of the build definition looks like. All I’ve had to do is add in the solution to build (notice that mine is from a specific branch – Release – more on that later) and I’ve changed the configuration. I trigger the build, and voila! I have an Azure deployment a few minutes later. The beauty of this is that it’s all in the cloud and I’m not waiting for my machine to compile and upload the package. (I also had to enable the build definition first – by default it is created in disabled state, probably a good thing since it will trigger on every.single.checkin by default.) I get to see a history of deployments from the Azure portal, and can link into TFS to see the associated changesets and work items. You’ll notice also that this build definition also automatically put my code in the Staging slot of my Azure deployment – more on this soon. For now, I can VIP swap and be in production. (P.S. I hate VIP swap and “production” and “staging” in Azure. More on that later too.) That’s it. That’s the default out-of-box experience. Easy, right? But it’s full of room for improvement, so let’s get into that….   The Problems Nothing is perfect (except my code – it’s always perfect), and neither is Continuous Deployment without a bit of work to help it fit your dev team’s process. So what are the issues? Issue 1: Staging vs QA vs Prod vs whatever other environments your team may have. This, for me, is the big hairy one. Remember how this automatically deployed to staging rather than prod for us? There are a couple of issues with this model: If I want to deliver to prod, it requires intervention on my part after deployment (via a VIP swap). If I truly want to promote between environments (i.e. Nightly Build –> Stable QA –> Production) I likely have configuration changes between each environment such as database connection strings and this process (and the VIP swap) doesn’t account for this. Yet. Issue 2: Branching and delivering on every check-in. As I mentioned above, I have set this up to target a specific branch – Release – of my code. For the purposes of this example, I have adopted the “basic” branching strategy as defined by the ALM Rangers. This basically establishes a “Main” trunk where you branch off Dev and Release branches. Granted, the Release branch is usually the only thing you will deploy to production, but you certainly don’t want to roll to production automatically when you merge to the Release branch and check-in (unless you like the thrill of it, and in that case, I like your style, cowboy….). Rather, you have nightly build and QA environments, or if you’ve adopted the feature-branch model you have environments for those. Those are the environments you want to continuously deploy to. But that takes us back to Issue 1: we currently have a 1:1 solution to Azure deployment target. Issue 3: SQL and other custom tasks. Let’s be honest and address the elephant in the room: I need to get some sleep because I see an elephant in the room. But seriously, I can’t think of an application I have touched in the last 10 years that doesn’t need to consider SQL changes when deploying code and upgrading an environment. Microsoft seems perfectly content to ignore this elephant for now: yes, they’ve added Data Tier Applications. But let’s be honest with ourselves again: no one really uses it, and it’s not suitable for anything more complex than a Hello World sample project database. Why? Because it doesn’t fit well into a great source control story. Developers make stored procedure and table changes all day long while coding complex applications, and if someone forgets to go update the DACPAC before the automated deployment, you have a broken build until it’s completed. Developers – not just DBAs – also like to work with SQL in SQL tools, not in Visual Studio. I’m really picking on SQL because that’s generally the biggest concern that I hear. But we need to account for any custom tasks as well in the build process.   The Solutions… ? We’ve taken a look at how this all works, and addressed the shortcomings. In my next post (which I promise will be very, very soon), I will detail how I’ve overcome these shortcomings and used this foundation to create a mature, flexible model for deploying my app – any version, any time, to any environment.

    Read the article

  • Does GNC mean the death of Internet Explorer?

    - by Monika Michael
    From the wikipedia - Google Native Client (NaCl) is a sandboxing technology for running a subset of Intel x86 or ARM native code using software-based fault isolation. It is proposed for safely running native code from a web browser, allowing web-based applications to run at near-native speeds. (Emphasis mine) (Source) Compiled C++ code running in a browser? Are other companies working on a similar offering? What would it mean for the browser landscape?

    Read the article

  • Building Private IaaS with SPARC and Oracle Solaris

    - by ferhat
    A superior enterprise cloud infrastructure with high performing systems using built-in virtualization! We are happy to announce the expansion of Oracle Optimized Solution for Enterprise Cloud Infrastructure with Oracle's SPARC T-Series servers and Oracle Solaris.  Designed, tuned, tested and fully documented, the Oracle Optimized Solution for Enterprise Cloud Infrastructure now offers customers looking to upgrade, consolidate and virtualize their existing SPARC-based infrastructure a proven foundation for private cloud-based services which can lower TCO by up to 81 percent(1). Faster time to service, reduce deployment time from weeks to days, and can increase system utilization to 80 percent. The Oracle Optimized Solution for Enterprise Cloud Infrastructure can also be deployed at up to 50 percent lower cost over five years than comparable alternatives(2). The expanded solution announced today combines Oracle’s latest SPARC T-Series servers; Oracle Solaris 11, the first cloud OS; Oracle VM Server for SPARC, Oracle’s Sun ZFS Storage Appliance, and, Oracle Enterprise Manager Ops Center 12c, which manages all Oracle system technologies, streamlining cloud infrastructure management. Thank you to all who stopped by Oracle booth at the CloudExpo Conference in New York. We were also at Cloud Boot Camp: Building Private IaaS with Oracle Solaris and SPARC, discussing how this solution can maximize return on investment and help organizations manage costs for their existing infrastructures or for new enterprise cloud infrastructure design. Designed, tuned, and tested, Oracle Optimized Solution for Enterprise Cloud Infrastructure is a complete cloud infrastructure or any virtualized environment  using the proven documented best practices for deployment and optimization. The solution addresses each layer of the infrastructure stack using Oracle's powerful SPARC T-Series as well as x86 servers with storage, network, virtualization, and management configurations to provide a robust, flexible, and balanced foundation for your enterprise applications and databases.  For more information visit Oracle Optimized Solution for Enterprise Cloud Infrastructure. Solution Brief: Accelerating Enterprise Cloud Infrastructure Deployments White Paper: Reduce Complexity and Accelerate Enterprise Cloud Infrastructure Deployments Technical White Paper: Enterprise Cloud Infrastructure on SPARC (1) Comparison based on current SPARC server customers consolidating existing installations including Sun Fire E4900, Sun Fire V440 and SPARC Enterprise T5240 servers to latest generation SPARC T4 servers. Actual deployments and configurations will vary. (2) Comparison based on solution with SPARC T4-2 servers with Oracle Solaris and Oracle VM Server for SPARC versus HP ProLiant DL380 G7 with VMware and Red Hat Enterprise Linux and IBM Power 720 Express - Power 730 Express with IBM AIX Enterprise Edition and Power VM.

    Read the article

  • Security Controls on data for P6 Analytics

    - by Jeffrey McDaniel
    The Star database and P6 Analytics calculates security based on P6 security using OBS, global, project, cost, and resource security considerations. If there is some concern that users are not seeing expected data in P6 Analytics here are some areas to review: 1. Determining if a user has cost security is based on the Project level security privileges - either View Project Costs/Financials or Edit EPS Financials. If expecting to see costs make sure one of these permissions are allocated.  2. User must have OBS access on a Project. Not WBS level. WBS level security is not supported. Make sure user has OBS on project level.  3. Resource Access is determined by what is granted in P6. Verify the resource access granted to this user in P6. Resource security is hierarchical. Project access will override Resource access based on the way security policies are applied. 4. Module access must be given to a P6 user for that user to come over into Star/P6 Analytics. For earlier version of RDB there was a report_user_flag on the Users table. This flag field is no longer used after P6 Reporting Database 2.1. 5. For P6 Reporting Database versions 2.2 and higher, the Extended Schema Security service must be run to calculate all security. Any changes to privileges or security this service must be rerun before any ETL. 6. In P6 Analytics 2.0 or higher, a Weblogic user must exist that matches the P6 username. For example user Tim must exist in P6 and Weblogic users for Tim to be able to log into P6 Analytics and access data based on  P6 security.  In earlier versions the username needed to exist in RPD. 7. Cache in OBI is another area that can sometimes make it seem a user isn't seeing the data they expect. While cache can be beneficial for performance in OBI. If the data is outdated it can retrieve older, stale data. Clearing or turning off cache when rerunning a query can determine if the returned result set was from cache or from the database.

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Should I be an algorithm developer, or java web frameworks type developer?

    - by Derek
    So - as I see it, there are really two kinds of developers. Those that do frameworks, web services, pretty-making front ends, etc etc. Then there are developers that write the algorithms that solve the problem. That is, unless the problem is "display this raw data in some meaningful way." In that case, the framework/web developer guy might be doing both jobs. So my basic problem is this. I have been an algorithms kind of software developer for a few years now. I double majored in Math and Computer science, and I have a master's in systems engineering. I have never done any web-dev work, with the exception of a couple minor jobs, and some hobby level stuff. I have been job interviewing lately, and this is what happens: Job is listed as "programmer- 5 years of experience with the following: C/C++, Java,Perl, Ruby, ant, blah blah blah" Recruiter calls me, says they want me to come in for interview In the interview, find out they have some webservices development, blah blah blah When asked in the interview, talk about my experience doing algorithms, optimization, blah blah..but very willing to learn new languages, frameworks, etc Get a call back saying "we didn't think you were a fit for the job you interviewed wtih, but our algorithm team got wind of you and wants to bring you on" This has happened to me a couple times now - see a vague-ish job description looking for a "programmer" Go in, find out they are doing some sort of web-based tool, maybe with some hardcore algorithms running in the background. interview with people for the web-based tool, but get an offer from the algorithms people. So the question is - which job is the better job? I basically just want to get a wide berth of experience at this level of my career, but are algorithm developers so much in demand? Even more so than all these supposed hot in demand web developer guys? Will I be ok in the long run if I go into the niche of math based algorithm development, and just little to no, or hobby level web-dev experience? I basically just don't want to pigeon hole myself this early. My salary is already starting to get pretty high - and I can see a company later on saying "we really need a web developer, but we'll hire this 50k/year college guy, instead of this 100k/year experience algorithm guy" Cliffs notes: I have been doing algorithm development. I consider myself to be a "good programmer." I would have no problem picking up web technologies and those sorts of frameworks. During job interviews, I keep getting "we think you've got a good skillset - talk to our algorithm team" instead of wanting me to learn new skills on the job to do their web services or whhatever other new technology they are doing. Edit: Whenever I am talking about algorithm development here - I am talking about the code that produces the answer. Typically I think of more math-based algorithms: solving a financial problem, solving a finite element method, image processing, etc

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • A Community Cure for a String Splitting Headache

    - by Tony Davis
    A heartwarming tale of dogged perseverance and Community collaboration to solve some SQL Server string-related headaches. Michael J Swart posted a blog this week that had me smiling in recognition and agreement, describing how an inquisitive Developer or DBA deals with a problem. It's a three-step process, starting with discomfort and anxiety; a feeling that one doesn't know as much about one's chosen specialized subject as previously thought. It progresses through a phase of intense research and learning until finally one achieves breakthrough, blessed relief and renewed optimism. In this case, the discomfort was provoked by the mystery of massively high CPU when searching Unicode strings in SQL Server. Michael explored the problem via Stack Overflow, Google and Twitter #sqlhelp, finally leading to resolution and a blog post that shared what he learned. Perfect; except that sometimes you have to be prepared to share what you've learned so far, while still mired in the phase of nagging discomfort. A good recent example of this recently can be found on our own blogs. Despite being a loud advocate of the lightning fast T-SQL-based string splitting techniques, honed to near perfection over many years by Jeff Moden and others, Phil Factor retained a dogged conviction that, in theory, shredding element-based XML using XQuery ought to be even more efficient for splitting a string to create a table. After some careful testing, he found instead that the XML way performed and scaled miserably by comparison. Somewhat subdued, and with a nagging feeling that perhaps he was still missing "something", he posted his findings. What happened next was a joy to behold; the community jumped in to suggest subtle changes in approach, using an attribute-based rather than element-based XML list, and tweaking the XQuery shredding. The result was performance and scalability that surpassed all other techniques. I asked Phil how quickly he would have arrived at the real breakthrough on his own. His candid answer was "never". Both are great examples of the power of Community learning and the latter in particular the importance of being brave enough to parade one's ignorance. Perhaps Jeff Moden will accept the string-splitting gauntlet one more time. To quote the great man: you've just got to love this community! If you've an interesting tale to tell about being helped to a significant breakthrough for a problem by the community, I'd love to hear about it. Cheers, Tony.

    Read the article

  • Friday Fun: The Milk Quest

    - by Asian Angel
    Glorious Friday is here once again, so why not take a break and have a quick bit of fun? In this week’s game your mission is to help a hungry kitten successfully travel through strange and dangerous lands to reach the milk treasure shown on his map.How To Encrypt Your Cloud-Based Drive with BoxcryptorHTG Explains: Photography with Film-Based CamerasHow to Clean Your Dirty Smartphone (Without Breaking Something)

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • Download NServiceBus Framework

    - by Editor
    NServiceBus is a highly extensible, publish/subscribe, workflow integrated communications framework for .NET. NServiceBus is a lightweight higher-level API built on top of MSMQ and based on one-way messaging. For now the Technological Implementation is based on MSMQ, though other implementations are considered. Download NServiceBus.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Speaking at SQL Saturday 61 in Washington DC

    - by AllenMWhite
    The organizers of SQL Saturday #61 in DC (actually Reston, VA) created an Advanced DBA/Dev track for their event, which I think is cool. Both of the presentations I'll be doing there on Saturday are in that track. (In fact, they're the first two sessions of the day.) The first, Automate Policy-Based Management using PowerShell will walk through the basics of Policy-Based Management, and then show you how to build PowerShell scripts to create and evaluate your policies. The second, Gather SQL Server...(read more)

    Read the article

  • DRY and SRP

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/06/11/dry-and-srp.aspxKent Beck’s XP Simplicity Rules (aka Four Rules of Simple Design) are a prioritized list of rules that when applied to your code generally yield a great design.  As you’ll see from the above link the list has slightly evolved over time.  I find today they are usually listed as: All Tests Pass Don’t Repeat Yourself (DRY) Express Intent Minimalistic These are prioritized.  If your code doesn’t work (rule 1) then everything else is forfeit.  Go back to rule one and get the code working before worrying about anything else. Over the years the community have debated whether the priority of rules 2 and 3 should be reversed.  Some say a little duplication in the code is OK as long as it helps express intent.  I’ve debated it myself.  This recent post got me thinking about this again, hence this post.   I don’t think it is fair to compare “Expressing Intent” against “DRY”.  This is a comparison of apples to oranges.  “Expressing Intent” is a principal of code quality.  “Repeating Yourself” is a code smell.  A code smell is merely an indicator that there might be something wrong with the code.  It takes further investigation to determine if a violation of an underlying principal of code quality has actually occurred. For example “using nouns for method names”, “using verbs for property names”, or “using Booleans for parameters” are all code smells that indicate that code probably isn’t doing a good job at expressing intent.  They are usually very good indicators.  But what principle is the code smell of Duplication pointing to and how good of an indicator is it? Duplication in the code base is bad for a couple reasons.  If you need to make a change and that needs to be made in a number of locations it is difficult to know if you have caught all of them.  This can lead to bugs if/when one of those locations is overlooked.  By refactoring the code to remove all duplication there will be left with only one place to change, thereby eliminating this problem. With most projects the code becomes the single source of truth for a project.  If a production code base is inconsistent with a five year old requirements or design document the production code that people are currently living with is usually declared as the current reality (or truth).  Requirement or design documents at this age in a project life cycle are usually of little value. Although comparing production code to external documentation is usually straight forward, duplication within the code base muddles this declaration of truth.  When code is duplicated small discrepancies will creep in between the two copies over time.  The question then becomes which copy is correct?  As different factions debate how the software should work, trust in the software and the team behind it erodes. The code smell of Duplication points to a violation of the “Single Source of Truth” principle.  Let me define that as: A stakeholder’s requirement for a software change should never cause more than one class to change. Violation of the Single Source of Truth principle will always result in duplication in the code.  However, the inverse is not always true.  Duplication in the code does not necessarily indicate that there is a violation of the Single Source of Truth principle. To illustrate this, let’s look at a retail system where the system will (1) send a transaction to a bank and (2) print a receipt for the customer.  Although these are two separate features of the system, they are closely related.  The reason for printing the receipt is usually to provide an audit trail back to the bank transaction.  Both features use the same data:  amount charged, account number, transaction date, customer name, retail store name, and etcetera.  Because both features use much of the same data, there is likely to be a lot of duplication between them.  This duplication can be removed by making both features use the same data access layer. Then start coming the divergent requirements.  The receipt stakeholder wants a change so that the account number has the last few digits masked out to protect the customer’s privacy.  That can be solve with a small IF statement whilst still eliminating all duplication in the system.  Then the bank wants to take a picture of the customer as well as capture their signature and/or PIN number for enhanced security.  Then the receipt owner wants to pull data from a completely different system to report the customer’s loyalty program point total. After a while you realize that the two stakeholders have somewhat similar, but ultimately different responsibilities.  They have their own reasons for pulling the data access layer in different directions.  Then it dawns on you, the Single Responsibility Principle: There should never be more than one reason for a class to change. In this example we have two stakeholders giving two separate reasons for the data access class to change.  It is clear violation of the Single Responsibility Principle.  That’s a problem because it can often lead the project owner pitting the two stakeholders against each other in a vein attempt to get them to work out a mutual single source of truth.  But that doesn’t exist.  There are two completely valid truths that the developers need to support.  How is this to be supported and honour the Single Responsibility Principle?  The solution is to duplicate the data access layer and let each stakeholder control their own copy. The Single Source of Truth and Single Responsibility Principles are very closely related.  SST tells you when to remove duplication; SRP tells you when to introduce it.  They may seem to be fighting each other, but really they are not.  The key is to clearly identify the different responsibilities (or sources of truth) over a system.  Sometimes there is a single person with that responsibility, other times there are many.  This can be especially difficult if the same person has dual responsibilities.  They might not even realize they are wearing multiple hats. In my opinion Single Source of Truth should be listed as the second rule of simple design with Express Intent at number three.  Investigation of the DRY code smell should yield to the proper application SST, without violating SRP.  When necessary leave duplication in the system and let the class names express the different people that are responsible for controlling them.  Knowing all the people with responsibilities over a system is the higher priority because you’ll need to know this before you can express it.  Although it may be a code smell when there is duplication in the code, it does not necessarily mean that the coder has chosen to be expressive over DRY or that the code is bad.

    Read the article

  • Oracle Support Customers take note My Oracle Support Flash is set to Retire

    - by user12244613
    Take Action – My Oracle Support Flash User Interface Set to Retire On July 13, 2012, Oracle plans to upgrade the HTML interface with additional functionality that will allow those users still remaining on the Flash-based interface to switch over to the HTML version. Although the Flash-based user interface will remain available for a brief period following the upgrade, we encourage you to begin using the new HTML version sooner. Find out when you should make the switch! Read complete communication to Flash users

    Read the article

  • 3D Ball Physics Theory: collision response on ground and against walls?

    - by David
    I'm really struggling to get a strong grasp on how I should be handling collision response in a game engine I'm building around a 3D ball physics concept. Think Monkey Ball as an example of the type of gameplay. I am currently using sphere-to-sphere broad phase, then AABB to OBB testing (the final test I am using right now is one that checks if one of the 8 OBB points crosses the planes of the object it is testing against). This seems to work pretty well, and I am getting back: Plane that object is colliding against (with a point on the plane, the plane's normal, and the exact point of intersection. I've tried what feels like dozens of different high-level strategies for handling these collisions, without any real success. I think my biggest problem is understanding how to handle collisions against walls in the x-y axes (left/right, front/back), which I want to have elasticity, and the ground (z-axis) where I want an elastic reaction if the ball drops down, but then for it to eventually normalize and be kept "on the ground" (not go into the ground, but also not continue bouncing). Without kluging something together, I'm positive there is a good way to handle this, my theories just aren't getting me all the way there. For physics modeling and movement, I am trying to use a Euler based setup with each object maintaining a position (and destination position prior to collision detection), a velocity (which is added onto the position to determine the destination position), and an acceleration (which I use to store any player input being put on the ball, as well as gravity in the z coord). Starting from when I detect a collision, what is a good way to approach the response to get the expected behavior in all cases? Thanks in advance to anyone taking the time to assist... I am grateful for any pointers, and happy to post any additional info or code if it is useful. UPDATE Based on Steve H's and eBusiness' responses below, I have adapted my collision response to what makes a lot more sense now. It was close to right before, but I didn't have all the right pieces together at the right time! I have one problem left to solve, and that is what is causing the floor collision to hit every frame. Here's the collision response code I have now for the ball, then I'll describe the last bit I'm still struggling to understand. // if we are moving in the direction of the plane (against the normal)... if (m_velocity.dot(intersection.plane.normal) <= 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Clamp z-velocity to zero if we are within a certain threshold // -- NOTE: this was an experimental idea I had to solve the "jitter" bug I'll describe below float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position + intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); The above snippet is run after a collision is detected on the ball (collider) with a collidee (floor in this case). With a dampening force of 1.8f, the ball's reflected "upward" velocity will eventually be overcome by gravity, so the ball will essentially be stuck on the floor. THIS is the problem I have now... the collision code is running every frame (since the ball's z-velocity is constantly pushing it a collision with the floor below it). The ball is not technically stuck, I can move it around still, but the movement is really goofy because the velocity and position keep getting affected adversely by the above snippet. I was experimenting with an idea to clamp the z-velocity to zero if it was "close to zero", but this didn't do what I think... probably because the very next frame the ball gets a new gravity acceleration applied to its velocity regardless (which I think is good, right?). Collisions with walls are as they used to be and work very well. It's just this last bit of "stickiness" to deal with. The camera is constantly jittering up and down by extremely small fractions too when the ball is "at rest". I'll keep playing with it... I like puzzles like this, especially when I think I'm close. Any final ideas on what I could be doing wrong here? UPDATE 2 Good news - I discovered I should be subtracting the intersection.diff from the m_position (position prior to collision). The intersection.diff is my calculation of the difference in the vector of position to destPosition from the intersection point to the position. In this case, adding it was causing my ball to always go "up" just a little bit, causing the jitter. By subtracting it, and moving that clamper for the velocity.z when close to zero to being above the dot product (and changing the test from <= 0 to < 0), I now have the following: // Clamp z-velocity to zero if we are within a certain threshold float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // if we are moving in the direction of the plane (against the normal)... float dotprod = m_velocity.dot(intersection.plane.normal); if (dotprod < 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration? // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position - intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); UpdateWorldMatrix(m_destWorldMatrix, m_destOBB, m_destPosition, false); This is MUCH better. No jitter, and the ball now "rests" at the floor, while still bouncing off the floor and walls. The ONLY thing left is that the ball is now virtually "stuck". He can move but at a much slower rate, likely because the else of my dot product test is only letting the ball move at a rate multiplied against the tRemaining... I think this is a better solution than I had previously, but still somehow not the right idea. BTW, I'm trying to journal my progress through this problem for anyone else with a similar situation - hopefully it will serve as some help, as many similar posts have for me over the years.

    Read the article

  • Generating geometry when using VBO

    - by onedayitwillmake
    Currently I am working on a project in which I generate geometry based on the players movement. A glorified very long trail, composed of quads. I am doing this by storing a STD::Vector, and removing the oldest verticies once enough exist, and then calling glDrawArrays. I am interested in switching to a shader based model, usually examples I see the VBO is generated at start and then that's basically it. What is the best route to go about creating geometry in real time, using shader / VBO approach

    Read the article

  • Getting Started With Tailoring Business Processes

    - by Richard Bingham
    In this article, and for the sake of simplicity, we will use the term “On-Premise” to mean a deployment where you have design-time development access to the instance, including administration of the technology components, the applications filesystem, and the database. In reality this might be a local development instance that is then supported by a team who can deploy your customizations to the restricted production instance equivalents. Tools Overview Firstly let’s look at the Design-Time tools within JDeveloper for customizing and extending the artifacts of a Business Process. In essence this falls into two buckets; SOA Composite Editor for working with BPEL processes, and the BPM Studio. The SOA Composite Editor As a standard extension to JDeveloper, this graphical design tool should be familiar to anyone previously worked with Oracle SOA Server. With easy-to-use modeling capability, backed-up by full XML source-view (for read-only), it provides everything that is needed to implement the technical design. In simple terms, once deployed to the remote SOA Server the composite components (like Mediator) leverage the Event Delivery Network (EDN) for interaction with the application logic. If you are customizing an existing Fusion Applications BPEL process then be aware that it does support MDS-based customization layers just like Page Composer where different customizations are used based on the run-time context, like for a specific Product or Business Unit. This also makes them safe from patching and upgrades, although only a single active version of the composite is available at run-time. This is defined by a field on the composite record, available in Enterprise Manager. Obviously if you wish to fire different activities and tasks based on the user context then you can should include switches to fork the flows in your custom BPEL process. Figure 1 – A BPEL process in Composite Editor The following describes the simplified steps for making customizations to BPEL processes. This is the most common method of changing the business processes of Fusion Applications, as over 400 BPEL-based composite applications are provided out-of-the-box. Setup your local Fusion Applications JDeveloper environment. The SOA Composite Editor should be installed as part of the Fusion Applications extension. If there are problems you can also find it under the ‘Check for Updates’ help menu option. Since SOA Server is not part of the JDeveloper integrated WebLogic Server, setup a standalone WebLogic environment for deploying and testing. Obviously you might use a Fusion Applications development instance also. Package the existing standard Fusion Applications SOA Composite using Enterprise Manager and export it as a complete SOA Archive (SAR) file, resulting in a local .jar file. You may need to ask your system administrator for this. Import the exported SAR .jar file into JDeveloper using the File menu, under the option ‘SOA Archive into SOA Project’. In JDeveloper set the appropriate customization layer values, and then change from the default role to the Fusion Applications Customization Developer role. Make the customizations and save the application project. Finally redeploy the composite application, either to a direct Application Server connection, or as a fresh SAR (jar) file that can then be re-imported and deployed via Enterprise Manager. The Business Process Management (BPM) Suite In addition to the relatively low-level development environment associated with BPEL process creation, Oracle provides a suite of products that allow business process adjustments to be made without the need for some of the programming skills.  The aim is to abstract much of the technical implementation and to provide a Business Analyst tools for immediately implementing organization changes. Obviously there are some limitations on what they can do, however the BPM Suite functionality increases with each release and for the majority of the cases the tools remains as applicable as its developer-orientated sister. At the current time business processes must be explicitly coded to support just one of these use-cases, either BPEL for developer use or BPM for business analyst use. That said, they both run on the same SOA Server in much the same way. The components bundled in each SOA Composite Application can be verified by inspection through Enterprise Manager. Figure 2 – A BPM Process in JDeveloper BPM Suite. BPM processes are written in a standard notation (BPMN) and the modeling tools are very similar to that of BPEL. The steps to deploy a custom BPM process are also essentially much the same, since the BPM process is bundled into a SOA Composite just like a BPEL process. As such the SOA Composite Editor  actually has support for both artifacts and even allows use of them together, such as a calling a BPM process as a partnerlink from a BPEL process. For more details see the references below. Business Analyst Tooling In addition to using JDeveloper extensions for BPM development, there are run-time tools that Business Analysts can use to make adjustments, so that without high costs of an IT project the system can be tuned to match changes to the business operation. The first tool to consider is the BPM Composer, deployed with the middleware SOA Server and accessible online, and for Fusion Applications it is under the Business Process icon on the homepage of the Application Composer. Figure 3 – Business Process Composer showing a CRM process flow. The key difference between this and using JDeveloper is that the BPM Composer has a Business Catalog prepopulated with features and functions that can be used, mostly through registered WebServices. This means no coding or complex interface development is required, simply drag-drop-configure. The items in the business catalog are seeded by either Oracle (as a BPM Template) or added to by your own custom development. You cannot create or generate catalog content from BPM Composer directly. As per the screenshot you can see the Business Catalog content in the BPM Project browser region. In addition, other online tools for use by Business Analysts include the BPM Worklist application for editing business rules and approval management configuration, plus the SOA Composer which focuses on non-approval business rules and domain value maps. At the current time there are only a handful of BPM processes shipped with Fusion Applications HCM and CRM, including on-boarding workers and processing customer registrations.  This also means a limited number of associated BPM Templates provided out-of-the-box, therefore a limited Business Catalog. That said, BPM-based extension is a powerful capability to leverage and will most likely develop going forwards, especially for use in SaaS deployments where full design-time JDeveloper access is not available. Further Reading For BPEL – Fusion Applications Extensibility Guide – Section 12 For BPM – Fusion Applications Extensibility Guide – Section 7 The product-specific documentation and implementation guides for Fusion Applications Fusion Middleware Developers Guide for SOA Suite Modeling and Implementation Guide for Oracle Business Process Management User’s Guide for Oracle Business Process Composer Oracle University courses on BPM Suite and SOA Development

    Read the article

  • Software for Managing Subscriptions to Website Content?

    - by an00b
    Can you recommend a package that allows me to manage subscriptions to certain content on my website (not necessarily displayable) based on payment levels? Ideally, the software would allow logging in using both site-specific registration and PayPal/Facebook/Twitter/MyOpenId, etc. Preferably, it would also be open source, LAMP-based. One idea that I have in mind is hacking a shopping cart software like Zen-Cart but this may be an overkill if a non-shopping lighter-weight package exists.

    Read the article

  • Translating Your Customizations

    - by Richard Bingham
    This blog post explains the basics of translating the customizations you can make to Fusion Applications products, with the inclusion of information for both composer-based customizations and the generic design-time customizations done via JDeveloper. Introduction Like most Oracle Applications, Fusion Applications installs on-premise with a US-English base language that is, in Release 7, supported by the option to add up to a total of 22 additional language packs (In Oracle Cloud production environments languages are pre-installed already). As such many organizations offer their users the option of working with their local language, and logically that should also apply for any customizations as well. Composer-based UI Customizations Customizations made in Page Composer take into consideration the session LOCALE, as set in the user preferences screen, during all customization work, and stores the customization in the MDS repository accordingly. As such the actual new or changed values used will only apply for the same language under which the customization was made, and text for any other languages requires a separate upload. See the Resource Bundles section below, which incidentally also applies to custom UI changes done in JDeveloper. You may have noticed this when you select the “Select Text Resource” menu option when editing the text on a page. Using this ensures that the resource bundles are used, whereas if you define a static value in Expression Builder it will never be available for translation. Notice in the screenshot below the “What’s New” custom value I have already defined using the ‘Select Text Resource’ feature is internally using the adfBundle groovy function to pull the custom value for my key (RT_S_1) from the ComposerOverrideBundle. Figure 1 – Page Composer showing the override bundle being used. Business Objects Customizing the Business Objects available in the Applications Composer tool for the CRM products, such as adding additional fields, also operates using the session language. Translating these additional values for these fields into other installed languages requires loading additional resource bundles, again as described below. Reports and Analytics Most customizations to Reports and BI Analytics are just essentially reorganizations and visualizations of existing number and text data from the system, and as such will use the appropriate values based on the users session language. Where a translated value or string exists for that session language, it will be used without the need for additional work. Extending through the addition of brand new reports and analytics requires another method of loading the translated strings, as part of what is known as ‘Localizing’ the BI Catalog and Metadata. This time it is via an export/import of XML data through the BI Administrators console, and is described in the OBIEE Admin Guide. Fusion Applications reports based on BI Publisher are already defined in template-per-locale, and in addition provide an extra process for getting the data for translation and reloading. This again uses the standard resource bundle format. Loading a custom report is illustrated in this video from our YouTube channel which shows the screen for both setting the template local and running an export for translation. Fusion Applications Menus Whilst the seeded Navigator and Global Menu values are fully translated when the additional language is installed, if they are customized then the change or new menu item will apply universally, not currently per language. This is set to change in a future release with the new UI Text Editor feature described below. More on Resource Bundles As mentioned above, to provide translations for most of your customizations you need to add values to a resource bundle. This is an industry open standard (OASIS) format XML file with the extension .xliff, and store translated values for the strings used by ADF at run-time. The general process is that these values are exported from the MDS repository, manually edited, and then imported back in again.This needs to be done by an administrator, via either WLST commands or through Enterprise Manager as per the screenshot below. This is detailed out in the Fusion Applications Extensibility Guide. For SaaS environments the Cloud Operations team can assist. Figure 2 – Enterprise Manager’s MDS export used getting resource bundles for manual translation and re-imported on the same screen. All customized strings are stored in an override bundle (xliff file) for each locale, suffixed with the language initials, with English ones being saved to the default. As such each language bundle can be easily identified and updated. Similarly if you used JDeveloper to create your own applications as extensions to Fusion Applications you would use the native support for resource bundles, and add them into the faces-config.xml file for inclusion in your application. An example is this ADF customization video from our YouTube channel. JDeveloper also supports automatic synchronization between your underlying resource bundles and any translatable strings you add – very handy. For more information see chapters on “Using Automatic Resource Bundle Integration in JDeveloper” and “Manually Defining Resource Bundles and Locales” in the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application Development Framework. FND Messages and Look-ups FND Messages, as defined here, are not used for UI labels (they are known as ‘strings’), but are the responses back to users as a result of an action, such as from a page submit. Each ‘message’ is defined and stored in the related database table (FND_MESSAGES_B), with another (FND_MESSAGES_TL) holding any language-specific values. These come seeded with the additional language installs, however if you customize the messages via the “Manage Messages” task in Functional Setup Manager, or add new ones, then currently (in Release 7) you’ll need to repeat it for each language. Figure 3 – An FND Message defined in an English user session. Similarly Look-ups are stored in a translation table (FND_LOOKUP_VALUES_TL) where appropriate, and can be customized by setting the users session language and making the change  in the Setup and Maintenance task entitled “Manage [Standard|Common] Look-ups”. Online Help Yes, in fact all the seeded help is applied as part of each language pack install as part of the post-install provisioning process. If you are editing or adding custom online help then the Create Help screen provides a drop-down of which language your help customization will apply to. This is shown in the video below from our YouTube channel, and obviously you’ll need to it for each language in use. What is Coming for Translations? Currently planned for Release 8 is something called the User Interface (UI) Text Editor. This tool will allow the editing of all the text shown on the pages and forms of Fusion Application. This will provide a search based on a particular term or word, say “Worker”, and will allow it to be adjusted, say to “Employee”, which then updates all the Resource Bundles that contain it. In the case of multi-language environments, it will use the users session language (locale) to know which Resource Bundles to apply the change to. This capability will also support customization sandboxes, to help ensure changes can be tested and approved.  It is also interesting to note that the design currently allows any page-specific customizations done using Page Composer or Application Composer to over-write the global changes done via the UI Text Editor, allowing for special context-sensitive values to still be used. Further Reading and Resources The following short list provides the mains resources for digging into more detail on translation support for both Composer and JDeveloper customization projects. There is a dedicated chapter entitled “Translating Custom Text” in the Fusion Applications Extensibility Guide. This has good examples and steps for many tasks, especially administering resource bundles. Using localization formatting (numbers, dates etc) for design-time changes is well documented in the Fusion Applications Developer Guide. For more guidelines on general design-time globalization, see either the ‘Internationalizing and Localizing Pages’ chapter in the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition) or the general Oracle Database Globalization Support Guide. The Oracle Architecture ‘A-Team’ provided a recent post on customizing the user session timeout popup, using design-time changes to resource bundles. It has detailed step-by-step examples which can be a useful illustration.

    Read the article

  • SEO best practices for a web feature that uses geolocation by IP Address

    - by Nick
    I'm working on a feature that tailors content based on a geo location lookup by IP address in order to provide information based on the general area where this visitor is from. I'm concerned that content will be interpreted as focused solely on the search engine spider's geo origin when it is indexed. Are there SEO best practices for geo location by ip address features? I appreciate any specific tips or words of wisdom.

    Read the article

  • Online Application Upgrade

    - by lsarecz
    Amikor HA (High Availability - Magas Rendelkezésre Állás) megoldásokról beszélünk, általában elsoként a klaszterek, redundáns megoldások jutnak eszünkbe. Pedig nem csak a hardver hibákra kell gondolni, hanem a tervezett leállásokkal is érdemes foglalkozni. Az egyik talán legkevésbé megoldott probléma az, ha egy alkalmazás verzió váltást kell végrehajtani úgy, hogy közben változik az adatstruktúra is. Ez nyilván azt eredményezi, hogy le kell állítani az adatbázist is, és az átszervezéseket, akár adat átalakításokkal együtt végre kell hajtani. De a legnagyobb probléma talán az, hogy amennyiben valami rosszul sül el, és vissza kell állni a kiinduló állapotra, akkor az adatbázis mentést is vissza kell tölteni, hiszen átmenetileg minden felhasználó aki épp használatba vette az új alkalmazás verziót már egy új adatstruktúrába kezdett dolgozni. Az Oracle Database Online Application Upgrade képessége, vagy pontosabb nevén az Edition Based Redefinition pontosan ezt a problémát célozza meg. Az Edition Based Redefinition 3 alap objektummal muködik, ezek: edition, editioning view és crossedition trigger. Az edition egy új nonschema objektum típus. 11gR2 verziótól minden adatbázis rendelkezik legalább egy edition-nel, melynek neve Ora$Base. Minden új edition egy már létezo gyermeke kell, hogy legyen. Amikor kapcsolódunk az adatbázishoz, meghatározható, hogy melyik edition-höz kapcsolódjunk. Kizárólag nézetek, szinonímák és PL/SQL ojektum típusoknak lehet több edíciója (ezek metadat típusú objektumok, nem tartalmaznak adatokat). Azok az objektumok, melyek több edícióval rendelkeznek egyedileg csak úgy azonosíthatók, ha az owner, name, namespace mellett az edition-t is megnevezzük. Azaz két vagy több példánya is létezhet egy adatbázison belül ugyanazzal az owner, name és namespace azonosítókkal rendelkezo objektumnak, amennyiben használjuk az edition-based redefinition-t. Egy új objektum típus, az editioning view is edicionálható. Mivel a fizikai tábla nem edicionálható (elkerülendo az adatok többszörös tárolását és teljesítmény gondokat), ezért az editioning view feladata egy adott tábla egyszeru leképezése egy nézet formájában, ami már több edition-ben is létezhet, és képes elfedni a tábla módosításait. Amennyiben a tábla módosítások olyan táblákat érintenek, amelyek tartalmát  az alkalmazás felhasználók módosítják, szükség van olyan triggerekre, amelyek az egyes editioning view-k között a módosításokat karbantartják. Ezek a crossedition triggerek. Természetesen ahhoz, hogy az online application upgrade muködjön, minden érintett tábla elé el kell készíteni az editioning nézetet és a megfelelo crossedition triggereket. Ezeket használva az alkalmazás két vagy több különbözo verzió képes ugyanazon adatbázison párhuzamosan futni, és ha megtörtént a verzióváltás, akkor még mindig egyszeru visszaállni a régi verzióra egészen addig, amíg a régi edition eldobásra nem kerül. További információk az Edition-Based Redefinition címu whitepaper-ben találhatók.

    Read the article

  • Using ASP.NET Membership Provider with an ACL

    - by geekrutherford
    Up until recently one of my applications has used the membership provider within ASP.NET exclusively. However, it has been proposed that while the currently defined roles are beneficial, security needs to be more granular to restrict both access to certain pages and functionality present within a given page.   Unfortunately, the role based security ASP.NET gives you out of the box falls down in this area. This is not due to a lack of foresight by Microsoft, but rather it was simply not designed for implementing both role based security and any inherent ACL you may define within these roles. Mind you some would say an ACL is independent of the role to which a user belongs and is assigned to the user directly.   The application mentioned here has it's own User object (which encapsulates the membership provider user object as a property) and SQL Server table to store extended information not present in the aspnet_users table. While I could have modified the aspnet membership schema to suit the applications needs, it seemed smarter to simply create a separate table with a foreign key back to the aspnet_users table.   Since I have a separate object to store extended user information, I simply created an ACL object and expose it as a property of my user object.   This is all well and good, but it does not help in regards to the SiteMapProvider and restricting access at the page level based on the users ACL.   The straightforward answer would be to develop some code within the databound event for the menu that checks the page title and has hardcoded logic that dictates a user must have certain permissions turned on. The problem with this approach is that it's HARDCODED!!! If you need to change access to a page you'd need to do a build and go through your normal deployment process....ugh!!!   An alternative method, albeit not perfect, is to utilize the resourceKey property on the SiteMapNodes in the SiteMap file with the name of the required permission to view the page. Within the databound event for your menu you iterate the SiteMapNodes in the menus SiteMapProvider looking for a match at the page level based on title. When a match is detected, you have a switch/case on the SiteMapNodes resourceKey (the name of the ACL permission required). The case for the resourceKey ensures the users ACL permission is turned on and viola!!!   This is noteably not perfect in that it is using the resourceKey in a manner other than intended.  Since the application is not localized, using it in the manner described it not an issue.   Below is a sample SiteMap file with the resourceKey used as the ACL permission identifier:     Below is the ItemDataBound event. This application uses the Telerik Menu control:

    Read the article

  • Transform Your Application Integration with Best Practices from Oracle Customers

    - by Lionel Dubreuil
    You want to transform your application integration into an environment based on a service-oriented architecture (SOA). You also want to utilize business process management (BPM) to improve efficiency, deliver business agility, lower total cost of ownership, and increase business visibility. And you want to hear directly from like-minded professionals who have made those types of transformations. Easy enough. Attend this Webcast series to learn from customers who have successfully integrated with Oracle SOA and BPM solutions.Join us for this series and discover how to: Use a single unified platform for all types of processes Increase real-time process visibility Improve efficiency of existing IT investments Lower up-front costs and achieve faster time to market Gain greater benefit from SOA with the addition of BPM Here's the list of upcoming webcasts: “Migrating to SOA at Choice Hotels” on Thurs., June 21, 2012 — 10 a.m. PT / 1 p.m. ET Hear how Choice Hotels successfully made the transition from a complex legacy environment into a SOA-based shared services infrastructure that accelerated time to market as the company implemented its event-driven Google API project. “San Joaquin County—Optimizing Justice and Public Safety with Oracle BPM and Oracle SOA” on Thurs., July 26, 2012 — 10 a.m. PT / 1 p.m. ET Learn how San Joaquin County moved to a service-oriented architecture foundation and business process management platform to gain efficiency and greater visibility into mission-critical information for public safety. “Streamlining Order to Cash with SOA at Eaton” on Thurs., August 23, 2012 — 10 a.m. PT / 1 p.m. ET Discover how Eaton transitioned from a legacy TIBCO infrastructure. Learn about the company’s reference architecture for a SOA-based Oracle Fusion Distributed Order Orchestration (DOO). “Fast BPM Implementation with Fusion: Production in Five Months” on Thurs., September 13, 2012 — 10 a.m. PT / 1 p.m. ET Learn how Nets Denmark A/S implemented Oracle Unified Business Process Management Suite in just five months. The Webcast will cover the implementation from start to production, including integration with legacy systems. “SOA Implementation at Farmers Insurance” on Thurs., October 18, 2012 — 10 a.m. PT / 1 p.m. ET Learn how Farmers Insurance Group lowered application infrastructure costs, reduced time to market, and introduced flexibility by transforming to a SOA-based infrastructure with SOA governance. Register today!

    Read the article

< Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >