Search Results

Search found 35869 results on 1435 pages for 'object context'.

Page 559/1435 | < Previous Page | 555 556 557 558 559 560 561 562 563 564 565 566  | Next Page >

  • Security in OBIEE 11g, Part 2

    - by Rob Reynolds
    Continuing the series on OBIEE 11g, our guest blogger this week is Pravin Janardanam. Here is Part 2 of his overview of Security in OBIEE 11g. OBIEE 11g Security Overview, Part 2 by Pravin Janardanam In my previous blog on Security, I discussed the OBIEE 11g changes regarding Authentication mechanism, RPD protection and encryption. This blog will include a discussion about OBIEE 11g Authorization and other Security aspects. Authorization: Authorization in 10g was achieved using a combination of Users, Groups and association of privileges and object permissions to users and Groups. Two keys changes to Authorization in OBIEE 11g are: Application Roles Policies / Permission Groups Application Roles are introduced in OBIEE 11g. An application role is specific to the application. They can be mapped to other application roles defined in the same application scope and also to enterprise users or groups, and they are used in authorization decisions. Application roles in 11g take the place of Groups in 10g within OBIEE application. In OBIEE 10g, any changes to corporate LDAP groups require a corresponding change to Groups and their permission assignment. In OBIEE 11g, Application roles provide insulation between permission definitions and corporate LDAP Groups. Permissions are defined at Application Role level and changes to LDAP groups just require a reassignment of the Group to the Application Roles. Permissions and privileges are assigned to Application Roles and users in OBIEE 11g compared to Groups and Users in 10g. The diagram below shows the relationship between users, groups and application roles. Note that the Groups shown in the diagram refer to LDAP Groups (WebLogic Groups by default) and not OBIEE application Groups. The following screenshot compares the permission windows from Admin tool in 10g vs 11g. Note that the Groups in the OBIEE 10g are replaced with Application Roles in OBIEE 11g. The same is applicable to OBIEE web catalog objects.    The default Application Roles available after OBIEE 11g installation are BIAdministrator, BISystem, BIConsumer and BIAuthor. Application policies are the authorization policies that an application relies upon for controlling access to its resources. An Application Role is defined by the Application Policy. The following screenshot shows the policies defined for BIAdministrator and BISystem Roles. Note that the permission for impersonation is granted to BISystem Role. In OBIEE 10g, the permission to manage repositories and Impersonation were assigned to “Administrators” group with no control to separate these permissions in the Administrators group. Hence user “Administrator” also had the permission to impersonate. In OBI11g, BIAdministrator does not have the permission to impersonate. This gives more flexibility to have multiple users perform different administrative functions. Application Roles, Policies, association of Policies to application roles and association of users and groups to application roles are managed using Fusion Middleware Enterprise Manager (FMW EM). They reside in the policy store, identified by the system-jazn-data.xml file. The screenshots below show where they are created and managed in FMW EM. The following screenshot shows the assignment of WebLogic Groups to Application Roles. The following screenshot shows the assignment of Permissions to Application Roles (Application Policies). Note: Object level permission association to Applications Roles resides in the RPD for repository objects. Permissions and Privilege for web catalog objects resides in the OBIEE Web Catalog. Wherever Groups were used in the web catalog and RPD has been replaced with Application roles in OBIEE 11g. Following are the tools used in OBIEE 11g Security Administration: ·       Users and Groups are managed in Oracle WebLogic Administration console (by default). If WebLogic is integrated with other LDAP products, then Users and Groups needs to managed using the interface provide by the respective LDAP vendor – New in OBIEE 11g ·       Application Roles and Application Policies are managed in Oracle Enterprise Manager - Fusion Middleware Control – New in OBIEE 11g ·       Repository object permissions are managed in OBIEE Administration tool – Same as 10g but the assignment is to Application Roles instead of Groups ·       Presentation Services Catalog Permissions and Privileges are managed in OBI Application administration page - Same as 10g but the assignment is to Application Roles instead of Groups Credential Store: Credential Store is a single consolidated service provider to store and manage the application credentials securely. The credential store contains credentials that either user supplied or system generated. Credential store in OBIEE 10g is file based and is managed using cryptotools utility. In 11g, Credential store can be managed directly from the FMW Enterprise Manager and is stored in cwallet.sso file. By default, the Credential Store stores password for deployed RPDs, BI Publisher data sources and BISystem user. In addition, Credential store can be LDAP based but only Oracle Internet Directory is supported right now. As you can see OBIEE security is integrated with Oracle Fusion Middleware security architecture. This provides a common security framework for all components of Business Intelligence and Fusion Middleware applications.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • C# 5 Async, Part 1: Simplifying Asynchrony – That for which we await

    - by Reed
    Today’s announcement at PDC of the future directions C# is taking excite me greatly.  The new Visual Studio Async CTP is amazing.  Asynchronous code – code which frustrates and demoralizes even the most advanced of developers, is taking a huge leap forward in terms of usability.  This is handled by building on the Task functionality in .NET 4, as well as the addition of two new keywords being added to the C# language: async and await. This core of the new asynchronous functionality is built upon three key features.  First is the Task functionality in .NET 4, and based on Task and Task<TResult>.  While Task was intended to be the primary means of asynchronous programming with .NET 4, the .NET Framework was still based mainly on the Asynchronous Pattern and the Event-based Asynchronous Pattern. The .NET Framework added functionality and guidance for wrapping existing APIs into a Task based API, but the framework itself didn’t really adopt Task or Task<TResult> in any meaningful way.  The CTP shows that, going forward, this is changing. One of the three key new features coming in C# is actually a .NET Framework feature.  Nearly every asynchronous API in the .NET Framework has been wrapped into a new, Task-based method calls.  In the CTP, this is done via as external assembly (AsyncCtpLibrary.dll) which uses Extension Methods to wrap the existing APIs.  However, going forward, this will be handled directly within the Framework.  This will have a unifying effect throughout the .NET Framework.  This is the first building block of the new features for asynchronous programming: Going forward, all asynchronous operations will work via a method that returns Task or Task<TResult> The second key feature is the new async contextual keyword being added to the language.  The async keyword is used to declare an asynchronous function, which is a method that either returns void, a Task, or a Task<T>. Inside the asynchronous function, there must be at least one await expression.  This is a new C# keyword (await) that is used to automatically take a series of statements and break it up to potentially use discontinuous evaluation.  This is done by using await on any expression that evaluates to a Task or Task<T>. For example, suppose we want to download a webpage as a string.  There is a new method added to WebClient: Task<string> WebClient.DownloadStringTaskAsync(Uri).  Since this returns a Task<string> we can use it within an asynchronous function.  Suppose, for example, that we wanted to do something similar to my asynchronous Task example – download a web page asynchronously and check to see if it supports XHTML 1.0, then report this into a TextBox.  This could be done like so: private async void button1_Click(object sender, RoutedEventArgs e) { string url = "http://reedcopsey.com"; string content = await new WebClient().DownloadStringTaskAsync(url); this.textBox1.Text = string.Format("Page {0} supports XHTML 1.0: {1}", url, content.Contains("XHTML 1.0")); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Let’s walk through what’s happening here, step by step.  By adding the async contextual keyword to the method definition, we are able to use the await keyword on our WebClient.DownloadStringTaskAsync method call. When the user clicks this button, the new method (Task<string> WebClient.DownloadStringTaskAsync(string)) is called, which returns a Task<string>.  By adding the await keyword, the runtime will call this method that returns Task<string>, and execution will return to the caller at this point.  This means that our UI is not blocked while the webpage is downloaded.  Instead, the UI thread will “await” at this point, and let the WebClient do it’s thing asynchronously. When the WebClient finishes downloading the string, the user interface’s synchronization context will automatically be used to “pick up” where it left off, and the Task<string> returned from DownloadStringTaskAsync is automatically unwrapped and set into the content variable.  At this point, we can use that and set our text box content. There are a couple of key points here: Asynchronous functions are declared with the async keyword, and contain one or more await expressions In addition to the obvious benefits of shorter, simpler code – there are some subtle but tremendous benefits in this approach.  When the execution of this asynchronous function continues after the first await statement, the initial synchronization context is used to continue the execution of this function.  That means that we don’t have to explicitly marshal the call that sets textbox1.Text back to the UI thread – it’s handled automatically by the language and framework!  Exception handling around asynchronous method calls also just works. I’d recommend every C# developer take a look at the documentation on the new Asynchronous Programming for C# and Visual Basic page, download the Visual Studio Async CTP, and try it out.

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • ASP.NET MVC Custom Profile Provider

    - by Ben Griswold
    It’s been a long while since I last used the ASP.NET Profile provider. It’s a shame, too, because it just works with very little development effort: Membership tables installed? Check. Profile enabled in web.config? Check. SqlProfileProvider connection string set? Check.  Profile properties defined in said web.config file? Check. Write code to set value, read value, build and test. Check. Check. Check.  Yep, I thought the built-in Profile stuff was pure gold until I noticed how the user-based information is persisted to the database. It’s stored as xml and, well, that was going to be trouble if I ever wanted to query the profile data.  So, I have avoided the super-easy-to-use ASP.NET Profile provider ever since, until this week, when I decided I could use it to store user-specific properties which I am 99% positive I’ll never need to query against ever.  I opened up my ASP.NET MVC application, completed steps 1-4 (above) in about 3 minutes, started writing my profile get/set code and that’s where the plan broke down.  Oh yeah. That’s right.  Visual Studio auto-generates a strongly-type Profile reference for web site projects but not for ASP.NET MVC or Web Applications.  Bummer. So, I went through the steps of getting a customer profile provider working in my ASP.NET MVC application: First, I defined a CurrentUser routine and my profile properties in a custom Profile class like so: using System.Web.Profile; using System.Web.Security; using Project.Core;   namespace Project.Web.Context {     public class MemberPreferencesProfile : ProfileBase     {         static public MemberPreferencesProfile CurrentUser         {             get             {                 return (MemberPreferencesProfile)                     Create(Membership.GetUser().UserName);             }         }           public Enums.PresenceViewModes? ViewMode         {             get { return ((Enums.PresenceViewModes)                     ( base["ViewMode"] ?? Enums.PresenceViewModes.Category)); }             set { base["ViewMode"] = value; Save(); }         }     } } And then I replaced the existing profile configuration web.config with the following: <profile enabled="true" defaultProvider="MvcSqlProfileProvider"          inherits="Project.Web.Context.MemberPreferencesProfile">        <providers>     <clear/>     <add name="MvcSqlProfileProvider"          type="System.Web.Profile.SqlProfileProvider, System.Web,          Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"          connectionStringName="ApplicationServices" applicationName="/"/>   </providers> </profile> Notice that profile is enabled, I’ve defined the defaultProvider and profile is now inheriting from my custom MemberPreferencesProfile class.  Finally, I am now able to set and get profile property values nearly the same way as I did with website projects: viewMode = MemberPreferencesProfile.CurrentUser.ViewMode; MemberPreferencesProfile.CurrentUser.ViewMode = viewMode;

    Read the article

  • SQL SERVER – Database Dynamic Caching by Automatic SQL Server Performance Acceleration

    - by pinaldave
    My second look at SafePeak’s new version (2.1) revealed to me few additional interesting features. For those of you who hadn’t read my previous reviews SafePeak and not familiar with it, here is a quick brief: SafePeak is in business of accelerating performance of SQL Server applications, as well as their scalability, without making code changes to the applications or to the databases. SafePeak performs database dynamic caching, by caching in memory result sets of queries and stored procedures while keeping all those cache correct and up to date. Cached queries are retrieved from the SafePeak RAM in microsecond speed and not send to the SQL Server. The application gets much faster results (100-500 micro seconds), the load on the SQL Server is reduced (less CPU and IO) and the application or the infrastructure gets better scalability. SafePeak solution is hosted either within your cloud servers, hosted servers or your enterprise servers, as part of the application architecture. Connection of the application is done via change of connection strings or adding reroute line in the c:\windows\system32\drivers\etc\hosts file on all application servers. For those who would like to learn more on SafePeak architecture and how it works, I suggest to read this vendor’s webpage: SafePeak Architecture. More interesting new features in SafePeak 2.1 In my previous review of SafePeak new I covered the first 4 things I noticed in the new SafePeak (check out my article “SQLAuthority News – SafePeak Releases a Major Update: SafePeak version 2.1 for SQL Server Performance Acceleration”): Cache setup and fine-tuning – a critical part for getting good caching results Database templates Choosing which database to cache Monitoring and analysis options by SafePeak Since then I had a chance to play with SafePeak some more and here is what I found. 5. Analysis of SQL Performance (present and history): In SafePeak v.2.1 the tools for understanding of performance became more comprehensive. Every 15 minutes SafePeak creates and updates various performance statistics. Each query (or a procedure execute) that arrives to SafePeak gets a SQL pattern, and after it is used again there are statistics for such pattern. An important part of this product is that it understands the dependencies of every pattern (list of tables, views, user defined functions and procs). From this understanding SafePeak creates important analysis information on performance of every object: response time from the database, response time from SafePeak cache, average response time, percent of traffic and break down of behavior. One of the interesting things this behavior column shows is how often the object is actually pdated. The break down analysis allows knowing the above information for: queries and procedures, tables, views, databases and even instances level. The data is show now on all arriving queries, both read queries (that can be cached), but also any types of updates like DMLs, DDLs, DCLs, and even session settings queries. The stats are being updated every 15 minutes and SafePeak dashboard allows going back in time and investigating what happened within any time frame. 6. Logon trigger, for making sure nothing corrupts SafePeak cache data If you have an application with many parts, many servers many possible locations that can actually update the database, or the SQL Server is accessible to many DBAs or software engineers, each can access some database directly and do some changes without going thru SafePeak – this can create a potential corruption of the data stored in SafePeak cache. To make sure SafePeak cache is correct it needs to get all updates to arrive to SafePeak, and if a DBA will access the database directly and do some changes, for example, then SafePeak will simply not know about it and will not clean SafePeak cache. In the new version, SafePeak brought a new feature called “Logon Trigger” to solve the above challenge. By special click of a button SafePeak can deploy a special server logon trigger (with a CLR object) on your SQL Server that actually monitors all connections and informs SafePeak on any connection that is coming not from SafePeak. In SafePeak dashboard there is an interface that allows to control which logins can be ignored based on login names and IPs, while the rest will invoke cache cleanup of SafePeak and actually locks SafePeak cache until this connection will not be closed. Important to note, that this does not interrupt any logins, only informs SafePeak on such connection. On the Dashboard screen in SafePeak you will be able to see those connections and then decide what to do with them. Configuration of this feature in SafePeak dashboard can be done here: Settings -> SQL instances management -> click on instance -> Logon Trigger tab. Other features: 7. User management ability to grant permissions to someone without changing its configuration and only use SafePeak as performance analysis tool. 8. Better reports for analysis of performance using 15 minute resolution charts. 9. Caching of client cursors 10. Support for IPv6 Summary SafePeak is a great SQL Server performance acceleration solution for users who want immediate results for sites with performance, scalability and peak spikes challenges. Especially if your apps are packaged or 3rd party, since no code changes are done. SafePeak can significantly increase response times, by reducing network roundtrip to the database, decreasing CPU resource usage, eliminating I/O and storage access. SafePeak team provides a free fully functional trial www.safepeak.com/download and actually provides a one-on-one assistance during such trial. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Why is Robert C. Martin called Uncle Bob?

    - by Lernkurve
    Is there a story behind it? I did a Google search for "Why is Robert C. Martin called Uncle Bob?" but didn't find an answer. More context There is this pretty well-know person in the software engineering world named Robert C. Martin. He speaks at conferences and has published many excellent books one of which is Clean Code (Amazon). He is the founder and CEO of Object Mentor Inc. Robert C. Martin is also called Uncle Bob. But I can't figure out why.

    Read the article

  • Feedback on "market manipulation", a peripheral game mechanic for a satirical MMO

    - by BerndBrot
    This question asks for feedback on a specific game-mechanic. Since there is not one right feedback on a game mechanic, I tried to provide enough context and guidelines to still make it possible for users to rate answers and to accept an answer as the best answer (following these criteria from Writer.SE's meta website). Please comment if you have any suggestions on how I could improve the question in that regard. So, let's begin with the game itself and some of its elements which are relevant for this question. Context I'm working on a satirical, text-based multiplayer adventure and role-playing game set in modern-day London. The game resolves around the concept of sin and features a myriad of (venomous) allusions to all the things that go wrong in this world. Players can choose between character classes like bullshit artist (consultant), bankster, lawyer, mobster, celebrity, politician, etc. In order to complete the game, the player has to live so sinfully with regard to any of the seven deadly sins that a demon is willing to offer them a contract of sponsorship. On their quest to live a sinful live, characters explore more and more locations of modern-day London (on a GoogleMap), fight "monsters" like insurance sales agents or Jehovah's Witnesses, and complete quests, like building a PowerPoint presentation out of marketing buzz words or keeping up a number of substance abuse effects in order to progress on the gluttony path. Battles are turn based with both combatants having a deck of cards, with which they try to make their enemy give in to temptations of all sorts. Tempted enemies sometimes become contacts (an item drop mechanic), which can be exploited for various benefits, depending on their area of influence (finance, underworld, bureaucracy, etc.), level of influence, and kind of sway that the player has over them (bribed, seduced, threatened, etc.) Once a contract has been exploited, the player loses that contact. Most actions require turns. Turns are limited, but refill each day. Criteria A number of peripheral game mechanics are supposed to represent real world abuses and mischief in a humorous way integrate real world data and events to strengthen the feeling of relevance of the game's humor with regard to real world problems add fun ways of interacting with other players add ways for players to express themselves through game-play Market manipulation is one such peripheral game mechanic and should fulfill all of these goals. Market manipulation This is my initial design of the mechanic: Players can enter the London Stock Exchange (LSE) (without paying a turn) LSE displays the stock prices of a number of companies in industries like weapons or tobacco as well as some derivatives based on wheat and corn. The stock prices are calculated based on the actual stock prices of these companies and derivatives (in real time) any market manipulations that were conducted by the players any market corrections of the system Players can buy and sell shares with cash, a resource in the game, at current in-game market value (without paying a turn). Players can manipulate the market, i.e. let the price of a share either rise or fall, by some amount, over a certain period of time. Manipulating the market requires 1 turn A contact in the financial sector (see above). The higher the level of influence of the contact, the stronger the effect of the manipulation on the stock price, and/or the shorter it takes for the manipulation to manifest itself. Market manipulation also adds a crime to the player's record. (There are a multitude of ways to take care of that, but it is still another "cost" of market manipulations.) The system continuously corrects market manipulations by letting the in-game prices converge towards their real world counterparts at a rate of 2% of the difference between the two per hour. Because of this market correction mechanism, pushing up prices (and screwing down prices) becomes increasingly difficult the higher (lower) the price already is. Whenever food prices reach a certain level, in-game stories are posted about hunger catastrophes happening somewhere far, far away (maybe with links to real world news stories). Whenever a player sells a certain number of shares with a sufficiently high margin, they are mentioned in that day's in-game financial news. Since the number of stock options is very limited, players will inevitably collide in their efforts to manipulate the market in their favor. Hopefully, it will also be a fun side-arena for guilds and covenants to fight each other. Question(s) What do you think of this mechanism given the criteria for peripheral game mechanics that I specified for my game? Do you have any ideas how the mechanic could be improved with regard to these criteria (or otherwise)? Could it be improved to allow for more expressive game-play, or involve an allusion to some other real world madness (like short selling, leveraging, or some other banking magic)? Are there any game-theoretic problems with this mechanic, like maybe certain dominant individual strategies that, collectively, lead to every player profiting and thus eliminating the idea of market manipulation PVP? Also, if you like (or dislike) this question, feel free to participate in the discussion on GDSE meta: "Should we be more lax with regard to SE's question/answer format to make game design questions possible?"

    Read the article

  • New Rules of Retail

    - by David Dorf
    I've been on vacation and preparing for Crosstalk, so its been a while since I've posted. I've seen the agenda, and I can assure you Crosstalk will be lots of fun. In addition to hearing from lots of retailers, we'll also be doing a little bowling and racing on the track. I'll be around for the sessions, the ORUG meetings, and our Customer Advisory Board so please be sure to say hello. I also just completed a white paper based on a previous blog posting which in turn was based on learnings from reading What Would Google Do? For each of Jarvis' ten rules, I discuss the concept in the context of retail and provide real-world examples. No mention of products or sales pitches at all. You can download the paper here. It will put you in the right frame of mind for hearing Jeff Jarvis speak at Crosstalk. For those that can't make it, I'll post some highlights afterwards.

    Read the article

  • SmtpClient and Locked File Attachments

    - by Rick Strahl
    Got a note a couple of days ago from a client using one of my generic routines that wraps SmtpClient. Apparently whenever a file has been attached to a message and emailed with SmtpClient the file remains locked after the message has been sent. Oddly this particular issue hasn’t cropped up before for me although these routines are in use in a number of applications I’ve built. The wrapper I use was built mainly to backfit an old pre-.NET 2.0 email client I built using Sockets to avoid the CDO nightmares of the .NET 1.x mail client. The current class retained the same class interface but now internally uses SmtpClient which holds a flat property interface that makes it less verbose to send off email messages. File attachments in this interface are handled by providing a comma delimited list for files in an Attachments string property which is then collected along with the other flat property settings and eventually passed on to SmtpClient in the form of a MailMessage structure. The jist of the code is something like this: /// <summary> /// Fully self contained mail sending method. Sends an email message by connecting /// and disconnecting from the email server. /// </summary> /// <returns>true or false</returns> public bool SendMail() { if (!this.Connect()) return false; try { // Create and configure the message MailMessage msg = this.GetMessage(); smtp.Send(msg); this.OnSendComplete(this); } catch (Exception ex) { string msg = ex.Message; if (ex.InnerException != null) msg = ex.InnerException.Message; this.SetError(msg); this.OnSendError(this); return false; } finally { // close connection and clear out headers // SmtpClient instance nulled out this.Close(); } return true; } /// <summary> /// Configures the message interface /// </summary> /// <param name="msg"></param> protected virtual MailMessage GetMessage() { MailMessage msg = new MailMessage(); msg.Body = this.Message; msg.Subject = this.Subject; msg.From = new MailAddress(this.SenderEmail, this.SenderName); if (!string.IsNullOrEmpty(this.ReplyTo)) msg.ReplyTo = new MailAddress(this.ReplyTo); // Send all the different recipients this.AssignMailAddresses(msg.To, this.Recipient); this.AssignMailAddresses(msg.CC, this.CC); this.AssignMailAddresses(msg.Bcc, this.BCC); if (!string.IsNullOrEmpty(this.Attachments)) { string[] files = this.Attachments.Split(new char[2] { ',', ';' }, StringSplitOptions.RemoveEmptyEntries); foreach (string file in files) { msg.Attachments.Add(new Attachment(file)); } } if (this.ContentType.StartsWith("text/html")) msg.IsBodyHtml = true; else msg.IsBodyHtml = false; msg.BodyEncoding = this.Encoding; … additional code omitted return msg; } Basically this code collects all the property settings of the wrapper object and applies them to the SmtpClient and in GetMessage() to an individual MailMessage properties. Specifically notice that attachment filenames are converted from a comma-delimited string to filenames from which new attachments are created. The code as it’s written however, will cause the problem with file attachments not being released properly. Internally .NET opens up stream handles and reads the files from disk to dump them into the email send stream. The attachments are always sent correctly but the local files are not immediately closed. As you probably guessed the issue is simply that some resources are not automatcially disposed when sending is complete and sure enough the following code change fixes the problem: // Create and configure the message using (MailMessage msg = this.GetMessage()) { smtp.Send(msg); if (this.SendComplete != null) this.OnSendComplete(this); // or use an explicit msg.Dispose() here } The Message object requires an explicit call to Dispose() (or a using() block as I have here) to force the attachment files to get closed. I think this is rather odd behavior for this scenario however. The code I use passes in filenames and my expectation of an API that accepts file names is that it uses the files by opening and streaming them and then closing them when done. Why keep the streams open and require an explicit .Dispose() by the calling code which is bound to lead to unexpected behavior just as my customer ran into? Any API level code should clean up as much as possible and this is clearly not happening here resulting in unexpected behavior. Apparently lots of other folks have run into this before as I found based on a few Twitter comments on this topic. Odd to me too is that SmtpClient() doesn’t implement IDisposable – it’s only the MailMessage (and Attachments) that implement it and require it to clean up for left over resources like open file handles. This means that you couldn’t even use a using() statement around the SmtpClient code to resolve this – instead you’d have to wrap it around the message object which again is rather unexpected. Well, chalk that one up to another small unexpected behavior that wasted a half an hour of my time – hopefully this post will help someone avoid this same half an hour of hunting and searching. Resources: Full code to SmptClientNative (West Wind Web Toolkit Repository) SmtpClient Documentation MSDN © Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  

    Read the article

  • Non-Dom Element Event Binding with jQuery

    - by Rick Strahl
    Yesterday I had a short discussion with Dave Reed on Twitter regarding setting up fake ‘events’ on objects that are hookable. jQuery makes it real easy to bind events on DOM elements and with a little bit of extra work (that I didn’t know about) you can also set up binding to non-DOM element ‘event’ bindings. Assume for a second that you have a simple JavaScript object like this: var item = { sku: "wwhelp" , foo: function() { alert('orginal foo function'); } }; and you want to be notified when the foo function is called. You can use jQuery to bind the handler like this: $(item).bind("foo", function () { alert('foo Hook called'); } ); Binding alone won’t actually cause the handler to be triggered so when you call: item.foo(); you only get the ‘original’ message. In order to fire both the original handler and the bound event hook you have to use the .trigger() function: $(item).trigger("foo"); Now if you do the following complete sequence: var item = { sku: "wwhelp" , foo: function() { alert('orginal foo function'); } }; $(item).bind("foo", function () { alert('foo hook called'); } ); $(item).trigger("foo"); You’ll see the ‘hook’ message first followed by the ‘original’ message fired in succession. In other words, using this mechanism you can hook standard object functions and chain events to them in a way similar to the way you can do with DOM elements. The main difference is that the ‘event’ has to be explicitly triggered in order for this to happen rather than just calling the method directly. .trigger() relies on some internal logic that checks for event bindings on the object (attached via an expando property) which .trigger() searches for in its bound event list. Once the ‘event’ is found it’s called prior to execution of the original function. This is pretty useful as it allows you to create standard JavaScript objects that can act as event handlers and are effectively hookable without having to explicitly override event definitions with JavaScript function handlers. You get all the benefits of jQuery’s event methods including the ability to hook up multiple events to the same handler function and the ability to uniquely identify each specific event instance with post fix string names (ie. .bind("MyEvent.MyName") and .unbind("MyEvent.MyName") to bind MyEvent). Watch out for an .unbind() Bug Note that there appears to be a bug with .unbind() in jQuery that doesn’t reliably unbind an event and results in a elem.removeEventListener is not a function error. The following code demonstrates: var item = { sku: "wwhelp", foo: function () { alert('orginal foo function'); } }; $(item).bind("foo.first", function () { alert('foo hook called'); }); $(item).bind("foo.second", function () { alert('foo hook2 called'); }); $(item).trigger("foo"); setTimeout(function () { $(item).unbind("foo"); // $(item).unbind("foo.first"); // $(item).unbind("foo.second"); $(item).trigger("foo"); }, 3000); The setTimeout call delays the unbinding and is supposed to remove the event binding on the foo function. It fails both with the foo only value (both if assigned only as “foo” or “foo.first/second” as well as when removing both of the postfixed event handlers explicitly. Oddly the following that removes only one of the two handlers works: setTimeout(function () { //$(item).unbind("foo"); $(item).unbind("foo.first"); // $(item).unbind("foo.second"); $(item).trigger("foo"); }, 3000); this actually works which is weird as the code in unbind tries to unbind using a DOM method that doesn’t exist. <shrug> A partial workaround for unbinding all ‘foo’ events is the following: setTimeout(function () { $.event.special.foo = { teardown: function () { alert('teardown'); return true; } }; $(item).unbind("foo"); $(item).trigger("foo"); }, 3000); which is a bit cryptic to say the least but it seems to work more reliably. I can’t take credit for any of this – thanks to Dave Reed and Damien Edwards who pointed out some of these behaviors. I didn’t find any good descriptions of the process so thought it’d be good to write it down here. Hope some of you find this helpful.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  

    Read the article

  • How to Troubleshoot TFS Build Server Failure?

    - by Tarun Arora
    Ever found your self in this helpless situation where you think you have tried every possible suggestion on the internet to bring the build server back but it just won’t work. Well some times before hunting around for a solution it is important to understand what the problem is, if the error messages in the build logs don’t seem to help you can always enable tracing on the build server to get more information on what could possibly be the root cause of failure. In this blog post today I’ll be showing you how to enable tracing on, - TFS 2010/11 Server - Build Server - Client Enable Tracing on Team Foundation Server 2010/2011 On the Team Foundation Server navigate to C:\Program Files\Microsoft Team Foundation Server 2010\Application Tier\Web Services, right click web.config and from the context menu select edit.          Search for the <appSettings> node in the config file and set the value of the key ‘traceWriter’ to true.          In the <System.diagnostics> tag set the value of switches from 0 to 4 to set the trace level to maximum to write diagnostics level trace information.          Restart the TFS Application pool to force this change to take effect. The application pool restart will impact any one using the TFS server at present. Note - It is recommended that you do not make any changes to the TFS production application server, this can have serious consequences and can even jeopardize the installation of your server.          Download the Debug view tool from http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx and set it to capture “Global Events”. Perform any actions in the Team Explorer on the client machine, you should be able to see a series of trace data in the debug view tool now.         Enable Tracing on Build Controller/Agents Log on to the Build Controller/Agent and Navigate to the directory C:\Program Files\Microsoft Team Foundation Server 2010\Tools         Look for the configuration file ‘TFSBuildServiceHost.exe.config’ if it is not already there create a new text file and rename it to ‘TFSBuildServiceHost.exe.config’         To Enable tracing uncomment the <system.diagnostics> and paste the snippet below if it is not already there. <configuration> <system.diagnostics> <switches> <add name="BuildServiceTraceLevel" value="4"/> </switches> <trace autoflush="true" indentsize="4"> <listeners> <add name="myListener" type="Microsoft.TeamFoundation.TeamFoundationTextWriterTraceListener, Microsoft.TeamFoundation.Common, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" initializeData="c:\logs\TFSBuildServiceHost.exe.log" /> <remove name="Default" /> </listeners> </trace> </system.diagnostics> </configuration> The highlighted path above is where the Log file will be created. If the folder is not already there then create the folder, also, make sure that the account running the build service has access to write to this folder.         Restart the build Controller/Agent service from the administration console (or net stop tfsbuildservicehost & net start tfsbuildservicehost) in order for the new setting to be picked up.         Enable TFS Tracing on the Client Machine On the client machine, shut down Visual Studio, navigate to C:\Program Files\Microsoft Visual Studio 10.0\Common 7\IDE          Search for devenv.exe.config, make a backup copy of the config file and right click the file and from the context menu select edit. If its not already there create this file.          Edit devenv.exe.config by adding the below code snippet before the last </configuration> tag <system.diagnostics> <switches> <add name="TeamFoundationSoapProxy" value="4" /> <add name="VersionControl" value="4" /> </switches> <trace autoflush="true" indentsize="3"> <listeners> <add name="myListener" type="Microsoft.TeamFoundation.TeamFoundationTextWriterTraceListener,Microsoft.TeamFoundation.Common, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" initializeData="c:\tf.log" /> <add name="perfListener" type="Microsoft.TeamFoundation.Client.PerfTraceListener, Microsoft.TeamFoundation.Client, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/> </listeners> </trace> </system.diagnostics> The highlighted path above is where the Log file will be created. If the folder is not already there then create the folder. Start Visual Studio and after a bit of activity you should be able to see the new log file being created on the folder specified in the config file. Other Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN.   Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Have you come across an interesting one to one with the build server, please share your experience here. Questions/Feedback/Suggestions, etc please leave a comment. Thank You! Share this post : CodeProject

    Read the article

  • Web Browser Control &ndash; Specifying the IE Version

    - by Rick Strahl
    I use the Internet Explorer Web Browser Control in a lot of my applications to display document type layout. HTML happens to be one of the most common document formats and displaying data in this format – even in desktop applications, is often way easier than using normal desktop technologies. One issue the Web Browser Control has that it’s perpetually stuck in IE 7 rendering mode by default. Even though IE 8 and now 9 have significantly upgraded the IE rendering engine to be more CSS and HTML compliant by default the Web Browser control will have none of it. IE 9 in particular – with its much improved CSS support and basic HTML 5 support is a big improvement and even though the IE control uses some of IE’s internal rendering technology it’s still stuck in the old IE 7 rendering by default. This applies whether you’re using the Web Browser control in a WPF application, a WinForms app, a FoxPro or VB classic application using the ActiveX control. Behind the scenes all these UI platforms use the COM interfaces and so you’re stuck by those same rules. Rendering Challenged To see what I’m talking about here are two screen shots rendering an HTML 5 doctype page that includes some CSS 3 functionality – rounded corners and border shadows - from an earlier post. One uses IE 9 as a standalone browser, and one uses a simple WPF form that includes the Web Browser control. IE 9 Browser:   Web Browser control in a WPF form: The IE 9 page displays this HTML correctly – you see the rounded corners and shadow displayed. Obviously the latter rendering using the Web Browser control in a WPF application is a bit lacking. Not only are the new CSS features missing but the page also renders in Internet Explorer’s quirks mode so all the margins, padding etc. behave differently by default, even though there’s a CSS reset applied on this page. If you’re building an application that intends to use the Web Browser control for a live preview of some HTML this is clearly undesirable. Feature Delegation via Registry Hacks Fortunately starting with Internet Explore 8 and later there’s a fix for this problem via a registry setting. You can specify a registry key to specify which rendering mode and version of IE should be used by that application. These are not global mind you – they have to be enabled for each application individually. There are two different sets of keys for 32 bit and 64 bit applications. 32 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe 64 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe The value to set this key to is (taken from MSDN here) as decimal values: 9999 (0x270F) Internet Explorer 9. Webpages are displayed in IE9 Standards mode, regardless of the !DOCTYPE directive. 9000 (0x2328) Internet Explorer 9. Webpages containing standards-based !DOCTYPE directives are displayed in IE9 mode. 8888 (0x22B8) Webpages are displayed in IE8 Standards mode, regardless of the !DOCTYPE directive. 8000 (0x1F40) Webpages containing standards-based !DOCTYPE directives are displayed in IE8 mode. 7000 (0x1B58) Webpages containing standards-based !DOCTYPE directives are displayed in IE7 Standards mode.   The added key looks something like this in the Registry Editor: With this in place my Html Html Help Builder application which has wwhelp.exe as its main executable now works with HTML 5 and CSS 3 documents in the same way that Internet Explorer 9 does. Incidentally I accidentally added an ‘empty’ DWORD value of 0 to my EXE name and that worked as well giving me IE 9 rendering. Although not documented I suspect 0 (or an invalid value) will default to the installed browser. Don’t have a good way to test this but if somebody could try this with IE 8 installed that would be great: What happens when setting 9000 with IE 8 installed? What happens when setting 0 with IE 8 installed? Don’t forget to add Keys for Host Environments If you’re developing your application in Visual Studio and you run the debugger you may find that your application is still not rendering right, but if you run the actual generated EXE from Explorer or the OS command prompt it works. That’s because when you run the debugger in Visual Studio it wraps your application into a debugging host container. For this reason you might want to also add another registry key for yourapp.vshost.exe on your development machine. If you’re developing in Visual FoxPro make sure you add a key for vfp9.exe to see the rendering adjustments in the Visual FoxPro development environment. Cleaner HTML - no more HTML mangling! There are a number of additional benefits to setting up rendering of the Web Browser control to the IE 9 engine (or even the IE 8 engine) beyond the obvious rendering functionality. IE 9 actually returns your HTML in something that resembles the original HTML formatting, as opposed to the IE 7 default format which mangled the original HTML content. If you do the following in the WPF application: private void button2_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; MessageBox.Show(doc.body.outerHtml); } you get different output depending on the rendering mode active. With the default IE 7 rendering you get: <BODY><DIV> <H1>Rounded Corners and Shadows - Creating Dialogs in CSS</H1> <DIV class=toolbarcontainer><A class=hoverbutton href="./"><IMG src="../../css/images/home.gif"> Home</A> <A class=hoverbutton href="RoundedCornersAndShadows.htm"><IMG src="../../css/images/refresh.gif"> Refresh</A> </DIV> <DIV class=containercontent> <FIELDSET><LEGEND>Plain Box</LEGEND><!-- Simple Box with rounded corners and shadow --> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Box with Header</LEGEND> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV class="gridheaderleft roundbox-top">Box with a Header</DIV> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox-bottom">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Dialog Style Window</LEGEND> <DIV style="POSITION: relative; WIDTH: 450px" id=divDialog class="dialog boxshadow" jQuery16107208195684204002="2"> <DIV style="POSITION: relative" class=dialog-header> <DIV class=closebox></DIV>User Sign-in <DIV class=closebox jQuery16107208195684204002="3"></DIV></DIV> <DIV class=descriptionheader>This dialog is draggable and closable</DIV> <DIV class=dialog-content><LABEL>Username:</LABEL> <INPUT name=txtUsername value=" "> <LABEL>Password</LABEL> <INPUT name=txtPassword value=" "> <HR> <INPUT id=btnLogin value=Login type=button> </DIV> <DIV class=dialog-statusbar>Ready</DIV></DIV></FIELDSET> </DIV> <SCRIPT type=text/javascript>     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </SCRIPT> </DIV></BODY> Now lest you think I’m out of my mind and create complete whacky HTML rooted in the last century, here’s the IE 9 rendering mode output which looks a heck of a lot cleaner and a lot closer to my original HTML of the page I’m accessing: <body> <div>         <h1>Rounded Corners and Shadows - Creating Dialogs in CSS</h1>     <div class="toolbarcontainer">         <a class="hoverbutton" href="./"> <img src="../../css/images/home.gif"> Home</a>         <a class="hoverbutton" href="RoundedCornersAndShadows.htm"> <img src="../../css/images/refresh.gif"> Refresh</a>     </div>         <div class="containercontent">     <fieldset>         <legend>Plain Box</legend>                <!-- Simple Box with rounded corners and shadow -->             <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                              <div style="background: khaki;" class="boxcontenttext roundbox">                     Simple Rounded Corner Box.                 </div>             </div>     </fieldset>     <fieldset>         <legend>Box with Header</legend>         <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                          <div class="gridheaderleft roundbox-top">Box with a Header</div>             <div style="background: khaki;" class="boxcontenttext roundbox-bottom">                 Simple Rounded Corner Box.             </div>         </div>     </fieldset>       <fieldset>         <legend>Dialog Style Window</legend>         <div style="width: 450px; position: relative;" id="divDialog" class="dialog boxshadow">             <div style="position: relative;" class="dialog-header">                 <div class="closebox"></div>                 User Sign-in             <div class="closebox"></div></div>             <div class="descriptionheader">This dialog is draggable and closable</div>                    <div class="dialog-content">                             <label>Username:</label>                 <input name="txtUsername" value=" " type="text">                 <label>Password</label>                 <input name="txtPassword" value=" " type="text">                                 <hr/>                                 <input id="btnLogin" value="Login" type="button">                        </div>             <div class="dialog-statusbar">Ready</div>         </div>     </fieldset>     </div> <script type="text/javascript">     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </script>        </div> </body> IOW, in IE9 rendering mode IE9 is much closer (but not identical) to the original HTML from the page on the Web that we’re reading from. As a side note: Unfortunately, the browser feature emulation can't be applied against the Html Help (CHM) Engine in Windows which uses the Web Browser control (or COM interfaces anyway) to render Html Help content. I tried setting up hh.exe which is the help viewer, to use IE 9 rendering but a help file generated with CSS3 features will simply show in IE 7 mode. Bummer - this would have been a nice quick fix to allow help content served from CHM files to look better. HTML Editing leaves HTML formatting intact In the same vane, if you do any inline HTML editing in the control by setting content to be editable, IE 9’s control does a much more reasonable job of creating usable and somewhat valid HTML. It also leaves the original content alone other than the text your are editing or adding. No longer is the HTML output stripped of excess spaces and reformatted in IEs format. So if I do: private void button3_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; doc.body.contentEditable = true; } and then make some changes to the document by typing into it using IE 9 mode, the document formatting stays intact and only the affected content is modified. The created HTML is reasonably clean (although it does lack proper XHTML formatting for things like <br/> <hr/>). This is very different from IE 7 mode which mangled the HTML as soon as the page was loaded into the control. Any editing you did stripped out all white space and lost all of your existing XHTML formatting. In IE 9 mode at least *most* of your original formatting stays intact. This is huge! In Html Help Builder I have supported HTML editing for a long time but the HTML mangling by the Web Browser control made it very difficult to edit the HTML later. Previously IE would mangle the HTML by stripping out spaces, upper casing all tags and converting many XHTML safe tags to its HTML 3 tags. Now IE leaves most of my document alone while editing, and creates cleaner and more compliant markup (with exception of self-closing elements like BR/HR). The end result is that I now have HTML editing in place that's much cleaner and actually capable of being manually edited. Caveats, Caveats, Caveats It wouldn't be Internet Explorer if there weren't some major compatibility issues involved in using this various browser version interaction. The biggest thing I ran into is that there are odd differences in some of the COM interfaces and what they return. I specifically ran into a problem with the document.selection.createRange() function which with IE 7 compatibility returns an expected text range object. When running in IE 8 or IE 9 mode however. I could not retrieve a valid text range with this code where loEdit is the WebBrowser control: loRange = loEdit.document.selection.CreateRange() The loRange object returned (here in FoxPro) had a length property of 0 but none of the other properties of the TextRange or TextRangeCollection objects were available. I figured this was due to some changed security settings but even after elevating the Intranet Security Zone and mucking with the other browser feature flags pertaining to security I had no luck. In the end I relented and used a JavaScript function in my editor document that returns a selection range object: function getselectionrange() { var range = document.selection.createRange(); return range; } and call that JavaScript function from my host applications code: *** Use a function in the document to get around HTML Editing issues loRange = loEdit.document.parentWindow.getselectionrange(.f.) and that does work correctly. This wasn't a big deal as I'm already loading a support script file into the editor page so all I had to do is add the function to this existing script file. You can find out more how to call script code in the Web Browser control from a host application in a previous post of mine. IE 8 and 9 also clamp down the security environment a little more than the default IE 7 control, so there may be other issues you run into. Other than the createRange() problem above I haven't seen anything else that is breaking in my code so far though and that's encouraging at least since it uses a lot of HTML document manipulation for the custom editor I've created (and would love to replace - any PROFESSIONAL alternatives anybody?) Registry Key Installation for your Application It’s important to remember that this registry setting is made per application, so most likely this is something you want to set up with your installer. Also remember that 32 and 64 bit settings require separate settings in the registry so if you’re creating your installer you most likely will want to set both keys in the registry preemptively for your application. I use Tarma Installer for all of my application installs and in Tarma I configure registry keys for both and set a flag to only install the latter key group in the 64 bit version: Because this setting is application specific you have to do this for every application you install unfortunately, but this also means that you can safely configure this setting in the registry because it is after only applied to your application. Another problem with install based installation is version detection. If IE 8 is installed I’d want 8000 for the value, if IE 9 is installed I want 9000. I can do this easily in code but in the installer this is much more difficult. I don’t have a good solution for this at the moment, but given that the app works with IE 7 mode now, IE 9 mode is just a bonus for the moment. If IE 9 is not installed and 9000 is used the default rendering will remain in use.   It sure would be nice if we could specify the IE rendering mode as a property, but I suspect the ActiveX container has to know before it loads what actual version to load up and once loaded can only load a single version of IE. This would account for this annoying application level configuration… Summary The registry feature emulation has been available for quite some time, but I just found out about it today and started experimenting around with it. I’m stoked to see that this is available as I’d pretty much given up in ever seeing any better rendering in the Web Browser control. Now at least my apps can take advantage of newer HTML features. Now if we could only get better HTML Editing support somehow <snicker>… ah can’t have everything.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  Windows  

    Read the article

  • How can a code editor effectively hint at code nesting level - without using indentation?

    - by pgfearo
    I'm writing an XML text editor that provides 2 view options for the same XML text, one indented (virtually), the other left-justified. The motivation for the left-justified view is to help users 'see' the whitespace characters they're using for indentation of plain-text or XPath code without interference from indentation that is an automated side-effect of the XML context. I want to provide visual clues (in the non-editable part of the editor) for the left-justified mode that will help the user, but without getting too elaborate. I tried just using connecting lines, but that seemed too busy. The best I've come up with so far is shown in a mocked up screenshot of the editor below, but I'm seeking better/simpler alternatives (that don't require too much code). [Edit] Taking the heatmap idea (from: @jimp) I get something like this: or even these alternates:

    Read the article

  • Handy ASP.NET MVC 2 Extension Methods &ndash; Where am I?

    - by Bobby Diaz
    Have you ever needed to detect what part of the application is currently being viewed?  This might be a bigger issue if you write a lot of shared/partial views or custom display or editor templates.  Another scenario, which is the one I encountered when I first started down this path, is when you have some type of menu and you’d like to be able to determine which item represents the current page so you can highlight it in some way.  A simple example is the menu that is created as part of the default ASP.NET MVC 2 Application template.   <div id="menucontainer">       <ul id="menu">         <li><%= Html.ActionLink("Home", "Index", "Home") %></li>         <li><%= Html.ActionLink("About", "About", "Home") %></li>     </ul>   </div>   The part that got me at first, however, was the following entry in the default style sheet (Site.css):   ul#menu li.selected a {     background-color: #fff;     color: #000; }   I assumed that the .selected class would automatically get applied to the active menu item.  After trying a few different things, including the MvcContrib MenuBuilder, I decided to write my own extension methods so I would have more control over the output.  First, I needed a way to determine what view the user has navigated to based on the requested URL and route configuration.  Now, I am sure there are many ways to do this, but this is what I came up with:   public static class RequestExtensions {     public static bool IsCurrentRoute(this RequestContext context, String areaName,         String controllerName, params String[] actionNames)     {         var routeData = context.RouteData;         var routeArea = routeData.DataTokens["area"] as String;         var current = false;           if ( ((String.IsNullOrEmpty(routeArea) && String.IsNullOrEmpty(areaName)) ||               (routeArea == areaName)) &&              ((String.IsNullOrEmpty(controllerName)) ||               (routeData.GetRequiredString("controller") == controllerName)) &&              ((actionNames == null) ||                actionNames.Contains(routeData.GetRequiredString("action"))) )         {             current = true;         }           return current;     }       // additional overloads omitted... }   With that in place, I was able to write several UrlHelper methods that check if the supplied values map to the current view.   public static class UrlExtensions {     public static bool IsCurrent(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.RequestContext.IsCurrentRoute(areaName, controllerName, actionNames);     }       public static string Selected(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.IsCurrent(areaName, controllerName, actionNames)             ? "selected" : String.Empty;     }       // additional overloads omitted... }   Now I can re-work the original menu to utilize these new methods.  Note: be sure to import the proper namespace so the extension methods become available inside your views!   <div id="menucontainer">       <ul id="menu">         <li class="<%= Url.Selected(null, "Home", "Index") %>">             <%= Html.ActionLink("Home", "Index", "Home")%></li>           <li class="<%= Url.Selected(null, "Home", "About") %>">             <%= Html.ActionLink("About", "About", "Home")%></li>     </ul>   </div>   If we take it one step further, we can clean up the markup even more.  Check out the Html.ActionMenuItem() extension method and the refined menu:   public static class HtmlExtensions {     public static MvcHtmlString ActionMenuItem(this HtmlHelper htmlHelper, String linkText,         String actionName, String controllerName)     {         var html = new StringBuilder("<li");           if ( htmlHelper.ViewContext.RequestContext                 .IsCurrentRoute(null, controllerName, actionName) )         {             html.Append(" class=\"selected\"");         }           html.Append(">")             .Append(htmlHelper.ActionLink(linkText, actionName, controllerName))             .Append("</li>");           return MvcHtmlString.Create(html.ToString());     }       // additional overloads omitted... }   <div id="menucontainer">       <ul id="menu">         <%= Html.ActionMenuItem("Home", "Index", "Home") %>         <%= Html.ActionMenuItem("About", "About", "Home") %>     </ul>   </div>   Which generates the following HTML:   <div id="menucontainer">       <ul id="menu">         <li class="selected"><a href="/">Home</a></li>         <li><a href="/Home/About">About</a></li>     </ul>   </div>     I have created a codepaste of these extension methods if you are interested in using them in your own projects.  Enjoy!

    Read the article

  • Is the “jQuery programming style” a kind of Reactive programming?

    - by Peter Krauss
    jQuery is a Javascript library and framework, but when we are programming with jQuery into DOM problems/solutions, we can practice a style quite different of programming... We can read about jQuery at Wikipedia, The set of jQuery core features — DOM element selections, traversal and manipulation —, enabled by its selector engine (...), created a new "programming style", fusing algorithms and DOM-data-structures This question is similar to the "subquestion-3" of this question but not so generic. The focus here is about this new kind of "programming style"... So, the question: Is the "jQuery programming style in DOM context" a new paradign? Or it is more one example of reactive programming (not "cell-oriented" but "DOM-node oriented") or another one? We have no "standard taxonomy of paradigms", so, please, in your answer, indicate also your "best choice for Wikipedia Paradign". Example: if you understand that "jQuery programming DOM" is like "awk filtering data", your choice can be event-driven.

    Read the article

  • Connecting to Microsoft Excel using Oracle Data Integrator

    - by julien.testut
    The posts in this series assume that you have some level of familiarity with ODI. The concepts of Topology, Data Server, Physical and Logical Architecture are used here assuming that you understand them in the context of ODI. If you need more details on these elements, please refer to the ODI Tutorial for a quick introduction, or to the complete ODI documentation for more details. In this post I will describe how a Microsoft Excel spreadsheet can be used in Oracle Data Integrator. Microsoft Excel is one of the many different technologies you can leverage in ODI as a source or as a target. Prepare your Excel spreadsheet Prior to using a Microsoft Excel spreadsheet in ODI we need to specify a name for the different cell tables we want to use. You can have multiple names in the same spreadsheet. First open up a Microsoft Excel spreadsheet, we will need to define a named range.

    Read the article

  • Sam Abraham To Speak about MVC & MVVM at InterClick on May 19th

    - by Sam Abraham
    My next speaking engagement will be taking place at InterClick in Boca Raton, FL on Wednesday May 19th 2010.  Here is a quick abstract of what I will be blabbing about: MVC & MVVM are two of many buzzwords under the Architecture Spotlight as means of achieving true separation of concerns between data, business logic and UI layers. In this session, we will be discussing the basic concepts of Microsoft MVC and demonstrating the ease of creating a new MVC project and related Unit Tests within VS2010. We will then move to introduce MVVM as a design paradigm and incorporating that into an MS MVC application structure. Next, we will take a look at MVVM in the context of a sample Silverlight application. Throughout our talk we will be demonstrating various features of the latest and greatest VS2010. You can get more information about the event and the speaker, as well as register to attend at this link: http://sherstaff.com/EventSignUp.aspx?EventID=777 Look forward to seeing you all there.

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • How to fix “The requested service, ‘net.pipe://localhost/SecurityTokenServiceApplication/appsts.svc’ could not be activated.”

    - by ybbest
    Problem: When I try to publish a SharePoint2013 workflow, I received the error: The requested service, ‘net.pipe://localhost/SecurityTokenServiceApplication/appsts.svc’ could not be activated. After that, my workflow stopped working and every time I start a work I receive the following error message: System.ApplicationException: PreconditionFailed ---> System.ApplicationException: Error in the application. --- End of inner exception stack trace --- at System.Activities.Statements.Throw.Execute(CodeActivityContext context) at System.Activities.CodeActivity.InternalExecute(ActivityInstance instance, ActivityExecutor executor, BookmarkManager bookmarkManager) at System.Activities.Runtime.ActivityExecutor.ExecuteActivityWorkItem.ExecuteBody(ActivityExecutor executor, BookmarkManager bookmarkManager, Location resultLocation) Analysis: After analysis, I found the error by visiting the http://localhost:32843/SecurityTokenServiceApplication/securitytoken.svc and the error I got on the message is                                                                                                                                              Solution: The solution is basically getting more memory to the server. For development environment, you can restart your noderunner.exe or some other services to release some memories. To verify you have enough memory    you can browse to http://localhost:32843/SecurityTokenServiceApplication/securitytoken.svc , it should return the information below. Then you can republish your workflow and it will work like a charm.

    Read the article

  • What tools do you use to let you know that methods in your codebase are getting too long?

    - by blueberryfields
    Most people seem to agree that long methods are a code smell - a sign something may not be quite right with the code contained in them. Which tools do you use to detect this smell? clarified title based on responses. also, remember: Your code will live over time, and be edited by multiple programmers Emergency fixes and changes will come in, late at night, when the writer is too tired to pay attention to smells Different programmers use different tools. A contractor with 4 screens set at maximum resolution will have a different idea of acceptable method size In this context, I'm looking for tools and methods which go beyond looking at the size of a method when it's written, or when it's being edited.

    Read the article

  • Algorithmia Source Code released on CodePlex

    - by FransBouma
    Following the release of our BCL Extensions Library on CodePlex, we have now released the source-code of Algorithmia on CodePlex! Algorithmia is an algorithm and data-structures library for .NET 3.5 or higher and is one of the pillars LLBLGen Pro v3's designer is built on. The library contains many data-structures and algorithms, and the source-code is well documented and commented, often with links to official descriptions and papers of the algorithms and data-structures implemented. The source-code is shared using Mercurial on CodePlex and is licensed under the friendly BSD2 license. User documentation is not available at the moment but will be added soon. One of the main design goals of Algorithmia was to create a library which contains implementations of well-known algorithms which weren't already implemented in .NET itself. This way, more developers out there can enjoy the results of many years of what the field of Computer Science research has delivered. Some algorithms and datastructures are known in .NET but are re-implemented because the implementation in .NET isn't efficient for many situations or lacks features. An example is the linked list in .NET: it doesn't have an O(1) concat operation, as every node refers to the containing LinkedList object it's stored in. This is bad for algorithms which rely on O(1) concat operations, like the Fibonacci heap implementation in Algorithmia. Algorithmia therefore contains a linked list with an O(1) concat feature. The following functionality is available in Algorithmia: Command, Command management. This system is usable to build a fully undo/redo aware system by building your object graph using command-aware classes. The Command pattern is implemented using a system which allows transparent undo-redo and command grouping so you can use it to make a class undo/redo aware and set properties, use its contents without using commands at all. The Commands namespace is the namespace to start. Classes you'd want to look at are CommandifiedMember, CommandifiedList and KeyedCommandifiedList. See the CommandQueueTests in the test project for examples. Graphs, Graph algorithms. Algorithmia contains a sophisticated graph class hierarchy and algorithms implemented onto them: non-directed and directed graphs, as well as a subgraph view class, which can be used to create a view onto an existing graph class which can be self-maintaining. Algorithms include transitive closure, topological sorting and others. A feature rich depth-first search (DFS) crawler is available so DFS based algorithms can be implemented quickly. All graph classes are undo/redo aware, as they can be set to be 'commandified'. When a graph is 'commandified' it will do its housekeeping through commands, which makes it fully undo-redo aware, so you can remove, add and manipulate the graph and undo/redo the activity automatically without any extra code. If you define the properties of the class you set as the vertex type using CommandifiedMember, you can manipulate the properties of vertices and the graph contents with full undo/redo functionality without any extra code. Heaps. Heaps are data-structures which have the largest or smallest item stored in them always as the 'root'. Extracting the root from the heap makes the heap determine the next in line to be the 'maximum' or 'minimum' (max-heap vs. min-heap, all heaps in Algorithmia can do both). Algorithmia contains various heaps, among them an implementation of the Fibonacci heap, one of the most efficient heap datastructures known today, especially when you want to merge different instances into one. Priority queues. Priority queues are specializations of heaps. Algorithmia contains a couple of them. Sorting. What's an algorithm library without sort algorithms? Algorithmia implements a couple of sort algorithms which sort the data in-place. This aspect is important in situations where you want to sort the elements in a buffer/list/ICollection in-place, so all data stays in the data-structure it already is stored in. PropertyBag. It re-implements Tony Allowatt's original idea in .NET 3.5 specific syntax, which is to have a generic property bag and to be able to build an object in code at runtime which can be bound to a property grid for editing. This is handy for when you have data / settings stored in XML or other format, and want to create an editable form of it without creating many editors. IEditableObject/IDataErrorInfo implementations. It contains default implementations for IEditableObject and IDataErrorInfo (EditableObjectDataContainer for IEditableObject and ErrorContainer for IDataErrorInfo), which make it very easy to implement these interfaces (just a few lines of code) without having to worry about bookkeeping during databinding. They work seamlessly with CommandifiedMember as well, so your undo/redo aware code can use them out of the box. EventThrottler. It contains an event throttler, which can be used to filter out duplicate events in an event stream coming into an observer from an event. This can greatly enhance performance in your UI without needing to do anything other than hooking it up so it's placed between the event source and your real handler. If your UI is flooded with events from data-structures observed by your UI or a middle tier, you can use this class to filter out duplicates to avoid redundant updates to UI elements or to avoid having observers choke on many redundant events. Small, handy stuff. A MultiValueDictionary, which can store multiple unique values per key, instead of one with the default Dictionary, and is also merge-aware so you can merge two into one. A Pair class, to quickly group two elements together. Multiple interfaces for helping with building a de-coupled, observer based system, and some utility extension methods for the defined data-structures. We regularly update the library with new code. If you have ideas for new algorithms or want to share your contribution, feel free to discuss it on the project's Discussions page or send us a pull request. Enjoy!

    Read the article

  • MySQL 5.5

    - by trond-arne.undheim
    New performance and scalability enhancements, continued Investment in MySQL (see press release). "The latest release of MySQL further exemplifies Oracle's commitment to the MySQL community and investment in delivering rapid innovation and enhancements to the MySQL platform" said Edward Screven, Oracle's Chief Corporate Architect. MySQL is integral to Oracle's complete, open and integrated strategy. The MySQL 5.5 Community Edition, which is licensed under the GNU General Public License (GPL), and is available for free download, includes InnoDB as the default storage engine. We cannot stress the importance of using open standards enough, whether in the context of open source or non-open source software. For more on Oracle's Open Source offering, see Oracle.com/opensource or oss.oracle.com (for developers).

    Read the article

< Previous Page | 555 556 557 558 559 560 561 562 563 564 565 566  | Next Page >