Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 559/1274 | < Previous Page | 555 556 557 558 559 560 561 562 563 564 565 566  | Next Page >

  • How do I simulate the mouse and keyboard using C# or C++?

    - by Art
    I want to start develop for Kinect, but hardest theme for it - how to send keyboard and mouse input to any application. In previous question I got an advice to develop my own driver for this devices, but this will take a while. I imagine application like a gate, that can translate SendMessage's into system wide input or driver application with API to send this inputs. So I wonder, is there are drivers or simulators that can interact with C# or C++? Small edition: SendMessage, PostMessage, keybd_event will work only on Windows application with common messages loop. So I need driver application that will work on low, kernel, level.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Per-vertex animation with VBOs: Stream each frame or use index offset per frame?

    - by charstar
    Scenario Meshes are animated using either skeletons (skinned animation) or some form of morph targets (i.e. per-vertex key frames). However, in either case, the animations are known in full at load-time, that is, there is no physics, IK solving, or any other form of in-game pose solving. The number of character actions (animations) will be limited but rich (hand-animated). There may be multiple characters using a each mesh and its animations simultaneously in-game (they will be at different poses/keyframes at the same time). Assume color and texture coordinate buffers are static. Goal To leverage the richness of well vetted animation tools such as Blender to do the heavy lifting for a small but rich set of animations. I am aware of additive pose blending like that from Naughty Dog and similar techniques but I would prefer to expend a little RAM/VRAM to avoid implementing a thesis-ready pose solver. I would also like to avoid implementing a key-frame + interpolation curve solver (reinventing Blender vertex groups and IPOs). Current Considerations Much like a non-shader-powered pose solver, create a VBO for each character and copy vertex and normal data to each VBO on each frame (VBO in STREAMING). Create one VBO for each animation where each frame (interleaved vertex and normal data) is concatenated onto the VBO. Then each character simply has a buffer pointer offset based on its current animation frame (e.g. pointer offset = (numVertices+numNormals)*frameNumber). (VBO in STATIC) Known Trade-Offs In 1 above: Each VBO would be small but there would be many VBOs and therefore lots of buffer binding and vertex copying each frame. Both client and pipeline intensive. In 2 above: There would be few VBOs therefore insignificant buffer binding and no vertex data getting jammed down the pipe each frame, but each VBO would be quite large. Are there any pitfalls to number 2 (aside from finite memory)? Are there other methods that I am missing?

    Read the article

  • GUI for DirectX

    - by DeadMG
    I'm looking for a GUI library built on top of DirectX- preferably 9, but I can also do 11. I've looked at stuff like DXUT, but it's way too much for me- I'm only needing some UI controls which I would rather not write (and debug) myself, and their need to keep a C-compatible API is definitely a big downside. I'd rather look at UI libs that are designed to be integrated into an existing DirectX-based system, rather than forming the basis of a system. Any recommendations?

    Read the article

  • JavaScript 3D space ship rotation

    - by user36202
    I am working with a fairly low-level JavaScript 3D API (not Three.js) which uses euler angles for rotation. In most cases, euler angles work quite well for doing things like aligning buildings, operating a hovercraft, or looking around in the first-person. However, in space there is no up or down. I want to control the ship's roll, pitch, and yaw. To do that, some people would use a local coordinate system or a permenant matrix or quaternion or whatever to represent the ship's angle. However, since I am not most people and am using a library that deals exclusively in euler angles, I will be using relative angles to represent how to rotate the ship in space and getting the resulting non-relative euler angles. For you math nerds, that means I need to convert 3 euler angles (with Y being the vertical axis, X representing the pitch, and Z representing a roll which is unaffected by the other angles, left-handed system) into a 3x3 orientation matrix, do something fancy with the matrix, and convert it back into the 3 euler angles. Euler to matrix to euler. Somebody has posted something similar to this on SO (http://stackoverflow.com/questions/1217775/rotating-a-spaceship-model-for-a-space-simulator-game) but he ended up just working with a matrix. This will not do for me. Also, I am using JavaScript, not C++. What I want essentially are the functions do_roll, do_pitch, and do_yaw which only take in and put out euler angles. Many thanks.

    Read the article

  • Exporting an animated FBX to XNA? (in 3DS Max)

    - by Itamar Marom
    I'm now working on an XNA 3D game, and I want to add animated models in it. I came across this example. I see there is one FBX file and a few texture files in the content project, and that in the code you can choose which "take" to play. In this code it is "Take_001". Please tell me: When I create and animate my own 3D model in 3DS Max (2012, since I was told it's only possible in this version), how can I define those takes? plus, are any configurations need to be made when exporting FBX from 3DS Max to XNA? Thank you.

    Read the article

  • Tile-wide extent tracing on a grid.

    - by Larolaro
    I'm currently working on A* pathfinding on a grid and I'm looking to smooth the generated path, while also considering the extent of the character moving along it. I'm using a grid for the pathfinding, however character movement is free roaming, not strict tile to tile movement. To achieve a smoother, more efficient path, I'm doing line traces on a grid to determine if there is unwalkable tiles between tiles to shave off unecessary corners. However, because a line trace is zero extent, it doesn't consider the extent of the character and gives bad results (not returning unwalkable tiles just missed by the line, causing unwanted collisions). So what I'm looking for is rather than a line algorithm that determines the tiles under it, I'm looking for one that determines the tiles under a tile-wide extent line. Here is an image to help visualise my problem! Does anyone have any ideas? I've been working with Bresenham's line and other alternatives but I haven't yet figured out how to nail this specific problem.

    Read the article

  • Xna, after mouse click cpu usage goes 100%

    - by kosnkov
    Hi i have following code and it is enough just if i click on blue window then cpu goes to 100% for like at least one minute even with my i7 4 cores. I just check even with empty project and is the same !!! public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; private Texture2D cursorTex; private Vector2 cursorPos; GraphicsDevice device; float xPosition; float yPosition; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } protected override void Initialize() { Viewport vp = GraphicsDevice.Viewport; xPosition = vp.X + (vp.Width / 2); yPosition = vp.Y + (vp.Height / 2); device = graphics.GraphicsDevice; base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); cursorTex = Content.Load<Texture2D>("strzalka"); } protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); spriteBatch.Draw(cursorTex, cursorPos, Color.White); spriteBatch.End(); base.Draw(gameTime); } }

    Read the article

  • Interacting with scene cocos2d

    - by cjroebuck
    I'm attempting to make my first cocos2d (for iphone) multiplayer game and having difficulty understanding how to interact with a scene once it is running. The game is a simple turn-based one and so I have a GameController class which co-ordinates the rounds. I also have a GameScene class which is the actual scene that is displayed during a round of the game. The basic interaction I need is for the GameController to be able to pass messages to the GameScene class.. such as StartRound/StopRound etc. The thing that complicates this is that I am loading the GameScene with a LoadingScene class which simply initialises the scene and replaces the current scene with this one, so there is no reference from GameController to GameScene, so passing messages is quite tricky. Does anyone have any ways to get around this, ideally I would still like to use a Loading class as it smooths out the memory hit when replacing scenes.

    Read the article

  • MMORPG game balancing

    - by Gary Paluk
    I've seen a couple of examples of some game balancing techniques in books yet they are not comprehensive and not particularly aimed at MMORPGs but I'm looking for practical examples of game balancing techniques for MMORPGs. I am interested to know if anyone has documented the techniques used in popular games with proven success in this area. Ideally, any resource would cover most common types of stats and include layman mathematical models or techniques used to balance game mechanics found in advanced MMORPGs (I know it's a cliché, but WoW style) Any help would be great!

    Read the article

  • Circle-Rectangle collision in a tile map game

    - by furiousd
    I am making a 2D tile map based putt-putt game. I have collision detection working between the ball and the walls of the map, although when the ball collides at the meeting point between 2 tiles I offset it by 0.5 so that it doesn't get stuck in the wall. This aint a huge issue though. if(y % 20 == 0) { y+=0.5; } if(x % 20 == 0) { x+=0.5; } Collisions work as follows Find the closest point between each tile and the center of the ball If distance(ball_x, ball_y, close_x, close_y) <= ball_radius and the closest point belongs to a solid object, collision has occured Invert X/Y speed according to side of object collided with The next thing I tried to do was implement floating blocks in the middle of the map for the ball to bounce off of. When a ball collides with a corner of the block, it gets stuck in it. So I changed my determineRebound() function to treat corners as if they were circles. Here's that functon: `i and j are indexes of the solid object in the 2d map array. x & y are centre point of ball.` void determineRebound(int _i, int _j) { if(y > _i*tile_w && y < _i*tile_w + tile_w) { //Not a corner xs*=-1; } else if(x > _j*tile_w && x < _j*tile_w + tile_w) { //Not a corner ys*=-1; } else { //Corner float nx = x - close_x; float ny = y - close_y; float len = sqrt(nx * nx + ny * ny); nx /= len; ny /= len; float projection = xs * nx + ys * ny; xs -= 2 * projection * nx; ys -= 2 * projection * ny; } } This is where things have gotten messy. Collisions with 'floating' corners work fine, but now when the ball collides near the meeting point of 2 tiles, it detects a corner collision and does not rebound as expected. I'm a bit in over my head at this point. I guess I'm wondering if I'm going about making this sort of game in the right way. Is a 2d tile map the way to go? If so, is there a problem with my collision logic and where am I going wrong? Any advice/feedback would be great.

    Read the article

  • How to make the Angry Birds "shot arch" dotted line? [duplicate]

    - by unexpected62
    This question already has an answer here: Show path of a body of where it should go after linear impulse is applied 2 answers I am making a game that includes 2D projectile flight paths like that of Angry Birds. Angry Birds employs the notion that a previous shot is shown with a dotted line "arch" showing the player where that last shot went. I think recording that data is simple enough once a shot is fired, but in my game, I want to show it preemptively, ie: before the shot. How would I go about calculating this dotted line? The other caveat is I have wind in my game. How can you determine a projectile preemptively when wind will affect it too? This seems like a pretty tough problem. My wind right now just applies a constant force every step of animation in the direction of the wind flow. I'm using Box2D and AndEngine if it matters.

    Read the article

  • How do I go from a simple html5 tic tac toe game to an online 2 player game?

    - by phi1o
    I've been working on an online 2 player Tic Tac Toe solution for blackberries. both old and new. And so far I have html5 code that has a 3 x 3 layout that switches between x and o for the game mechanics. I believe I'm still missing a check for win function but my question is about the server side of this game. I'm not sure how to go about learning what exactly I want. how do you take what I have now, and make this into a functioning online game? I've been told WAMP is a good solution, as well as IIS. and its all really over my head, so i'm hoping to get a little more clarity as far as what I should focus on to bring this game to life.

    Read the article

  • When mapping the surface of a sphere with tiles, how might you deal with polar distortion?

    - by clweeks
    It's easy to deal with the way locations interact on a clean Cartesian grid. It's just vanilla math. And you can kind of ignore the geometry of the sphere's surface for a bunch of it if you want to just truncate the poles or something. But I keep coming up with ideas for games where the polar space matters. Geo-coded ARGs and global roguelikes and stuff. I want square(ish?) locations -- reasonably representable by square tiles of the same size across the globe, anyway. This has to be a solved problem, right? What are the solutions? ETA: At the equator -- and assuming that your square locations are reasonably small, it's close enough to true that you can get away with having one square in the rows north and south of the most equatorial row. And you could probably get away with that by just hand-waving the difference up to like 45-degrees or so. But eventually, you need to have fewer squares in a pole-ward circumferential row. If I reduce the length of the row by one and offset the squares by 1/2 then they're just like hexes and it's relatively easy to do the coding to keep track of the connections. But as you get pole-ward, it gets more and more extreme. Projecting the surface of the world onto the surface of a cube is tempting. But I figured there must be more elegant solutions already in use. If I did the cube thing (not dissecting it further through geodesy) Are there any pros and cons related to placing the pole at the center of a face or at the vertex of three sides?

    Read the article

  • How do I prevent my platformer's character from clipping on wall tiles?

    - by Jonathan Hobbs
    Currently, I have a platformer with tiles for terrain (graphics borrowed from Cave Story). The game is written from scratch using XNA, so I'm not using an existing engine or physics engine. The tile collisions are described pretty much exactly as described in this answer (with simple SAT for rectangles and circles), and everything works fine. Except when the player runs into a wall whilst falling/jumping. In that case, they'll catch on a tile and begin thinking they've hit a floor or ceiling that isn't actually there. The player is moving right and falling downwards. So after movement, collisions are checked - and first, it turns out the player character is colliding with the tile 3rd from the floor, and pushed upwards. Second, he's found to be colliding with the tile beside him, and pushed sideways - the end result being the player character thinks he's on the ground and isn't falling, and 'catches' on the tile for as long as he's running into it. I could solve this by defining the tiles from top to bottom instead, which makes him fall smoothly, but then the inverse case happens and he'll hit a ceiling that isn't there when jumping upwards against the wall. How should I approach resolving this, so that the player character can just fall along the wall as it should?

    Read the article

  • Dynamically load images inside jar

    - by Rahat Ahmed
    I'm using Slick2d for a game, and while it runs fine in Eclipse, i'm trying to figure out how to make it work when exported to a runnable .jar. I have it set up to where I load every image located in the res/ directory. Here's the code /** * Loads all .png images located in source folders. * @throws SlickException */ public static void init() throws SlickException { loadedImages = new HashMap<>(); try { URI uri = new URI(ResourceLoader.getResource("res").toString()); File[] files = new File(uri).listFiles(new FilenameFilter(){ @Override public boolean accept(File dir, String name) { if(name.endsWith(".png")) return true; return false; } }); System.out.println("Naming filenames now."); for(File f:files) { System.out.println(f.getName()); FileInputStream fis = new FileInputStream(f); Image image = new Image(fis, f.getName(), false); loadedImages.put(f.getName(), image); } } catch (URISyntaxException | FileNotFoundException e) { System.err.println("UNABLE TO LOAD IMAGES FROM RES FOLDER!"); e.printStackTrace(); } font = new AngelCodeFont("res/bitmapfont.fnt",Art.get("bitmapfont.png")); } Now the obvious problem is the line URI uri = new URI(ResourceLoader.getResource("res").toString()); If I pack the res folder into the .jar there will not be a res folder on the filesystem. How can I iterate through all the images in the compiled .jar itself, or what is a better system to automatically load all images?

    Read the article

  • How does a game developer get feedback from gamers (not developers) or start a forum community without paying for advertising or hiring Q&A teams?

    - by Carter81
    I am familiar with a lot of game developer forums, but I'd assume this is much less likely to attract more casual commentators. I also fear that feedback from a gamer's perspective would often be tainted by their game dev perspective. For example, if I were making a RTS game and wanted to get feedback from "The RTS gamers" where would I go? Is there a general idea of what type of website or forum to go to? Do you go to specific game websites, to try to "steal" attention? Would this not equate to spam or inappropriate posting? What is considered appropriate and inappropriate? I am not asking for specifics. I am asking how one "starts a community", or how one "gets feedback from gamers" without resorting to spamming forums or 'advertising' just to see what sticks. What TYPE OF PLACE does one go? Are there already sites designed for this purpose? I tried going to what was once a very popular forum for feedback from what I believed was a niche hardcore group of gamers in the genre, but its popularity seemed to have died significantly; Leaving only trolls and very young teenagers. The resulting feedback was quite disappointing, mainly for how little feedback it resulted. Many years ago, feedback would flood in by the hundreds so quickly. Without this website, I am at a loss as to where to go to see what people think of ideas, gather feedback from a gamer's perspective (not a developer's perspective), or where to pull from to start my own site's forum. I am out of ideas of what to do, short of going to various game forums to post in the off-topic sections there.

    Read the article

  • Does SFML render graphics outside the window?

    - by ThePlan
    While working on a tile-based map I figured it would be a good idea if I would only render what the player sees on the game window, but then it occurred to me that SFML could already be optimized enough to know when it doesn't have to render those things. Let's say I draw a 30x30 squared maps (A medium one) but the player only sees a bunch of them, not entirely. Would SFML automatically hide what the player doesn't see, or should I hide it myself?

    Read the article

  • Behaviour Trees with irregular updates

    - by Robominister
    I'm interested in behaviour trees that aren't iterated every game tick, but every so often. (Edit: the tree could specify how many frames within the main game loop to wait before running its tick function again). Every theoretical implementation I have seen of behaviour trees talks of the tree search being carried out every game update - which seems necessary, because a leaf node (eg a behaviour, like 'return to base') needs to be constantly checked to see if is still running, failed or completed. Can anyone suggest how I might start implementing a tree that isnt run every tick, or point me in the direction of good material specific to this case (I am struggling to find anything)? My thoughts so far: action leaf nodes (when they start) must only push some kind of action object onto a list for an entity, rather than directly calling any code that makes the entity do something. The list of actions for the entity would be run every frame (update any that need to run, pop any that have completed from the list). the return state from a given action must be fed back into the tree, so that when we run the tree iteration again (and reach the same action leaf node - so the tree has so far determined that we ought to still be trying this action) - that the action has completed, or is still running etc. If my actual action code is running from an action list on an entity, then I possibly need to cancel previously running actions in the list - i am thinking that I can just delete the entire stack of queued up actions. I've seen the idea of ActionLists which block lower priority actions when a higher priority one is added, but this seems like very close logic to behaviour trees, and I dont want to be duplicating behaviour. This leaves me with some questions 1) How would I feed the action return state back into the tree? Its obvious I need to store some information relating to 'currently executing actions' on the entity, and check that in the tree tick, but I can't imagine how. 2) Does having a seperate behaviour tree (for deciding behaviour) and action list (for carrying out actual queued up actions) sound like a reasonable approach? 3) Is the approach of updating a behaviour tree irregularly actually used by anyone? It seems like a nice idea for budgeting ai search time when you have a lot of ai entities to process. (Edit) - I am also thinking about storing a single instance of a given behaviour tree in memory, and providing it by reference to any entity that uses it. So any information about what action was last selected for execution on an entity must be stored in a data context relative to the entity (which the tree can check). (I am probably answering my own questions as i go!) I hope I have expressed my questions adequately! Thanks in advance for any help :)

    Read the article

  • Rule of thumb for enemy design

    - by Terrance
    I'm at the early stages of developing a 2d side scrolling open ended platformer (think metroidvania) and am having a bit of difficulty at enemy design inspiration for something of a scifi, nature, fantasy setting that isn't overly familar or obvious. I haven't seen too many articles blogs or books that talk about the subject at great length. Is there a fair rule of thumb when coming up with enemy design with respect to keeping your player engaged?

    Read the article

  • Calculate velocity of a bullet ricocheting on a circle

    - by SteveL
    I made a picture to demostrate what I need,basecaly I have a bullet with velocity and I want it to bounce with the correct angle after it hits a circle Solved(look the accepted answer for explain): Vector.vector.set(bullet.vel); //->v Vector.vector2.setDirection(pos, bullet.pos); //->n normal from center of circle to bullet float dot=Vector.vector.dot(Vector.vector2); //->dot product Vector.vector2.mul(dot).mul(2); Vector.vector.sub(Vector.vector2); Vector.vector.y=-Vector.vector.y; //->for some reason i had to invert the y bullet.vel.set(Vector.vector);

    Read the article

  • Position Reconstruction from Depth by inverting Perspective Projection

    - by user1294203
    I had some trouble reconstructing position from depth sampled from the depth buffer. I use the equivalent of gluPerspective in GLM. The code in GLM is: template GLM_FUNC_QUALIFIER detail::tmat4x4 perspective ( valType const & fovy, valType const & aspect, valType const & zNear, valType const & zFar ) { valType range = tan(radians(fovy / valType(2))) * zNear; valType left = -range * aspect; valType right = range * aspect; valType bottom = -range; valType top = range; detail::tmat4x4 Result(valType(0)); Result[0][0] = (valType(2) * zNear) / (right - left); Result[1][2] = (valType(2) * zNear) / (top - bottom); Result[2][3] = - (zFar + zNear) / (zFar - zNear); Result[2][4] = - valType(1); Result[3][5] = - (valType(2) * zFar * zNear) / (zFar - zNear); return Result; } There doesn't seem to be any errors in the code. So I tried to invert the projection, the formula for the z and w coordinates after projection are: and dividing z' with w' gives the post-projective depth (which lies in the depth buffer), so I need to solve for z, which finally gives: Now, the problem is I don't get the correct position (I have compared the one reconstructed with a rendered position). I then tried using the respective formula I get by doing the same for this Matrix. The corresponding formula is: For some reason, using the above formula gives me the correct position. I really don't understand why this is the case. Have I done something wrong? Could someone enlighten me please?

    Read the article

  • Is there a way to use the facebook sdk with libgdx?

    - by Rudy_TM
    I have tried to use the facebook sdk in libgdx with callbacks, but it never enters the authetication listeners, so the user never is logged in, it permits the authorization for the facebook app but it never implements the authentication interfaces :( Is there a way to use it? public MyFbClass() { facebook = new Facebook(APPID); mAsyncRunner = new AsyncFacebookRunner(facebook); SessionStore.restore(facebook, this); FB.init(this, 0, facebook, this.permissions); } ///Method for init the permissions and my listener for authetication public void init(final Activity activity, final Facebook fb,final String[] permissions) { mActivity = activity; this.fb = fb; mPermissions = permissions; mHandler = new Handler(); async = new AsyncFacebookRunner(mFb); params = new Bundle(); SessionEvents.addAuthListener(auth); } ///I call the authetication process, I call it with a callback from libgdx public void facebookAction() { // TODO Auto-generated method stub fb.authenticate(); } ///It only allow the app permission, it doesnt register the events public void authenticate() { if (mFb.isSessionValid()) { SessionEvents.onLogoutBegin(); AsyncFacebookRunner asyncRunner = new AsyncFacebookRunner(mFb); asyncRunner.logout(getContext(), new LogoutRequestListener()); //SessionStore.save(this.mFb, getContext()); } else { mFb.authorize(mActivity, mPermissions,0 , new DialogListener()); } } public class SessionListener implements AuthListener, LogoutListener { @Override public void onAuthSucceed() { SessionStore.save(mFb, getContext()); } @Override public void onAuthFail(String error) { } @Override public void onLogoutBegin() { } @Override public void onLogoutFinish() { SessionStore.clear(getContext()); } } DialogListener() { @Override public void onComplete(Bundle values) { SessionEvents.onLoginSuccess(); } @Override public void onFacebookError(FacebookError error) { SessionEvents.onLoginError(error.getMessage()); } @Override public void onError(DialogError error) { SessionEvents.onLoginError(error.getMessage()); } @Override public void onCancel() { SessionEvents.onLoginError("Action Canceled"); } }

    Read the article

  • Numerically stable(ish) method of getting Y-intercept of mouse position?

    - by Fraser
    I'm trying to unproject the mouse position to get the position on the X-Z plane of a ray cast from the mouse. The camera is fully controllable by the user. Right now, the algorithm I'm using is... Unproject the mouse into the camera to get the ray: Vector3 p1 = Vector3.Unproject(new Vector3(x, y, 0), 0, 0, width, height, nearPlane, farPlane, viewProj; Vector3 p2 = Vector3.Unproject(new Vector3(x, y, 1), 0, 0, width, height, nearPlane, farPlane, viewProj); Vector3 dir = p2 - p1; dir.Normalize(); Ray ray = Ray(p1, dir); Then get the Y-intercept by using algebra: float t = -ray.Position.Y / ray.Direction.Y; Vector3 p = ray.Position + t * ray.Direction; The problem is that the projected position is "jumpy". As I make small adjustments to the mouse position, the projected point moves in strange ways. For example, if I move the mouse one pixel up, it will sometimes move the projected position down, but when I move it a second pixel, the project position will jump back to the mouse's location. The projected location is always close to where it should be, but it does not smoothly follow a moving mouse. The problem intensifies as I zoom the camera out. I believe the problem is caused by numeric instability. I can make minor improvements to this by doing some computations at double precision, and possibly abusing the fact that floating point calculations are done at 80-bit precision on x86, however before I start micro-optimizing this and getting deep into how the CLR handles floating point, I was wondering if there's an algorithmic change I can do to improve this? EDIT: A little snooping around in .NET Reflector on SlimDX.dll: public static Vector3 Unproject(Vector3 vector, float x, float y, float width, float height, float minZ, float maxZ, Matrix worldViewProjection) { Vector3 coordinate = new Vector3(); Matrix result = new Matrix(); Matrix.Invert(ref worldViewProjection, out result); coordinate.X = (float) ((((vector.X - x) / ((double) width)) * 2.0) - 1.0); coordinate.Y = (float) -((((vector.Y - y) / ((double) height)) * 2.0) - 1.0); coordinate.Z = (vector.Z - minZ) / (maxZ - minZ); TransformCoordinate(ref coordinate, ref result, out coordinate); return coordinate; } // ... public static void TransformCoordinate(ref Vector3 coordinate, ref Matrix transformation, out Vector3 result) { Vector3 vector; Vector4 vector2 = new Vector4 { X = (((coordinate.Y * transformation.M21) + (coordinate.X * transformation.M11)) + (coordinate.Z * transformation.M31)) + transformation.M41, Y = (((coordinate.Y * transformation.M22) + (coordinate.X * transformation.M12)) + (coordinate.Z * transformation.M32)) + transformation.M42, Z = (((coordinate.Y * transformation.M23) + (coordinate.X * transformation.M13)) + (coordinate.Z * transformation.M33)) + transformation.M43 }; float num = (float) (1.0 / ((((transformation.M24 * coordinate.Y) + (transformation.M14 * coordinate.X)) + (coordinate.Z * transformation.M34)) + transformation.M44)); vector2.W = num; vector.X = vector2.X * num; vector.Y = vector2.Y * num; vector.Z = vector2.Z * num; result = vector; } ...which seems to be a pretty standard method of unprojecting a point from a projection matrix, however this serves to introduce another point of possible instability. Still, I'd like to stick with the SlimDX Unproject routine rather than writing my own unless it's really necessary.

    Read the article

  • Is this technique for stat tracking without a database workable?

    - by baptzmoffire
    If I wanted to create a chess game, for iOS, that tracked both player moves (for retracing the progression of a game and for player stats), what would be the simplest route to take? To clarify, I want to track not only the moves a player has made in a particular game, but how often that player has made that move in past games. For example I want to be able to track: How many times a given player has opened by moving the king pawn up two squares (e4) as white, on move number one. What is the percentage of time the player responds to white's e4 opening move, with moving his own king pawn to e5? What percentage of time does he respond by moving his queenside bishop pawn to c5? And so on. If it's not clear, the stat tracking system should also be able to report how many times this player, as black, move his queen to h1, on move number 30. I'm using Parse.com for my back-end as a server (BaaS) service. If I were to create a class that writes strings that identify move number, player color, moved piece, algebraic notation of the square (e.g. "d8") to a file, locally in the file system saves the file to Parse, and deletes the temporary file from file system upon opening the same game in my tableview (a la a "With Friends" game), download this file from Parse, parse through it and retrieve all stats/history, assign all relevant values to variables Is this plan viable, or is there an easier way?

    Read the article

< Previous Page | 555 556 557 558 559 560 561 562 563 564 565 566  | Next Page >